Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
section \<open>Application example from IoT healthcare\<close> | |
text \<open>The example of an IoT healthcare systems is taken from the context of the CHIST-ERA project | |
SUCCESS \cite{suc:16}. In this system architecture, data is collected by sensors | |
in the home or via a smart phone helping to monitor bio markers of the patient. The data | |
collection is in a cloud based server to enable hospitals (or scientific institutions) | |
to access the data which is controlled via the smart phone. | |
The identities Patient and Doctor represent patients | |
and their doctors; double quotes ''s'' indicate strings | |
in Isabelle/HOL. | |
The global policy is `only the patient and the doctor can access the data in the cloud'.\<close> | |
theory GDPRhealthcare | |
imports Infrastructure | |
begin | |
text \<open>Local policies are represented as a function over an @{text \<open>igraph G\<close>} | |
that additionally assigns each location of a scenario to its local policy | |
given as a pair of requirements to an actor (first element of the pair) in | |
order to grant him actions in the location (second element of the pair). | |
The predicate @{text \<open>@G\<close>} checks whether an actor is at a given location | |
in the @{text \<open>igraph G\<close>}.\<close> | |
locale scenarioGDPR = | |
fixes gdpr_actors :: "identity set" | |
defines gdpr_actors_def: "gdpr_actors \<equiv> {''Patient'', ''Doctor''}" | |
fixes gdpr_locations :: "location set" | |
defines gdpr_locations_def: "gdpr_locations \<equiv> | |
{Location 0, Location 1, Location 2, Location 3}" | |
fixes sphone :: "location" | |
defines sphone_def: "sphone \<equiv> Location 0" | |
fixes home :: "location" | |
defines home_def: "home \<equiv> Location 1" | |
fixes hospital :: "location" | |
defines hospital_def: "hospital \<equiv> Location 2" | |
fixes cloud :: "location" | |
defines cloud_def: "cloud \<equiv> Location 3" | |
fixes global_policy :: "[infrastructure, identity] \<Rightarrow> bool" | |
defines global_policy_def: "global_policy I a \<equiv> a \<noteq> ''Doctor'' | |
\<longrightarrow> \<not>(enables I hospital (Actor a) eval)" | |
fixes global_policy' :: "[infrastructure, identity] \<Rightarrow> bool" | |
defines global_policy'_def: "global_policy' I a \<equiv> a \<notin> gdpr_actors | |
\<longrightarrow> \<not>(enables I cloud (Actor a) get)" | |
fixes ex_creds :: "actor \<Rightarrow> (string set * string set)" | |
defines ex_creds_def: "ex_creds \<equiv> (\<lambda> x. if x = Actor ''Patient'' then | |
({''PIN'',''skey''}, {}) else | |
(if x = Actor ''Doctor'' then | |
({''PIN''},{}) else ({},{})))" | |
fixes ex_locs :: "location \<Rightarrow> string * (dlm * data) set" | |
defines "ex_locs \<equiv> (\<lambda> x. if x = cloud then | |
(''free'',{((Actor ''Patient'',{Actor ''Doctor''}),42)}) | |
else ('''',{}))" | |
fixes ex_loc_ass :: "location \<Rightarrow> identity set" | |
defines ex_loc_ass_def: "ex_loc_ass \<equiv> | |
(\<lambda> x. if x = home then {''Patient''} | |
else (if x = hospital then {''Doctor'', ''Eve''} | |
else {}))" | |
(* The nicer representation with case suffers from | |
