Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
(* Author: Andreas Lochbihler, ETH Zurich *) | |
subsection \<open>Tree relabelling\<close> | |
theory Tree_Relabelling imports | |
Applicative_State | |
Applicative_Option | |
Applicative_PMF | |
"HOL-Library.Stream" | |
begin | |
unbundle applicative_syntax | |
adhoc_overloading Applicative.pure pure_option | |
adhoc_overloading Applicative.pure State_Monad.return | |
adhoc_overloading Applicative.ap State_Monad.ap | |
text \<open> Hutton and Fulger \cite{HuttonFulger2008TFP} suggested the following tree relabelling problem | |
as an example for reasoning about effects. Given a binary tree with labels at the leaves, the | |
relabelling assigns a unique number to every leaf. Their correctness property states that the | |
list of labels in the obtained tree is distinct. As observed by Gibbons and Bird \cite{backwards}, | |
this breaks the abstraction of the state monad, because the relabeling function must be run. | |
Although Hutton and Fulger are careful to reason in point-free style, they nevertheless unfold | |
the implementation of the state monad operations. Gibbons and Hinze \cite{GibbonsHinze2011ICFP} | |
suggest to state the correctness in an effectful way using an exception-state monad. Thereby, they | |
lose the applicative structure and have to resort to a full monad. | |
Here, we model the tree relabelling function three times. First, we state correctness in pure | |
terms following Hutton and Fulger. Second, we take Gibbons' and Bird's approach of considering | |
traversals. Third, we state correctness effectfully, but only using the applicative functors. | |
\<close> | |
datatype 'a tree = Leaf 'a | Node "'a tree" "'a tree" | |
primrec fold_tree :: "('a \<Rightarrow> 'b) \<Rightarrow> ('b \<Rightarrow> 'b \<Rightarrow> 'b) \<Rightarrow> 'a tree \<Rightarrow> 'b" | |
where | |
"fold_tree f g (Leaf a) = f a" | |
| "fold_tree f g (Node l r) = g (fold_tree f g l) (fold_tree f g r)" | |
definition leaves :: "'a tree \<Rightarrow> nat" | |
where "leaves = fold_tree (\<lambda>_. 1) (+)" | |
lemma leaves_simps [simp]: | |
"leaves (Leaf x) = Suc 0" | |
"leaves (Node l r) = leaves l + leaves r" | |
by(simp_all add: leaves_def) | |
subsubsection \<open>Pure correctness statement\<close> | |
definition labels :: "'a tree \<Rightarrow> 'a list" | |
where "labels = fold_tree (\<lambda>x. [x]) append" | |
lemma labels_simps [simp]: | |
"labels (Leaf x) = [x]" | |
"labels (Node l r) = labels l @ labels r" | |
by(simp_all add: labels_def) | |
locale labelling = | |
fixes fresh :: "('s, 'x) state" | |
begin | |
declare [[show_variants]] | |
definition label_tree :: "'a tree \<Rightarrow> ('s, 'x tree) state" | |
where "label_tree = fold_tree (\<lambda>_ :: 'a. pure Leaf \<diamondop> fresh) (\<lambda>l r. pure Node \<diamondop> l \<diamondop> r)" | |
lemma label_tree_simps [simp]: | |
"label_tree (Leaf x) = pure Leaf \<diamondop> fresh" | |
"label_tree (Node l r) = pure Node \<diamondop> label_tree l \<diamondop> label_tree r" | |
by(simp_all add: label_tree_def) | |
primrec label_list :: "'a list \<Rightarrow> ('s, 'x list) state" | |
where | |
"label_list [] = pure []" | |
| "label_list (x # xs) = pure (#) \<diamondop> fresh \<diamondop> label_list xs" | |
lemma label_append: "label_list (a @ b) = pure (@) \<diamondop> label_list a \<diamondop> label_list b" | |
\<comment> \<open>The proof lifts the defining equations of @{const append} to the state monad.\<close> | |
