Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
section "Kripke structures and CTL" | |
text \<open>We apply Kripke structures and CTL to model state based systems and analyse properties under | |
dynamic state changes. Snapshots of systems are the states on which we define a state transition. | |
Temporal logic is then employed to express security and privacy properties.\<close> | |
theory MC | |
imports Main | |
begin | |
subsection "Lemmas to support least and greatest fixpoints" | |
lemma predtrans_empty: | |
assumes "mono (\<tau> :: 'a set \<Rightarrow> 'a set)" | |
shows "\<forall> i. (\<tau> ^^ i) ({}) \<subseteq> (\<tau> ^^(i + 1))({})" | |
using assms funpow_decreasing le_add1 by blast | |
lemma ex_card: "finite S \<Longrightarrow> \<exists> n:: nat. card S = n" | |
by simp | |
lemma less_not_le: "\<lbrakk>(x:: nat) < y; y \<le> x\<rbrakk> \<Longrightarrow> False" | |
by arith | |
lemma infchain_outruns_all: | |
assumes "finite (UNIV :: 'a set)" | |
and "\<forall>i :: nat. ((\<tau> :: 'a set \<Rightarrow> 'a set)^^ i) ({}:: 'a set) \<subset> (\<tau> ^^ (i + 1)) {}" | |
shows "\<forall>j :: nat. \<exists>i :: nat. j < card ((\<tau> ^^ i) {})" | |
proof (rule allI, induct_tac j) | |
show "\<exists>i. 0 < card ((\<tau> ^^ i) {})" using assms | |
by (metis bot.not_eq_extremum card_gt_0_iff finite_subset subset_UNIV) | |
next show "\<And>j n. \<exists>i. n < card ((\<tau> ^^ i) {}) | |
\<Longrightarrow> \<exists>i. Suc n < card ((\<tau> ^^ i) {})" | |
proof - | |
fix j n | |
assume a: "\<exists>i. n < card ((\<tau> ^^ i) {})" | |
obtain i where "n < card ((\<tau> ^^ i) {})" | |
using a by blast | |
thus "\<exists> i. Suc n < card ((\<tau> ^^ i) {})" using assms | |
by (meson finite_subset le_less_trans le_simps(3) psubset_card_mono subset_UNIV) | |
qed | |
qed | |
lemma no_infinite_subset_chain: | |
assumes "finite (UNIV :: 'a set)" | |
and "mono (\<tau> :: ('a set \<Rightarrow> 'a set))" | |
and "\<forall>i :: nat. ((\<tau> :: 'a set \<Rightarrow> 'a set) ^^ i) {} \<subset> (\<tau> ^^ (i + (1 :: nat))) ({} :: 'a set)" | |
shows "False" | |
text \<open>Proof idea: since @{term "UNIV"} is finite, we have from @{text \<open>ex_card\<close>} that there is | |
an n with @{term "card UNIV = n"}. Now, use @{text \<open>infchain_outruns_all\<close>} to show as | |
contradiction point that | |
@{term "\<exists> i :: nat. card UNIV < card ((\<tau> ^^ i) {})"}. | |
Since all sets are subsets of @{term "UNIV"}, we also have | |
@{term "card ((\<tau> ^^ i) {}) \<le> card UNIV"}: | |
Contradiction!, i.e. proof of False \<close> | |
proof - | |
have a: "\<forall> (j :: nat). (\<exists> (i :: nat). (j :: nat) < card((\<tau> ^^ i)({} :: 'a set)))" using assms | |
by (erule_tac \<tau> = \<tau> in infchain_outruns_all) | |
hence b: "\<exists> (n :: nat). card(UNIV :: 'a set) = n" using assms | |
by (erule_tac S = UNIV in ex_card) | |
from this obtain n where c: "card(UNIV :: 'a set) = n" by (erule exE) | |