not so nice presentation in the cases (need to unfold the syntax) | |
fixes ex_loc_ass_alt :: "location \<Rightarrow> identity set" | |
defines ex_loc_ass_alt_def: "ex_loc_ass_alt \<equiv> | |
(\<lambda> x. (case x of | |
Location (Suc 0) \<Rightarrow> {''Patient''} | |
| Location (Suc (Suc 0)) \<Rightarrow> {''Doctor'', ''Eve''} | |
| _ \<Rightarrow> {}))" | |
*) | |
fixes ex_graph :: "igraph" | |
defines ex_graph_def: "ex_graph \<equiv> Lgraph | |
{(home, cloud), (sphone, cloud), (cloud,hospital)} | |
ex_loc_ass | |
ex_creds ex_locs" | |
fixes ex_graph' :: "igraph" | |
defines ex_graph'_def: "ex_graph' \<equiv> Lgraph | |
{(home, cloud), (sphone, cloud), (cloud,hospital)} | |
(\<lambda> x. if x = cloud then {''Patient''} else | |
(if x = hospital then {''Doctor'',''Eve''} else {})) | |
ex_creds ex_locs" | |
fixes ex_graph'' :: "igraph" | |
defines ex_graph''_def: "ex_graph'' \<equiv> Lgraph | |
{(home, cloud), (sphone, cloud), (cloud,hospital)} | |
(\<lambda> x. if x = cloud then {''Patient'', ''Eve''} else | |
(if x = hospital then {''Doctor''} else {})) | |
ex_creds ex_locs" | |
(* Same as above: the nicer representation with case suffers from | |
not so nice presentation in the cases (need to unfold the syntax) | |
fixes local_policies_alt :: "[igraph, location] \<Rightarrow> policy set" | |
defines local_policies_alt_def: "local_policies_alt G \<equiv> | |
(\<lambda> x. case x of | |
Location (Suc 0) \<Rightarrow> {(\<lambda> y. True, {put,get,move,eval})} | |
| Location 0 \<Rightarrow> {((\<lambda> y. has G (y, ''PIN'')), {put,get,move,eval})} | |
| Location (Suc (Suc (Suc 0))) \<Rightarrow> {(\<lambda> y. True, {put,get,move,eval})} | |
| Location (Suc (Suc 0)) \<Rightarrow> | |
{((\<lambda> y. (\<exists> n. (n @\<^bsub>G\<^esub> hospital) \<and> Actor n = y \<and> | |
has G (y, ''skey''))), {put,get,move,eval})} | |
| _ \<Rightarrow> {})" | |
*) | |
fixes local_policies :: "[igraph, location] \<Rightarrow> policy set" | |
defines local_policies_def: "local_policies G \<equiv> | |
(\<lambda> x. if x = home then | |
{(\<lambda> y. True, {put,get,move,eval})} | |
else (if x = sphone then | |
{((\<lambda> y. has G (y, ''PIN'')), {put,get,move,eval})} | |
else (if x = cloud then | |
{(\<lambda> y. True, {put,get,move,eval})} | |
else (if x = hospital then | |
{((\<lambda> y. (\<exists> n. (n @\<^bsub>G\<^esub> hospital) \<and> Actor n = y \<and> | |
has G (y, ''skey''))), {put,get,move,eval})} else {}))))" | |
(* problems with case in locales? | |
defines local_policies_def: "local_policies G x \<equiv> | |
(case x of | |
home \<Rightarrow> {(\<lambda> y. True, {put,get,move,eval})} | |
| sphone \<Rightarrow> {((\<lambda> y. has G (y, ''PIN'')), {put,get,move,eval})} | |
| cloud \<Rightarrow> {(\<lambda> y. True, {put,get,move,eval})} | |
| hospital \<Rightarrow> {((\<lambda> y. (\<exists> n. (n @\<^bsub>G\<^esub> hospital) \<and> Actor n = y \<and> | |
has G (y, ''skey''))), {put,get,move,eval})} | |
| _ \<Rightarrow> {})" | |
*) | |
fixes gdpr_scenario :: "infrastructure" | |
defines gdpr_scenario_def: | |
"gdpr_scenario \<equiv> Infrastructure ex_graph local_policies" | |
fixes Igdpr :: "infrastructure set" | |
defines Igdpr_def: | |