proof (induction a) | |
case Nil | |
show ?case | |
unfolding append.simps label_list.simps | |
by applicative_nf simp | |
next | |
case (Cons a1 a2) | |
show ?case | |
unfolding append.simps label_list.simps Cons.IH | |
by applicative_nf simp | |
qed | |
lemma label_tree_list: "pure labels \<diamondop> label_tree t = label_list (labels t)" | |
proof (induction t) | |
case Leaf show ?case unfolding label_tree_simps labels_simps label_list.simps | |
by applicative_nf simp | |
next | |
case Node show ?case unfolding label_tree_simps labels_simps label_append Node.IH[symmetric] | |
by applicative_nf simp | |
qed | |
text \<open>We directly show correctness without going via streams like Hutton and Fulger \cite{HuttonFulger2008TFP}. \<close> | |
lemma correctness_pure: | |
fixes t :: "'a tree" | |
assumes distinct: "\<And>xs :: 'a list. distinct (fst (run_state (label_list xs) s))" | |
shows "distinct (labels (fst (run_state (label_tree t) s)))" | |
using label_tree_list[of t, THEN arg_cong, of "\<lambda>f. run_state f s"] assms[of "labels t"] | |
by(cases "run_state (label_list (labels t)) s")(simp add: State_Monad.ap_def split_beta) | |
end | |
subsubsection \<open>Correctness via monadic traversals\<close> | |
text \<open>Dual version of an applicative functor with effects composed in the opposite order\<close> | |
typedef 'a dual = "UNIV :: 'a set" morphisms un_B B by blast | |
setup_lifting type_definition_dual | |
lift_definition pure_dual :: "('a \<Rightarrow> 'b) \<Rightarrow> 'a \<Rightarrow> 'b dual" | |
is "\<lambda>pure. pure" . | |
lift_definition ap_dual :: "(('a \<Rightarrow> ('a \<Rightarrow> 'b) \<Rightarrow> 'b) \<Rightarrow> 'af1) \<Rightarrow> ('af1 \<Rightarrow> 'af3 \<Rightarrow> 'af13) \<Rightarrow> ('af13 \<Rightarrow> 'af2 \<Rightarrow> 'af) \<Rightarrow> 'af2 dual \<Rightarrow> 'af3 dual \<Rightarrow> 'af dual" | |
is "\<lambda>pure ap1 ap2 f x. ap2 (ap1 (pure (\<lambda>x f. f x)) x) f" . | |
type_synonym ('s, 'a) state_rev = "('s, 'a) state dual" | |
definition pure_state_rev :: "'a \<Rightarrow> ('s, 'a) state_rev" | |
where "pure_state_rev = pure_dual State_Monad.return" | |
definition ap_state_rev :: "('s, 'a \<Rightarrow> 'b) state_rev \<Rightarrow> ('s, 'a) state_rev \<Rightarrow> ('s, 'b) state_rev" | |
where "ap_state_rev = ap_dual State_Monad.return State_Monad.ap State_Monad.ap" | |
adhoc_overloading Applicative.pure pure_state_rev | |
adhoc_overloading Applicative.ap ap_state_rev | |
applicative state_rev | |
for | |
pure: pure_state_rev | |
ap: ap_state_rev | |
unfolding pure_state_rev_def ap_state_rev_def by(transfer, applicative_nf, rule refl)+ | |
type_synonym ('s, 'a) state_rev_rev = "('s, 'a) state_rev dual" | |
definition pure_state_rev_rev :: "'a \<Rightarrow> ('s, 'a) state_rev_rev" | |
where "pure_state_rev_rev = pure_dual pure_state_rev" | |
definition ap_state_rev_rev :: "('s, 'a \<Rightarrow> 'b) state_rev_rev \<Rightarrow> ('s, 'a) state_rev_rev \<Rightarrow> ('s, 'b) state_rev_rev" | |
where "ap_state_rev_rev = ap_dual pure_state_rev ap_state_rev ap_state_rev" | |
adhoc_overloading Applicative.pure pure_state_rev_rev | |
adhoc_overloading Applicative.ap ap_state_rev_rev | |
applicative state_rev_rev | |
for | |
pure: pure_state_rev_rev | |
ap: ap_state_rev_rev | |
unfolding pure_state_rev_rev_def ap_state_rev_rev_def by(transfer, applicative_nf, rule refl)+ | |
lemma ap_state_rev_B: "B f \<diamondop> B x = B (State_Monad.return (\<lambda>x f. f x) \<diamondop> x \<diamondop> f)" | |