hence d: "\<exists>i. card UNIV < card ((\<tau> ^^ i) {})" using a | |
by (drule_tac x = "card UNIV" in spec) | |
from this obtain i where e: "card (UNIV :: 'a set) < card ((\<tau> ^^ i) {})" | |
by (erule exE) | |
hence f: "(card((\<tau> ^^ i){})) \<le> (card (UNIV :: 'a set))" using assms | |
apply (erule_tac A = "((\<tau> ^^ i){})" in Finite_Set.card_mono) | |
by (rule subset_UNIV) | |
thus "False" using e | |
by (erule_tac y = "card((\<tau> ^^ i){})" in less_not_le) | |
qed | |
lemma finite_fixp: | |
assumes "finite(UNIV :: 'a set)" | |
and "mono (\<tau> :: ('a set \<Rightarrow> 'a set))" | |
shows "\<exists> i. (\<tau> ^^ i) ({}) = (\<tau> ^^(i + 1))({})" | |
text \<open>Proof idea: | |
with @{text predtrans_empty} we know | |
@{term "\<forall> i. (\<tau> ^^ i){} \<subseteq> (\<tau> ^^(i + 1))({})"} (1). | |
If we can additionally show | |
@{term "\<exists> i. (\<tau> ^^ i)({}) \<supseteq> (\<tau> ^^(i + 1))({})"} (2), | |
we can get the goal together with equalityI | |
@{text "\<subseteq> + \<supseteq> \<longrightarrow> ="}. | |
To prove (1) we observe that | |
@{term "(\<tau> ^^ i)({}) \<supseteq> (\<tau> ^^(i + 1))({})"} | |
can be inferred from | |
@{term "\<not>((\<tau> ^^ i)({}) \<subseteq> (\<tau> ^^(i + 1))({}))"} | |
and (1). | |
Finally, the latter is solved directly by @{text \<open>no_infinite_subset_chain\<close>}.\<close> | |
proof - | |
have a: "\<forall>i. (\<tau> ^^ i) ({}:: 'a set) \<subseteq> (\<tau> ^^ (i + (1))) {}" | |
by(rule predtrans_empty, rule assms(2)) | |
have a3: "\<not> (\<forall> i :: nat. (\<tau> ^^ i) {} \<subset> (\<tau> ^^(i + 1)) {})" | |
by (rule notI, rule no_infinite_subset_chain, (rule assms)+) | |
hence b: "(\<exists> i :: nat. \<not>((\<tau> ^^ i) {} \<subset> (\<tau> ^^(i + 1)) {}))" using assms a3 | |
by blast | |
thus "\<exists> i. (\<tau> ^^ i) ({}) = (\<tau> ^^(i + 1))({})" using a | |
by blast | |
qed | |
lemma predtrans_UNIV: | |
assumes "mono (\<tau> :: ('a set \<Rightarrow> 'a set))" | |
shows "\<forall> i. (\<tau> ^^ i) (UNIV) \<supseteq> (\<tau> ^^(i + 1))(UNIV)" | |
proof (rule allI, induct_tac i) | |
show "(\<tau> ^^ ((0) + (1))) UNIV \<subseteq> (\<tau> ^^ (0)) UNIV" | |
by simp | |
next show "\<And>(i) n. | |
(\<tau> ^^ (n + (1))) UNIV \<subseteq> (\<tau> ^^ n) UNIV \<Longrightarrow> (\<tau> ^^ (Suc n + (1))) UNIV \<subseteq> (\<tau> ^^ Suc n) UNIV" | |
proof - | |
fix i n | |
assume a: "(\<tau> ^^ (n + (1))) UNIV \<subseteq> (\<tau> ^^ n) UNIV" | |
have "(\<tau> ((\<tau> ^^ n) UNIV)) \<supseteq> (\<tau> ((\<tau> ^^ (n + (1 :: nat))) UNIV))" using assms a | |
by (rule monoE) | |
thus "(\<tau> ^^ (Suc n + (1))) UNIV \<subseteq> (\<tau> ^^ Suc n) UNIV" by simp | |
qed | |
qed | |
lemma Suc_less_le: "x < (y - n) \<Longrightarrow> x \<le> (y - (Suc n))" | |
by simp | |
lemma card_univ_subtract: | |
assumes "finite (UNIV :: 'a set)" and "mono \<tau>" | |