"Igdpr \<equiv> {gdpr_scenario}" | |
(* other states of scenario *) | |
(* First step: Patient goes onto cloud *) | |
fixes gdpr_scenario' :: "infrastructure" | |
defines gdpr_scenario'_def: | |
"gdpr_scenario' \<equiv> Infrastructure ex_graph' local_policies" | |
fixes GDPR' :: "infrastructure set" | |
defines GDPR'_def: | |
"GDPR' \<equiv> {gdpr_scenario'}" | |
(* Second step: Eve goes onto cloud from where she'll be able to get the data *) | |
fixes gdpr_scenario'' :: "infrastructure" | |
defines gdpr_scenario''_def: | |
"gdpr_scenario'' \<equiv> Infrastructure ex_graph'' local_policies" | |
fixes GDPR'' :: "infrastructure set" | |
defines GDPR''_def: | |
"GDPR'' \<equiv> {gdpr_scenario''}" | |
fixes gdpr_states | |
defines gdpr_states_def: "gdpr_states \<equiv> { I. gdpr_scenario \<rightarrow>\<^sub>i* I }" | |
fixes gdpr_Kripke | |
defines "gdpr_Kripke \<equiv> Kripke gdpr_states {gdpr_scenario}" | |
fixes sgdpr | |
defines "sgdpr \<equiv> {x. \<not> (global_policy' x ''Eve'')}" | |
begin | |
subsection \<open>Using Attack Tree Calculus\<close> | |
text \<open>Since we consider a predicate transformer semantics, we use sets of states | |
to represent properties. For example, the attack property is given by the above | |
@{text \<open>set sgdpr\<close>}. | |
The attack we are interested in is to see whether for the scenario | |
@{text \<open>gdpr scenario \<equiv> Infrastructure ex_graph local_policies\<close>} | |
from the initial state | |
@{text \<open>Igdpr \<equiv>{gdpr scenario}\<close>}, | |
the critical state | |
@{text \<open>sgdpr\<close>} can be reached, i.e., is there a valid attack @{text \<open>(Igdpr,sgdpr)\<close>}? | |
We first present a number of lemmas showing single and multi-step state transitions | |
for relevant states reachable from our @{text \<open>gdpr_scenario\<close>}.\<close> | |
lemma step1: "gdpr_scenario \<rightarrow>\<^sub>n gdpr_scenario'" | |
proof (rule_tac l = home and a = "''Patient''" and l' = cloud in move) | |
show "graphI gdpr_scenario = graphI gdpr_scenario" by (rule refl) | |
next show "''Patient'' @\<^bsub>graphI gdpr_scenario\<^esub> home" | |
by (simp add: gdpr_scenario_def ex_graph_def ex_loc_ass_def atI_def nodes_def) | |
next show "home \<in> nodes (graphI gdpr_scenario)" | |
by (simp add: gdpr_scenario_def ex_graph_def ex_loc_ass_def atI_def nodes_def, blast) | |
next show "cloud \<in> nodes (graphI gdpr_scenario)" | |
by (simp add: gdpr_scenario_def nodes_def ex_graph_def, blast) | |
next show "''Patient'' \<in> actors_graph (graphI gdpr_scenario)" | |
by (simp add: actors_graph_def gdpr_scenario_def ex_graph_def ex_loc_ass_def nodes_def, blast) | |
next show "enables gdpr_scenario cloud (Actor ''Patient'') move" | |
by (simp add: enables_def gdpr_scenario_def ex_graph_def local_policies_def | |
ex_creds_def ex_locs_def has_def credentials_def) | |
next show "gdpr_scenario' = | |
Infrastructure (move_graph_a ''Patient'' home cloud (graphI gdpr_scenario)) (delta gdpr_scenario)" | |
apply (simp add: gdpr_scenario'_def ex_graph'_def move_graph_a_def | |
gdpr_scenario_def ex_graph_def home_def cloud_def hospital_def | |
ex_loc_ass_def ex_creds_def) | |
apply (rule ext) | |