unfolding ap_state_rev_def by(fact ap_dual.abs_eq) | |
lemma ap_state_rev_pure_B: "pure f \<diamondop> B x = B (State_Monad.return f \<diamondop> x)" | |
unfolding ap_state_rev_def pure_state_rev_def | |
by transfer(applicative_nf, rule refl) | |
lemma ap_state_rev_rev_B: "B f \<diamondop> B x = B (pure_state_rev (\<lambda>x f. f x) \<diamondop> x \<diamondop> f)" | |
unfolding ap_state_rev_rev_def by(fact ap_dual.abs_eq) | |
lemma ap_state_rev_rev_pure_B: "pure f \<diamondop> B x = B (pure_state_rev f \<diamondop> x)" | |
unfolding ap_state_rev_rev_def pure_state_rev_rev_def | |
by transfer(applicative_nf, rule refl) | |
text \<open> | |
The formulation by Gibbons and Bird \cite{backwards} crucially depends on Kleisli composition, | |
so we need the state monad rather than the applicative functor only. | |
\<close> | |
lemma ap_conv_bind_state: "State_Monad.ap f x = State_Monad.bind f (\<lambda>f. State_Monad.bind x (State_Monad.return \<circ> f))" | |
by(simp add: State_Monad.ap_def State_Monad.bind_def Let_def split_def o_def fun_eq_iff) | |
lemma ap_pure_bind_state: "pure x \<diamondop> State_Monad.bind y f = State_Monad.bind y ((\<diamondop>) (pure x) \<circ> f)" | |
by(simp add: ap_conv_bind_state o_def) | |
definition kleisli_state :: "('b \<Rightarrow> ('s, 'c) state) \<Rightarrow> ('a \<Rightarrow> ('s, 'b) state) \<Rightarrow> 'a \<Rightarrow> ('s, 'c) state" (infixl "\<bullet>" 55) | |
where [simp]: "kleisli_state g f a = State_Monad.bind (f a) g" | |
definition fetch :: "('a stream, 'a) state" | |
where "fetch = State_Monad.bind State_Monad.get (\<lambda>s. State_Monad.bind (State_Monad.set (stl s)) (\<lambda>_. State_Monad.return (shd s)))" | |
primrec traverse :: "('a \<Rightarrow> ('s, 'b) state) \<Rightarrow> 'a tree \<Rightarrow> ('s, 'b tree) state" | |
where | |
"traverse f (Leaf x) = pure Leaf \<diamondop> f x" | |
| "traverse f (Node l r) = pure Node \<diamondop> traverse f l \<diamondop> traverse f r" | |
text \<open>As we cannot abstract over the applicative functor in definitions, we define | |
traversal on the transformed applicative function once again.\<close> | |
primrec traverse_rev :: "('a \<Rightarrow> ('s, 'b) state_rev) \<Rightarrow> 'a tree \<Rightarrow> ('s, 'b tree) state_rev" | |
where | |
"traverse_rev f (Leaf x) = pure Leaf \<diamondop> f x" | |
| "traverse_rev f (Node l r) = pure Node \<diamondop> traverse_rev f l \<diamondop> traverse_rev f r" | |
definition recurse :: "('a \<Rightarrow> ('s, 'b) state) \<Rightarrow> 'a tree \<Rightarrow> ('s, 'b tree) state" | |
where "recurse f = un_B \<circ> traverse_rev (B \<circ> f)" | |
lemma recurse_Leaf: "recurse f (Leaf x) = pure Leaf \<diamondop> f x" | |
unfolding recurse_def traverse_rev.simps o_def ap_state_rev_pure_B | |
by(simp add: B_inverse) | |
lemma recurse_Node: | |
"recurse f (Node l r) = pure (\<lambda>r l. Node l r) \<diamondop> recurse f r \<diamondop> recurse f l" | |
proof - | |
have "recurse f (Node l r) = un_B (pure Node \<diamondop> traverse_rev (B \<circ> f) l \<diamondop> traverse_rev (B \<circ> f) r)" | |
by(simp add: recurse_def) | |
also have "\<dots> = un_B (B (pure Node) \<diamondop> B (recurse f l) \<diamondop> B (recurse f r))" | |
by(simp add: un_B_inverse recurse_def pure_state_rev_def pure_dual_def) | |
also have "\<dots> = pure (\<lambda>x f. f x) \<diamondop> recurse f r \<diamondop> (pure (\<lambda>x f. f x) \<diamondop> recurse f l \<diamondop> pure Node)" | |
by(simp add: ap_state_rev_B B_inverse) | |