and "(\<forall>i :: nat. ((\<tau> :: 'a set \<Rightarrow> 'a set) ^^ (i + (1 :: nat)))(UNIV :: 'a set) \<subset> (\<tau> ^^ i) UNIV)" | |
shows "(\<forall> i :: nat. card((\<tau> ^^ i) (UNIV ::'a set)) \<le> (card (UNIV :: 'a set)) - i)" | |
proof (rule allI, induct_tac i) | |
show "card ((\<tau> ^^ (0)) UNIV) \<le> card (UNIV :: 'a set) - (0)" using assms | |
by (simp) | |
next show "\<And>(i) n. | |
card ((\<tau> ^^ n) (UNIV :: 'a set)) \<le> card (UNIV :: 'a set) - n \<Longrightarrow> | |
card ((\<tau> ^^ Suc n) (UNIV :: 'a set)) \<le> card (UNIV :: 'a set) - Suc n" using assms | |
proof - | |
fix i n | |
assume a: "card ((\<tau> ^^ n) (UNIV :: 'a set)) \<le> card (UNIV :: 'a set) - n" | |
have b: "(\<tau> ^^ (n + (1)))(UNIV :: 'a set) \<subset> (\<tau> ^^ n) UNIV" using assms | |
by (erule_tac x = n in spec) | |
have "card((\<tau> ^^ (n + (1 :: nat)))(UNIV :: 'a set)) < card((\<tau> ^^ n) (UNIV :: 'a set))" | |
by (rule psubset_card_mono, rule finite_subset, rule subset_UNIV, rule assms(1), rule b) | |
thus "card ((\<tau> ^^ Suc n) (UNIV :: 'a set)) \<le> card (UNIV :: 'a set) - Suc n" using a | |
by simp | |
qed | |
qed | |
lemma card_UNIV_tau_i_below_zero: | |
assumes "finite (UNIV :: 'a set)" and "mono \<tau>" | |
and "(\<forall>i :: nat. ((\<tau> :: ('a set \<Rightarrow> 'a set)) ^^ (i + (1 :: nat)))(UNIV :: 'a set) \<subset> (\<tau> ^^ i) UNIV)" | |
shows "card((\<tau> ^^ (card (UNIV ::'a set))) (UNIV ::'a set)) \<le> 0" | |
proof - | |
have "(\<forall> i :: nat. card((\<tau> ^^ i) (UNIV ::'a set)) \<le> (card (UNIV :: 'a set)) - i)" using assms | |
by (rule card_univ_subtract) | |
thus "card((\<tau> ^^ (card (UNIV ::'a set))) (UNIV ::'a set)) \<le> 0" | |
by (drule_tac x = "card (UNIV ::'a set)" in spec, simp) | |
qed | |
lemma finite_card_zero_empty: "\<lbrakk> finite S; card S \<le> 0\<rbrakk> \<Longrightarrow> S = {}" | |
by simp | |
lemma UNIV_tau_i_is_empty: | |
assumes "finite (UNIV :: 'a set)" and "mono (\<tau> :: ('a set \<Rightarrow> 'a set))" | |
and "(\<forall>i :: nat. ((\<tau> :: 'a set \<Rightarrow> 'a set) ^^ (i + (1 :: nat)))(UNIV :: 'a set) \<subset> (\<tau> ^^ i) UNIV)" | |
shows "(\<tau> ^^ (card (UNIV ::'a set))) (UNIV ::'a set) = {}" | |
by (meson assms card_UNIV_tau_i_below_zero finite_card_zero_empty finite_subset subset_UNIV) | |
lemma down_chain_reaches_empty: | |
assumes "finite (UNIV :: 'a set)" and "mono (\<tau> :: 'a set \<Rightarrow> 'a set)" | |
and "(\<forall>i :: nat. ((\<tau> :: 'a set \<Rightarrow> 'a set) ^^ (i + (1 :: nat))) UNIV \<subset> (\<tau> ^^ i) UNIV)" | |
shows "\<exists> (j :: nat). (\<tau> ^^ j) UNIV = {}" | |
using UNIV_tau_i_is_empty assms by blast | |
lemma no_infinite_subset_chain2: | |
assumes "finite (UNIV :: 'a set)" and "mono (\<tau> :: ('a set \<Rightarrow> 'a set))" | |
and "\<forall>i :: nat. (\<tau> ^^ i) UNIV \<supset> (\<tau> ^^ (i + (1 :: nat))) UNIV" | |
shows "False" | |
proof - | |
have "\<exists> j :: nat. (\<tau> ^^ j) UNIV = {}" using assms | |