by (simp add: hospital_def) | |
qed | |
lemma step1r: "gdpr_scenario \<rightarrow>\<^sub>n* gdpr_scenario'" | |
proof (simp add: state_transition_in_refl_def) | |
show " (gdpr_scenario, gdpr_scenario') \<in> {(x::infrastructure, y::infrastructure). x \<rightarrow>\<^sub>n y}\<^sup>*" | |
by (insert step1, auto) | |
qed | |
lemma step2: "gdpr_scenario' \<rightarrow>\<^sub>n gdpr_scenario''" | |
proof (rule_tac l = hospital and a = "''Eve''" and l' = cloud in move, rule refl) | |
show "''Eve'' @\<^bsub>graphI gdpr_scenario'\<^esub> hospital" | |
by (simp add: gdpr_scenario'_def ex_graph'_def hospital_def cloud_def atI_def nodes_def) | |
next show "hospital \<in> nodes (graphI gdpr_scenario')" | |
by (simp add: gdpr_scenario'_def ex_graph'_def hospital_def cloud_def atI_def nodes_def, blast) | |
next show "cloud \<in> nodes (graphI gdpr_scenario')" | |
by (simp add: gdpr_scenario'_def nodes_def ex_graph'_def, blast) | |
next show "''Eve'' \<in> actors_graph (graphI gdpr_scenario')" | |
by (simp add: actors_graph_def gdpr_scenario'_def ex_graph'_def nodes_def | |
hospital_def cloud_def, blast) | |
next show "enables gdpr_scenario' cloud (Actor ''Eve'') move" | |
by (simp add: enables_def gdpr_scenario'_def ex_graph_def local_policies_def | |
ex_creds_def ex_locs_def has_def credentials_def cloud_def sphone_def) | |
next show "gdpr_scenario'' = | |
Infrastructure (move_graph_a ''Eve'' hospital cloud (graphI gdpr_scenario')) (delta gdpr_scenario')" | |
apply (simp add: gdpr_scenario'_def ex_graph''_def move_graph_a_def gdpr_scenario''_def | |
ex_graph'_def home_def cloud_def hospital_def ex_creds_def) | |
apply (rule ext) | |
apply (simp add: hospital_def) | |
by blast | |
qed | |
lemma step2r: "gdpr_scenario' \<rightarrow>\<^sub>n* gdpr_scenario''" | |
proof (simp add: state_transition_in_refl_def) | |
show "(gdpr_scenario', gdpr_scenario'') \<in> {(x::infrastructure, y::infrastructure). x \<rightarrow>\<^sub>n y}\<^sup>*" | |
by (insert step2, auto) | |
qed | |
(* Attack example: Eve can get onto cloud and get Patient's data | |
because the policy allows Eve to get on cloud. | |
This attack can easily be fixed by disabling Eve to "get" | |
in the policy (just change the "True" for cloud to a set with no | |
Eve in it). | |
However, it would not prevent Insider attacks (where Eve is | |
impersonating the Doctor, for example). Insider attacks can | |
be checked using the UasI predicate. | |
*) | |
text \<open>For the Kripke structure | |
@{text \<open>gdpr_Kripke \<equiv> Kripke { I. gdpr_scenario \<rightarrow>\<^sub>i* I } {gdpr_scenario}\<close>} | |
we first derive a valid and-attack using the attack tree proof calculus. | |
@{text \<open>"\<turnstile>[\<N>\<^bsub>(Igdpr,GDPR')\<^esub>, \<N>\<^bsub>(GDPR',sgdpr)\<^esub>] \<oplus>\<^sub>\<and>\<^bsup>(Igdpr,sgdpr)\<^esup>\<close>} | |
The set @{text \<open>GDPR'\<close>} (see above) is an intermediate state where Eve accesses the cloud.\<close> | |
lemma gdpr_ref: "[\<N>\<^bsub>(Igdpr,sgdpr)\<^esub>] \<oplus>\<^sub>\<and>\<^bsup>(Igdpr,sgdpr)\<^esup> \<sqsubseteq> | |
([\<N>\<^bsub>(Igdpr,GDPR')\<^esub>, \<N>\<^bsub>(GDPR',sgdpr)\<^esub>] \<oplus>\<^sub>\<and>\<^bsup>(Igdpr,sgdpr)\<^esup>)" | |