also have "\<dots> = pure (\<lambda>r l. Node l r) \<diamondop> recurse f r \<diamondop> recurse f l" | |
\<comment> \<open>This step expands to 13 steps in \cite{backwards}\<close> | |
by(applicative_nf) simp | |
finally show ?thesis . | |
qed | |
lemma traverse_pure: "traverse pure t = pure t" | |
proof(induction t) | |
{ case Leaf show ?case unfolding traverse.simps by applicative_nf simp } | |
{ case Node show ?case unfolding traverse.simps Node.IH by applicative_nf simp } | |
qed | |
text \<open>@{term "B \<circ> B"} is an idiom morphism\<close> | |
lemma B_pure: "pure x = B (State_Monad.return x)" | |
unfolding pure_state_rev_def by transfer simp | |
lemma BB_pure: "pure x = B (B (pure x))" | |
unfolding pure_state_rev_rev_def B_pure[symmetric] by transfer(rule refl) | |
lemma BB_ap: "B (B f) \<diamondop> B (B x) = B (B (f \<diamondop> x))" | |
proof - | |
have "B (B f) \<diamondop> B (B x) = B (B (pure (\<lambda>x f. f x) \<diamondop> f \<diamondop> (pure (\<lambda>x f. f x) \<diamondop> x \<diamondop> pure (\<lambda>x f. f x))))" | |
(is "_ = B (B ?exp)") | |
unfolding ap_state_rev_rev_B B_pure ap_state_rev_B .. | |
also have "?exp = f \<diamondop> x" \<comment> \<open>This step takes 15 steps in \cite{backwards}.\<close> | |
by(applicative_nf)(rule refl) | |
finally show ?thesis . | |
qed | |
primrec traverse_rev_rev :: "('a \<Rightarrow> ('s, 'b) state_rev_rev) \<Rightarrow> 'a tree \<Rightarrow> ('s, 'b tree) state_rev_rev" | |
where | |
"traverse_rev_rev f (Leaf x) = pure Leaf \<diamondop> f x" | |
| "traverse_rev_rev f (Node l r) = pure Node \<diamondop> traverse_rev_rev f l \<diamondop> traverse_rev_rev f r" | |
definition recurse_rev :: "('a \<Rightarrow> ('s, 'b) state_rev) \<Rightarrow> 'a tree \<Rightarrow> ('s, 'b tree) state_rev" | |
where "recurse_rev f = un_B \<circ> traverse_rev_rev (B \<circ> f)" | |
lemma traverse_B_B: "traverse_rev_rev (B \<circ> B \<circ> f) = B \<circ> B \<circ> traverse f" (is "?lhs = ?rhs") | |
proof | |
fix t | |
show "?lhs t = ?rhs t" by(induction t)(simp_all add: BB_pure BB_ap) | |
qed | |
lemma traverse_recurse: "traverse f = un_B \<circ> recurse_rev (B \<circ> f)" (is "?lhs = ?rhs") | |
proof - | |
have "?lhs = un_B \<circ> un_B \<circ> B \<circ> B \<circ> traverse f" by(simp add: o_def B_inverse) | |
also have "\<dots> = un_B \<circ> un_B \<circ> traverse_rev_rev (B \<circ> B \<circ> f)" unfolding traverse_B_B by(simp add: o_assoc) | |
also have "\<dots> = ?rhs" by(simp add: recurse_rev_def o_assoc) | |
finally show ?thesis . | |
qed | |
lemma recurse_traverse: | |
assumes "f \<bullet> g = pure" | |
shows "recurse f \<bullet> traverse g = pure" | |
\<comment> \<open>Gibbons and Bird impose this as an additional requirement on traversals, but they write | |
that they have not found a way to derive this fact from other axioms. So we prove it directly.\<close> | |
proof | |
fix t | |
from assms have *: "\<And>x. State_Monad.bind (g x) f = State_Monad.return x" by(simp add: fun_eq_iff) | |
hence **: "\<And>x h. State_Monad.bind (g x) (\<lambda>x. State_Monad.bind (f x) h) = h x" | |
by(fold State_Monad.bind_assoc)(simp) | |
show "(recurse f \<bullet> traverse g) t = pure t" unfolding kleisli_state_def | |
proof(induction t) | |
case (Leaf x) | |
show ?case | |
by(simp add: ap_conv_bind_state recurse_Leaf **) | |
next | |
case (Node l r) | |
show ?case | |
by(simp add: ap_conv_bind_state recurse_Node)(simp add: State_Monad.bind_assoc[symmetric] Node.IH) | |
qed | |
qed | |