by (rule down_chain_reaches_empty) | |
from this obtain j where a: "(\<tau> ^^ j) UNIV = {}" by (erule exE) | |
have "(\<tau> ^^ (j + (1))) UNIV \<subset> (\<tau> ^^ j) UNIV" using assms | |
by (erule_tac x = j in spec) | |
thus False using a by simp | |
qed | |
lemma finite_fixp2: | |
assumes "finite(UNIV :: 'a set)" and "mono (\<tau> :: ('a set \<Rightarrow> 'a set))" | |
shows "\<exists> i. (\<tau> ^^ i) UNIV = (\<tau> ^^(i + 1)) UNIV" | |
proof - | |
have "\<forall>i. (\<tau> ^^ (i + (1))) UNIV \<subseteq> (\<tau> ^^ i) UNIV" | |
by (rule predtrans_UNIV , simp add: assms(2)) | |
moreover have "\<exists>i. \<not> (\<tau> ^^ (i + (1))) UNIV \<subset> (\<tau> ^^ i) UNIV" using assms | |
proof - | |
have "\<not> (\<forall> i :: nat. (\<tau> ^^ i) UNIV \<supset> (\<tau> ^^(i + 1)) UNIV)" | |
using assms(1) assms(2) no_infinite_subset_chain2 by blast | |
thus "\<exists>i. \<not> (\<tau> ^^ (i + (1))) UNIV \<subset> (\<tau> ^^ i) UNIV" by blast | |
qed | |
ultimately show "\<exists> i. (\<tau> ^^ i) UNIV = (\<tau> ^^(i + 1)) UNIV" | |
by blast | |
qed | |
lemma lfp_loop: | |
assumes "finite (UNIV :: 'b set)" and "mono (\<tau> :: ('b set \<Rightarrow> 'b set))" | |
shows "\<exists> n . lfp \<tau> = (\<tau> ^^ n) {}" | |
proof - | |
have "\<exists>i. (\<tau> ^^ i) {} = (\<tau> ^^ (i + (1))) {}" using assms | |
by (rule finite_fixp) | |
from this obtain i where " (\<tau> ^^ i) {} = (\<tau> ^^ (i + (1))) {}" | |
by (erule exE) | |
hence "(\<tau> ^^ i) {} = (\<tau> ^^ Suc i) {}" | |
by simp | |
hence "(\<tau> ^^ Suc i) {} = (\<tau> ^^ i) {}" | |
by (rule sym) | |
hence "lfp \<tau> = (\<tau> ^^ i) {}" | |
by (simp add: assms(2) lfp_Kleene_iter) | |
thus "\<exists> n . lfp \<tau> = (\<tau> ^^ n) {}" | |
by (rule exI) | |
qed | |
text \<open>These next two are repeated from the corresponding | |
theorems in HOL/ZF/Nat.thy for the sake of self-containedness of the exposition.\<close> | |
lemma Kleene_iter_gpfp: | |
assumes "mono f" and "p \<le> f p" shows "p \<le> (f^^k) (top::'a::order_top)" | |
proof(induction k) | |
case 0 show ?case by simp | |
next | |
case Suc | |
from monoD[OF assms(1) Suc] assms(2) | |
show ?case by simp | |
qed | |
lemma gfp_loop: | |
assumes "finite (UNIV :: 'b set)" | |
and "mono (\<tau> :: ('b set \<Rightarrow> 'b set))" | |
shows "\<exists> n . gfp \<tau> = (\<tau> ^^ n)UNIV" | |
proof - | |
have " \<exists>i. (\<tau> ^^ i)(UNIV :: 'b set) = (\<tau> ^^ (i + (1))) UNIV" using assms | |
by (rule finite_fixp2) | |
from this obtain i where "(\<tau> ^^ i)UNIV = (\<tau> ^^ (i + (1))) UNIV" by (erule exE) | |
thus "\<exists> n . gfp \<tau> = (\<tau> ^^ n)UNIV" using assms | |
by (metis Suc_eq_plus1 gfp_Kleene_iter) | |
qed | |
subsection \<open>Generic type of state with state transition and CTL operators\<close> | |
text \<open>The system states and their transition relation are defined as a class called | |