proof (rule_tac l = "[]" and l' = "[\<N>\<^bsub>(Igdpr,GDPR')\<^esub>, \<N>\<^bsub>(GDPR',sgdpr)\<^esub>]" and | |
l'' = "[]" and si = Igdpr and si' = Igdpr and | |
si'' = sgdpr and si''' = sgdpr in refI, simp, rule refl) | |
show "([\<N>\<^bsub>(Igdpr, GDPR')\<^esub>, \<N>\<^bsub>(GDPR', sgdpr)\<^esub>] \<oplus>\<^sub>\<and>\<^bsup>(Igdpr, sgdpr)\<^esup>) = | |
([] @ [\<N>\<^bsub>(Igdpr, GDPR')\<^esub>, \<N>\<^bsub>(GDPR', sgdpr)\<^esub>] @ [] \<oplus>\<^sub>\<and>\<^bsup>(Igdpr, sgdpr)\<^esup>)" | |
by simp | |
qed | |
lemma att_gdpr: "\<turnstile>([\<N>\<^bsub>(Igdpr,GDPR')\<^esub>, \<N>\<^bsub>(GDPR',sgdpr)\<^esub>] \<oplus>\<^sub>\<and>\<^bsup>(Igdpr,sgdpr)\<^esup>)" | |
proof (subst att_and, simp, rule conjI) | |
show " \<turnstile>\<N>\<^bsub>(Igdpr, GDPR')\<^esub>" | |
apply (simp add: Igdpr_def GDPR'_def att_base) | |
using state_transition_infra_def step1 by blast | |
next | |
have "\<not> global_policy' gdpr_scenario'' ''Eve''" "gdpr_scenario' \<rightarrow>\<^sub>n gdpr_scenario''" | |
using step2 | |
by (auto simp: global_policy'_def gdpr_scenario''_def gdpr_actors_def | |
enables_def local_policies_def cloud_def sphone_def intro!: step2) | |
then show "\<turnstile>([\<N>\<^bsub>(GDPR', sgdpr)\<^esub>] \<oplus>\<^sub>\<and>\<^bsup>(GDPR', sgdpr)\<^esup>)" | |
apply (subst att_and) | |
apply (simp add: GDPR'_def sgdpr_def att_base) | |
using state_transition_infra_def by blast | |
qed | |
lemma gdpr_abs_att: "\<turnstile>\<^sub>V([\<N>\<^bsub>(Igdpr,sgdpr)\<^esub>] \<oplus>\<^sub>\<and>\<^bsup>(Igdpr,sgdpr)\<^esup>)" | |
by (rule ref_valI, rule gdpr_ref, rule att_gdpr) | |
text \<open>We can then simply apply the Correctness theorem @{text \<open>AT EF\<close>} to immediately | |
prove the following CTL statement. | |
@{text \<open>gdpr_Kripke \<turnstile> EF sgdpr\<close>} | |
This application of the meta-theorem of Correctness of attack trees saves us | |
proving the CTL formula tediously by exploring the state space.\<close> | |
lemma gdpr_att: "gdpr_Kripke \<turnstile> EF {x. \<not>(global_policy' x ''Eve'')}" | |
proof - | |
have a: " \<turnstile>([\<N>\<^bsub>(Igdpr, GDPR')\<^esub>, \<N>\<^bsub>(GDPR', sgdpr)\<^esub>] \<oplus>\<^sub>\<and>\<^bsup>(Igdpr, sgdpr)\<^esup>)" | |
by (rule att_gdpr) | |
hence "(Igdpr,sgdpr) = attack ([\<N>\<^bsub>(Igdpr, GDPR')\<^esub>, \<N>\<^bsub>(GDPR', sgdpr)\<^esub>] \<oplus>\<^sub>\<and>\<^bsup>(Igdpr, sgdpr)\<^esup>)" | |
by simp | |
hence "Kripke {s::infrastructure. \<exists>i::infrastructure\<in>Igdpr. i \<rightarrow>\<^sub>i* s} Igdpr \<turnstile> EF sgdpr" | |
using ATV_EF gdpr_abs_att by fastforce | |
thus "gdpr_Kripke \<turnstile> EF {x::infrastructure. \<not> global_policy' x ''Eve''}" | |
by (simp add: gdpr_Kripke_def gdpr_states_def Igdpr_def sgdpr_def) | |
qed | |
theorem gdpr_EF: "gdpr_Kripke \<turnstile> EF sgdpr" | |
using gdpr_att sgdpr_def by blast | |
text \<open>Similarly, vice-versa, the CTL statement proved in @{text \<open>gdpr_EF\<close>} | |
can now be directly translated into Attack Trees using the Completeness | |
Theorem\footnote{This theorem could easily | |
be proved as a direct instance of @{text \<open>att_gdpr\<close>} above but we want to illustrate | |
