Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
theory Imperative_Loops | |
imports | |
"Refine_Imperative_HOL.Sepref_HOL_Bindings" | |
"Refine_Imperative_HOL.Pf_Mono_Prover" | |
"Refine_Imperative_HOL.Pf_Add" | |
begin | |
section \<open>Imperative Loops\<close> | |
text "An auxiliary while rule provided by Peter Lammich." | |
lemma heap_WHILET_rule: | |
assumes | |
"wf R" | |
"P \<Longrightarrow>\<^sub>A I s" | |
"\<And>s. <I s * true> bi s <\<lambda>r. I s * \<up>(r \<longleftrightarrow> b s)>\<^sub>t" | |
"\<And>s. b s \<Longrightarrow> <I s * true> f s <\<lambda>s'. I s' * \<up>((s', s) \<in> R)>\<^sub>t" | |
"\<And>s. \<not> b s \<Longrightarrow> I s \<Longrightarrow>\<^sub>A Q s" | |
shows "<P * true> heap_WHILET bi f s <Q>\<^sub>t" | |
proof - | |
have "<I s * true> heap_WHILET bi f s <\<lambda>s'. I s' * \<up>(\<not> b s')>\<^sub>t" | |
using assms(1) | |
proof (induction arbitrary:) | |
case (less s) | |
show ?case | |
proof (cases "b s") | |
case True | |
then show ?thesis | |
by (subst heap_WHILET_unfold) (sep_auto heap: assms(3,4) less) | |
next | |
case False | |
then show ?thesis | |
by (subst heap_WHILET_unfold) (sep_auto heap: assms(3)) | |
qed | |
qed | |
then show ?thesis | |
apply (rule cons_rule[rotated 2]) | |
apply (intro ent_star_mono assms(2) ent_refl) | |
apply clarsimp | |
apply (intro ent_star_mono assms(5) ent_refl) | |
. | |
qed | |
lemma heap_WHILET_rule': | |
assumes | |
"wf R" | |
"P \<Longrightarrow>\<^sub>A I s si * F" | |
"\<And>si s. <I s si * F> bi si <\<lambda>r. I s si * F * \<up>(r \<longleftrightarrow> b s)>\<^sub>t" | |
"\<And>si s. b s \<Longrightarrow> <I s si * F> f si <\<lambda>si'. \<exists>\<^sub>As'. I s' si' * F * \<up>((s', s) \<in> R)>\<^sub>t" | |
"\<And>si s. \<not> b s \<Longrightarrow> I s si * F \<Longrightarrow>\<^sub>A Q s si" | |
shows "<P> heap_WHILET bi f si <\<lambda>si. \<exists>\<^sub>As. Q s si>\<^sub>t" | |
proof - | |
have "<I s si * F> heap_WHILET bi f si <\<lambda>si'. \<exists>\<^sub>As'. I s' si' * F * \<up>(\<not> b s')>\<^sub>t" | |
using assms(1) | |
proof (induction arbitrary: si) | |
case (less s) | |
show ?case | |
proof (cases "b s") | |
case True | |
then show ?thesis | |
apply (subst heap_WHILET_unfold) | |
apply (sep_auto heap: assms(3,4) less) | |
done | |
next | |
case False | |
then show ?thesis | |
by (subst heap_WHILET_unfold) (sep_auto heap: assms(3)) | |
qed | |
qed | |
then show ?thesis | |
apply (rule cons_rule[rotated 2]) | |
apply (intro ent_star_mono assms(2) ent_refl) | |
apply clarsimp | |
apply (sep_auto ) | |
apply (erule ent_frame_fwd[OF assms(5)]) | |
apply frame_inference | |
by sep_auto | |
qed | |
(* Added by NM, just a technicality since this rule fits our use case better *) | |
text "I derived my own version, | |
simply because it was a better fit to my use case." | |
corollary heap_WHILET_rule'': | |
assumes | |
"wf R" | |
"P \<Longrightarrow>\<^sub>A I s" | |
"\<And>s. <I s * true> bi s <\<lambda>r. I s * \<up>(r \<longleftrightarrow> b s)>\<^sub>t" | |
"\<And>s. b s \<Longrightarrow> <I s * true> f s <\<lambda>s'. I s' * \<up>((s', s) \<in> R)>\<^sub>t" | |
"\<And>s. \<not> b s \<Longrightarrow> I s \<Longrightarrow>\<^sub>A Q s" | |
shows "<P> heap_WHILET bi f s <Q>\<^sub>t" | |
supply R = heap_WHILET_rule'[of R P "\<lambda>s si. \<up>(s = si) * I s" s _ true bi b f "\<lambda>s si.\<up>(s = si) * Q s * true"] | |
thm R | |
using assms ent_true_drop apply(sep_auto heap: R assms) | |
done | |
(* | |
explicit proof: | |
proof - | |
have "<I s * true> heap_WHILET bi f s <\<lambda>s'. I s' * \<up>(\<not> b s')>\<^sub>t" | |
using assms(1) | |
proof (induction arbitrary:) | |
case (less s) | |
show ?case | |
proof (cases "b s") | |
case True | |
then show ?thesis | |
by (subst heap_WHILET_unfold) (sep_auto heap: assms(3,4) less) | |
next | |
case False | |
then show ?thesis | |
by (subst heap_WHILET_unfold) (sep_auto heap: assms(3)) | |
qed | |
qed | |
then show ?thesis | |
apply (rule cons_rule[rotated 2]) | |
apply (intro ent_true_drop assms(2) ent_refl) | |
apply clarsimp | |
apply(intro ent_star_mono assms(5) ent_refl) | |
. | |
qed | |
*) | |
end | |