@{text \<open>state\<close>} containing an abstract constant@{text \<open>state_transition\<close>}. It introduces the | |
syntactic infix notation @{text \<open>I \<rightarrow>\<^sub>i I'\<close>} to denote that system state @{text \<open>I\<close>} and @{text \<open>I'\<close>} | |
are in this relation over an arbitrary (polymorphic) type @{text \<open>'a\<close>}.\<close> | |
class state = | |
fixes state_transition :: "['a :: type, 'a] \<Rightarrow> bool" (infixr "\<rightarrow>\<^sub>i" 50) | |
text \<open>The above class definition lifts Kripke structures and CTL to a general level. | |
The definition of the inductive relation is given by a set of specific rules which are, | |
however, part of an application like infrastructures. Branching time temporal logic CTL | |
is defined in general over Kripke structures with arbitrary state transitions and can later | |
be applied to suitable theories, like infrastructures. | |
Based on the generic state transition @{text \<open>\<rightarrow>\<close>} of the type class state, the CTL-operators | |
EX and AX express that property f holds in some or all next states, respectively.\<close> | |
definition AX where "AX f \<equiv> {s. {f0. s \<rightarrow>\<^sub>i f0} \<subseteq> f}" | |
definition EX' where "EX' f \<equiv> {s . \<exists> f0 \<in> f. s \<rightarrow>\<^sub>i f0 }" | |
text \<open>The CTL formula @{text \<open>AG f\<close>} means that on all paths branching from a state @{text \<open>s\<close>} | |
the formula @{text \<open>f\<close>} is always true (@{text \<open>G\<close>} stands for `globally'). It can be defined | |
using the Tarski fixpoint theory by applying the greatest fixpoint operator. In a similar way, | |
the other CTL operators are defined.\<close> | |
definition AF where "AF f \<equiv> lfp (\<lambda> Z. f \<union> AX Z)" | |
definition EF where "EF f \<equiv> lfp (\<lambda> Z. f \<union> EX' Z)" | |
definition AG where "AG f \<equiv> gfp (\<lambda> Z. f \<inter> AX Z)" | |
definition EG where "EG f \<equiv> gfp (\<lambda> Z. f \<inter> EX' Z)" | |
definition AU where "AU f1 f2 \<equiv> lfp(\<lambda> Z. f2 \<union> (f1 \<inter> AX Z))" | |
definition EU where "EU f1 f2 \<equiv> lfp(\<lambda> Z. f2 \<union> (f1 \<inter> EX' Z))" | |
definition AR where "AR f1 f2 \<equiv> gfp(\<lambda> Z. f2 \<inter> (f1 \<union> AX Z))" | |
definition ER where "ER f1 f2 \<equiv> gfp(\<lambda> Z. f2 \<inter> (f1 \<union> EX' Z))" | |
subsection \<open>Kripke structures and Modelchecking\<close> | |
datatype 'a kripke = | |
Kripke "'a set" "'a set" | |
primrec states where "states (Kripke S I) = S" | |
primrec init where "init (Kripke S I) = I" | |
text \<open>The formal Isabelle definition of what it means that formula f holds | |
in a Kripke structure M can be stated as: the initial states of the Kripke | |
structure init M need to be contained in the set of all states states M that | |
imply f.\<close> | |
definition check ("_ \<turnstile> _" 50) | |