an alternative proof method using Completeness here.}.\<close> | |
theorem gdpr_AT: "\<exists> A. \<turnstile> A \<and> attack A = (Igdpr,sgdpr)" | |
proof - | |
have a: "gdpr_Kripke \<turnstile> EF sgdpr " by (rule gdpr_EF) | |
have b: "Igdpr \<noteq> {}" by (simp add: Igdpr_def) | |
thus "\<exists>A::infrastructure attree. \<turnstile>A \<and> attack A = (Igdpr, sgdpr)" | |
proof (rule Completeness) | |
show "Kripke {s. \<exists>i\<in>Igdpr. i \<rightarrow>\<^sub>i* s} Igdpr \<turnstile> EF sgdpr" | |
using a by (simp add: gdpr_Kripke_def Igdpr_def gdpr_states_def) | |
qed (auto simp: Igdpr_def) | |
qed | |
text \<open>Conversely, since we have an attack given by rule @{text \<open>gdpr_AT\<close>}, we can immediately | |
infer @{text \<open>EF s\<close>} using Correctness @{text \<open>AT_EF\<close>}\footnote{Clearly, this theorem is identical | |
to @{text \<open>gdpr_EF\<close>} and could thus be inferred from that one but we want to show here an | |
alternative way of proving it using the Correctness theorem @{text \<open>AT_EF\<close>}.}.\<close> | |
theorem gdpr_EF': "gdpr_Kripke \<turnstile> EF sgdpr" | |
using gdpr_AT by (auto simp: gdpr_Kripke_def gdpr_states_def Igdpr_def dest: AT_EF) | |
(* However, when integrating DLM into the model and hence labeling | |
information becomes part of the conditions of the get_data rule this isn't | |
possible any more: gdpr_EF is not true any more *) | |
(** GDPR properties for the illustration of the DLM labeling **) | |
section \<open>Data Protection by Design for GDPR compliance\<close> | |
subsection \<open>General Data Protection Regulation (GDPR)\<close> | |
text \<open>Since 26th May 2018, the GDPR has become mandatory within the European Union and hence | |
also for any supplier of IT products. Breaches of the regulation will be fined with penalties | |
of 20 Million EUR. Despite the relatively large size of the document of 209 pages, the technically | |
relevant portion for us is only about 30 pages (Pages 81--111, Chapters I to Chapter III, Section 3). | |
In summary, Chapter III specifies that the controller must give the data subject read access (1) | |
to any information, communications, and ``meta-data'' of the data, e.g., retention time and purpose. | |
In addition, the system must enable deletion of data (2) and restriction of processing. | |
An invariant condition for data processing resulting from these Articles is that the system functions | |
must preserve any of the access rights of personal data (3). | |
Using labeled data, we can now express the essence of Article 4 Paragraph (1): | |
`personal data' means any information relating to an identified or identifiable natural | |
person (`data subject'). | |
The labels of data must not be changed by processing: we have identified this as | |
an invariant (3) resulting from the GDPR above. This invariant is formalized in | |
our Isabelle model by the type definition of functions on labeled data @{text \<open>label_fun\<close>} | |
(see Section 4.2) that preserve the data labels.\<close> | |
subsection \<open>Policy enforcement and privacy preservation\<close> | |
text \<open>We can now use the labeled data to encode the privacy constraints of the | |