where "M \<turnstile> f \<equiv> (init M) \<subseteq> {s \<in> (states M). s \<in> f }" | |
definition state_transition_refl (infixr "\<rightarrow>\<^sub>i*" 50) | |
where "s \<rightarrow>\<^sub>i* s' \<equiv> ((s,s') \<in> {(x,y). state_transition x y}\<^sup>*)" | |
subsection \<open>Lemmas for CTL operators\<close> | |
subsubsection \<open>EF lemmas\<close> | |
lemma EF_lem0: "(x \<in> EF f) = (x \<in> f \<union> EX' (lfp (\<lambda>Z :: ('a :: state) set. f \<union> EX' Z)))" | |
proof - | |
have "lfp (\<lambda>Z :: ('a :: state) set. f \<union> EX' Z) = | |
f \<union> (EX' (lfp (\<lambda>Z :: 'a set. f \<union> EX' Z)))" | |
by (rule def_lfp_unfold, rule reflexive, unfold mono_def EX'_def, auto) | |
thus "(x \<in> EF (f :: ('a :: state) set)) = (x \<in> f \<union> EX' (lfp (\<lambda>Z :: ('a :: state) set. f \<union> EX' Z)))" | |
by (simp add: EF_def) | |
qed | |
lemma EF_lem00: "(EF f) = (f \<union> EX' (lfp (\<lambda> Z :: ('a :: state) set. f \<union> EX' Z)))" | |
by (auto simp: EF_lem0) | |
lemma EF_lem000: "(EF f) = (f \<union> EX' (EF f))" | |
by (metis EF_def EF_lem00) | |
lemma EF_lem1: "x \<in> f \<or> x \<in> (EX' (EF f)) \<Longrightarrow> x \<in> EF f" | |
proof (simp add: EF_def) | |
assume a: "x \<in> f \<or> x \<in> EX' (lfp (\<lambda>Z::'a set. f \<union> EX' Z))" | |
show "x \<in> lfp (\<lambda>Z::'a set. f \<union> EX' Z)" | |
proof - | |
have b: "lfp (\<lambda>Z :: ('a :: state) set. f \<union> EX' Z) = | |
f \<union> (EX' (lfp (\<lambda>Z :: ('a :: state) set. f \<union> EX' Z)))" | |
using EF_def EF_lem00 by blast | |
thus "x \<in> lfp (\<lambda>Z::'a set. f \<union> EX' Z)" using a | |
by (subst b, blast) | |
qed | |
qed | |
lemma EF_lem2b: | |
assumes "x \<in> (EX' (EF f))" | |
shows "x \<in> EF f" | |
by (simp add: EF_lem1 assms) | |
lemma EF_lem2a: assumes "x \<in> f" shows "x \<in> EF f" | |
by (simp add: EF_lem1 assms) | |
lemma EF_lem2c: assumes "x \<notin> f" shows "x \<in> EF (- f)" | |
by (simp add: EF_lem1 assms) | |
lemma EF_lem2d: assumes "x \<notin> EF f" shows "x \<notin> f" | |
using EF_lem1 assms by auto | |
lemma EF_lem3b: assumes "x \<in> EX' (f \<union> EX' (EF f))" shows "x \<in> (EF f)" | |
by (metis EF_lem000 EF_lem2b assms) | |
lemma EX_lem0l: "x \<in> (EX' f) \<Longrightarrow> x \<in> (EX' (f \<union> g))" | |
by (auto simp: EX'_def) | |
lemma EX_lem0r: "x \<in> (EX' g) \<Longrightarrow> x \<in> (EX' (f \<union> g))" | |
by (auto simp: EX'_def) | |
lemma EX_step: assumes "x \<rightarrow>\<^sub>i y" and "y \<in> f" shows "x \<in> EX' f" | |
using assms by (auto simp: EX'_def) | |
lemma EF_E[rule_format]: "\<forall> f. x \<in> (EF f) \<longrightarrow> x \<in> (f \<union> EX' (EF f))" | |
using EF_lem000 by blast | |
lemma EF_step: assumes "x \<rightarrow>\<^sub>i y" and "y \<in> f" shows "x \<in> EF f" | |
using EF_lem3b EX_step assms by blast | |
lemma EF_step_step: assumes "x \<rightarrow>\<^sub>i y" and "y \<in> EF f" shows "x \<in> EF f" | |
using EF_lem2b EX_step assms by blast | |
lemma EF_step_star: "\<lbrakk> x \<rightarrow>\<^sub>i* y; y \<in> f \<rbrakk> \<Longrightarrow> x \<in> EF f" | |
proof (simp add: state_transition_refl_def) | |
show "(x, y) \<in> {(x::'a, y::'a). x \<rightarrow>\<^sub>i y}\<^sup>* \<Longrightarrow> y \<in> f \<Longrightarrow> x \<in> EF f" | |
proof (erule converse_rtrancl_induct) | |
show "y \<in> f \<Longrightarrow> y \<in> EF f" | |
by (erule EF_lem2a) | |
next show "\<And>ya z::'a. y \<in> f \<Longrightarrow> | |
(ya, z) \<in> {(x,y). x \<rightarrow>\<^sub>i y} \<Longrightarrow> | |
(z, y) \<in> {(x,y). x \<rightarrow>\<^sub>i y}\<^sup>* \<Longrightarrow> z \<in> EF f \<Longrightarrow> ya \<in> EF f" | |
by (simp add: EF_step_step) | |
qed | |
qed | |
lemma EF_induct: "(a::'a::state) \<in> EF f \<Longrightarrow> | |
mono (\<lambda> Z. f \<union> EX' Z) \<Longrightarrow> | |
(\<And>x. x \<in> ((\<lambda> Z. f \<union> EX' Z)(EF f \<inter> {x::'a::state. P x})) \<Longrightarrow> P x) \<Longrightarrow> | |
P a" | |
by (metis (mono_tags, lifting) EF_def def_lfp_induct_set) | |
lemma valEF_E: "M \<turnstile> EF f \<Longrightarrow> x \<in> init M \<Longrightarrow> x \<in> EF f" | |
by (auto simp: check_def) | |
lemma EF_step_star_rev[rule_format]: "x \<in> EF s \<Longrightarrow> (\<exists> y \<in> s. x \<rightarrow>\<^sub>i* y)" | |
proof (erule EF_induct) | |
show "mono (\<lambda>Z::'a set. s \<union> EX' Z)" | |
by (force simp add: mono_def EX'_def) | |
next show "\<And>x::'a. x \<in> s \<union> EX' (EF s \<inter> {x::'a. \<exists>y::'a\<in>s. x \<rightarrow>\<^sub>i* y}) \<Longrightarrow> \<exists>y::'a\<in>s. x \<rightarrow>\<^sub>i* y" | |
apply (erule UnE) | |
using state_transition_refl_def apply auto[1] | |
by (auto simp add: EX'_def state_transition_refl_def intro: converse_rtrancl_into_rtrancl) | |
qed | |
lemma EF_step_inv: "(I \<subseteq> {sa::'s :: state. (\<exists>i\<in>I. i \<rightarrow>\<^sub>i* sa) \<and> sa \<in> EF s}) | |
\<Longrightarrow> \<forall> x \<in> I. \<exists> y \<in> s. x \<rightarrow>\<^sub>i* y" | |
using EF_step_star_rev by fastforce | |
subsubsection \<open>AG lemmas\<close> | |
lemma AG_in_lem: "x \<in> AG s \<Longrightarrow> x \<in> s" | |
by (auto simp add: AG_def gfp_def) | |
lemma AG_lem1: "x \<in> s \<and> x \<in> (AX (AG s)) \<Longrightarrow> x \<in> AG s" | |
proof (simp add: AG_def) | |
have "gfp (\<lambda>Z::'a set. s \<inter> AX Z) = s \<inter> (AX (gfp (\<lambda>Z::'a set. s \<inter> AX Z)))" | |
by (rule def_gfp_unfold) (auto simp: mono_def AX_def) | |
then show "x \<in> s \<and> x \<in> AX (gfp (\<lambda>Z::'a set. s \<inter> AX Z)) \<Longrightarrow> x \<in> gfp (\<lambda>Z::'a set. s \<inter> AX Z)" | |
by blast | |
qed | |
lemma AG_lem2: "x \<in> AG s \<Longrightarrow> x \<in> (s \<inter> (AX (AG s)))" | |
proof - | |
have a: "AG s = s \<inter> (AX (AG s))" | |
unfolding AG_def | |
by (rule def_gfp_unfold) (auto simp: mono_def AX_def) | |