GDPR in the rules. For example, the get data rule (see Section 4.3) has labelled data | |
@{text \<open>((Actor a', as), n)\<close>} and uses the labeling in the precondition to guarantee | |
that only entitled users can get data. | |
We can prove that processing preserves ownership as defined in the initial state for all paths | |
globally (AG) within the Kripke structure and in all locations of the graph.\<close> | |
(* GDPR three: Processing preserves ownership in any location *) | |
lemma gdpr_three: "h \<in> gdpr_actors \<Longrightarrow> l \<in> gdpr_locations \<Longrightarrow> | |
owns (Igraph gdpr_scenario) l (Actor h) d \<Longrightarrow> | |
gdpr_Kripke \<turnstile> AG {x. \<forall> l \<in> gdpr_locations. owns (Igraph x) l (Actor h) d }" | |
proof (simp add: gdpr_Kripke_def check_def, rule conjI) | |
show "gdpr_scenario \<in> gdpr_states" by (simp add: gdpr_states_def state_transition_refl_def) | |
next | |
show "h \<in> gdpr_actors \<Longrightarrow> | |
l \<in> gdpr_locations \<Longrightarrow> | |
owns (Igraph gdpr_scenario) l (Actor h) d \<Longrightarrow> | |
gdpr_scenario \<in> AG {x::infrastructure. \<forall>l\<in>gdpr_locations. owns (Igraph x) l (Actor h) d}" | |
apply (simp add: AG_def gfp_def) | |
apply (rule_tac x = "{x::infrastructure. \<forall>l\<in>gdpr_locations. owns (Igraph x) l (Actor h) d}" in exI) | |
by (auto simp: AX_def gdpr_scenario_def owns_def) | |
qed | |
text \<open>The final application example of Correctness contraposition | |
shows that there is no attack to ownership possible. | |
The proved meta-theory for attack trees can be applied to facilitate the proof. | |
The contraposition of the Correctness property grants that if there is no attack on | |
@{text \<open>(I,\<not>f)\<close>}, then @{text \<open>(EF \<not>f)\<close>} does not hold in the Kripke structure. This | |
yields the theorem since the @{text \<open>AG f\<close>} statement corresponds to @{text \<open>\<not>(EF \<not>f)\<close>}. | |
\<close> | |
theorem no_attack_gdpr_three: | |
"h \<in> gdpr_actors \<Longrightarrow> l \<in> gdpr_locations \<Longrightarrow> | |
owns (Igraph gdpr_scenario) l (Actor h) d \<Longrightarrow> | |
attack A = (Igdpr, -{x. \<forall> l \<in> gdpr_locations. owns (Igraph x) l (Actor h) d }) | |
\<Longrightarrow> \<not> (\<turnstile> A)" | |
proof (rule_tac I = Igdpr and | |
s = "-{x::infrastructure. \<forall>l\<in>gdpr_locations. owns (Igraph x) l (Actor h) d}" | |
in contrapos_corr) | |
show "h \<in> gdpr_actors \<Longrightarrow> | |
l \<in> gdpr_locations \<Longrightarrow> | |
owns (Igraph gdpr_scenario) l (Actor h) d \<Longrightarrow> | |
attack A = (Igdpr, - {x::infrastructure. \<forall>l\<in>gdpr_locations. owns (Igraph x) l (Actor h) d}) \<Longrightarrow> | |
\<not> (Kripke {s::infrastructure. \<exists>i::infrastructure\<in>Igdpr. i \<rightarrow>\<^sub>i* s} | |
Igdpr \<turnstile> EF (- {x::infrastructure. \<forall>l\<in>gdpr_locations. owns (Igraph x) l (Actor h) d}))" | |
apply (rule AG_imp_notnotEF) | |
apply (simp add: gdpr_Kripke_def Igdpr_def gdpr_states_def) | |
using Igdpr_def gdpr_Kripke_def gdpr_states_def gdpr_three by auto | |
qed | |
end | |
end |