thus "x \<in> AG s \<Longrightarrow> x \<in> (s \<inter> (AX (AG s)))" | |
by (erule subst) | |
qed | |
lemma AG_lem3: "AG s = (s \<inter> (AX (AG s)))" | |
using AG_lem1 AG_lem2 by blast | |
lemma AG_step: "y \<rightarrow>\<^sub>i z \<Longrightarrow> y \<in> AG s \<Longrightarrow> z \<in> AG s" | |
using AG_lem2 AX_def by blast | |
lemma AG_all_s: " x \<rightarrow>\<^sub>i* y \<Longrightarrow> x \<in> AG s \<Longrightarrow> y \<in> AG s" | |
proof (simp add: state_transition_refl_def) | |
show "(x, y) \<in> {(x,y). x \<rightarrow>\<^sub>i y}\<^sup>* \<Longrightarrow> x \<in> AG s \<Longrightarrow> y \<in> AG s" | |
by (erule rtrancl_induct) (auto simp add: AG_step) | |
qed | |
lemma AG_imp_notnotEF: | |
"I \<noteq> {} \<Longrightarrow> ((Kripke {s. \<exists> i \<in> I. (i \<rightarrow>\<^sub>i* s)} I \<turnstile> AG s)) \<Longrightarrow> | |
(\<not>(Kripke {s. \<exists> i \<in> I. (i \<rightarrow>\<^sub>i* s)} (I :: ('s :: state)set) \<turnstile> EF (- s)))" | |
proof (rule notI, simp add: check_def) | |
assume a0: "I \<noteq> {}" and | |
a1: "I \<subseteq> {sa::'s. (\<exists>i\<in>I. i \<rightarrow>\<^sub>i* sa) \<and> sa \<in> AG s}" and | |
a2: "I \<subseteq> {sa::'s. (\<exists>i\<in>I. i \<rightarrow>\<^sub>i* sa) \<and> sa \<in> EF (- s)}" | |
show "False" | |
proof - | |
have a3: "{sa::'s. (\<exists>i\<in>I. i \<rightarrow>\<^sub>i* sa) \<and> sa \<in> AG s} \<inter> | |
{sa::'s. (\<exists>i\<in>I. i \<rightarrow>\<^sub>i* sa) \<and> sa \<in> EF (- s)} = {}" | |
proof - | |
have "(? x. x \<in> {sa::'s. (\<exists>i\<in>I. i \<rightarrow>\<^sub>i* sa) \<and> sa \<in> AG s} \<and> | |
x \<in> {sa::'s. (\<exists>i\<in>I. i \<rightarrow>\<^sub>i* sa) \<and> sa \<in> EF (- s)}) \<Longrightarrow> False" | |
proof - | |
assume a4: "(? x. x \<in> {sa::'s. (\<exists>i\<in>I. i \<rightarrow>\<^sub>i* sa) \<and> sa \<in> AG s} \<and> | |
x \<in> {sa::'s. (\<exists>i\<in>I. i \<rightarrow>\<^sub>i* sa) \<and> sa \<in> EF (- s)})" | |
from a4 obtain x where a5: "x \<in> {sa::'s. (\<exists>i\<in>I. i \<rightarrow>\<^sub>i* sa) \<and> sa \<in> AG s} \<and> | |
x \<in> {sa::'s. (\<exists>i\<in>I. i \<rightarrow>\<^sub>i* sa) \<and> sa \<in> EF (- s)}" | |
by (erule exE) | |
thus "False" | |
by (metis (mono_tags, lifting) AG_all_s AG_in_lem ComplD EF_step_star_rev a5 mem_Collect_eq) | |
qed | |
thus "{sa::'s. (\<exists>i\<in>I. i \<rightarrow>\<^sub>i* sa) \<and> sa \<in> AG s} \<inter> | |
{sa::'s. (\<exists>i\<in>I. i \<rightarrow>\<^sub>i* sa) \<and> sa \<in> EF (- s)} = {}" | |
by blast | |
qed | |
moreover have b: "? x. x : I" using a0 | |
by blast | |
moreover obtain x where "x \<in> I" | |
using b by blast | |
ultimately show "False" using a0 a1 a2 | |
by blast | |
qed | |
qed | |
text \<open>A simplified way of Modelchecking is given by the following lemma.\<close> | |
lemma check2_def: "(Kripke S I \<turnstile> f) = (I \<subseteq> S \<inter> f)" | |
by (auto simp add: check_def) | |
end |