text \<open>Apply traversals to labelling\<close> | |
definition strip :: "'a \<times> 'b \<Rightarrow> ('b stream, 'a) state" | |
where "strip = (\<lambda>(a, b). State_Monad.bind (State_Monad.update (SCons b)) (\<lambda>_. State_Monad.return a))" | |
definition adorn :: "'a \<Rightarrow> ('b stream, 'a \<times> 'b) state" | |
where "adorn a = pure (Pair a) \<diamondop> fetch" | |
abbreviation label :: "'a tree \<Rightarrow> ('b stream, ('a \<times> 'b) tree) state" | |
where "label \<equiv> traverse adorn" | |
abbreviation unlabel :: "('a \<times> 'b) tree \<Rightarrow> ('b stream, 'a tree) state" | |
where "unlabel \<equiv> recurse strip" | |
lemma strip_adorn: "strip \<bullet> adorn = pure" | |
by(simp add: strip_def adorn_def fun_eq_iff fetch_def[abs_def] ap_conv_bind_state) | |
lemma correctness_monadic: "unlabel \<bullet> label = pure" | |
by(rule recurse_traverse)(rule strip_adorn) | |
subsubsection \<open>Applicative correctness statement\<close> | |
text \<open>Repeating an effect\<close> | |
primrec repeatM :: "nat \<Rightarrow> ('s, 'x) state \<Rightarrow> ('s, 'x list) state" | |
where | |
"repeatM 0 f = State_Monad.return []" | |
| "repeatM (Suc n) f = pure (#) \<diamondop> f \<diamondop> repeatM n f" | |
lemma repeatM_plus: "repeatM (n + m) f = pure append \<diamondop> repeatM n f \<diamondop> repeatM m f" | |
by(induction n)(simp; applicative_nf; simp)+ | |
abbreviation (input) fail :: "'a option" where "fail \<equiv> None" | |
definition lift_state :: "('s, 'a) state \<Rightarrow> ('s, 'a option) state" | |
where [applicative_unfold]: "lift_state x = pure pure \<diamondop> x" | |
definition lift_option :: "'a option \<Rightarrow> ('s, 'a option) state" | |
where [applicative_unfold]: "lift_option x = pure x" | |
fun assert :: "('a \<Rightarrow> bool) \<Rightarrow> 'a option \<Rightarrow> 'a option" | |
where | |
assert_fail: "assert P fail = fail" | |
| assert_pure: "assert P (pure x) = (if P x then pure x else fail)" | |
context labelling begin | |
abbreviation symbols :: "nat \<Rightarrow> ('s, 'x list option) state" | |
where "symbols n \<equiv> lift_state (repeatM n fresh)" | |
abbreviation (input) disjoint :: "'x list \<Rightarrow> 'x list \<Rightarrow> bool" | |
where "disjoint xs ys \<equiv> set xs \<inter> set ys = {}" | |
definition dlabels :: "'x tree \<Rightarrow> 'x list option" | |
where "dlabels = fold_tree (\<lambda>x. pure [x]) | |
(\<lambda>l r. pure (case_prod append) \<diamondop> (assert (case_prod disjoint) (pure Pair \<diamondop> l \<diamondop> r)))" | |
lemma dlabels_simps [simp]: | |
"dlabels (Leaf x) = pure [x]" | |
"dlabels (Node l r) = pure (case_prod append) \<diamondop> (assert (case_prod disjoint) (pure Pair \<diamondop> dlabels l \<diamondop> dlabels r))" | |
by(simp_all add: dlabels_def) | |
lemma correctness_applicative: | |
assumes distinct: "\<And>n. pure (assert distinct) \<diamondop> symbols n = symbols n" | |
shows "State_Monad.return dlabels \<diamondop> label_tree t = symbols (leaves t)" | |
proof(induction t) | |
show "pure dlabels \<diamondop> label_tree (Leaf x) = symbols (leaves (Leaf x))" for x :: 'a | |
unfolding label_tree_simps leaves_simps repeatM.simps by applicative_nf simp | |
next | |
fix l r :: "'a tree" | |
assume IH: "pure dlabels \<diamondop> label_tree l = symbols (leaves l)" "pure dlabels \<diamondop> label_tree r = symbols (leaves r)" | |
let ?cat = "case_prod append" and ?disj = "case_prod disjoint" | |
let ?f = "\<lambda>l r. pure ?cat \<diamondop> (assert ?disj (pure Pair \<diamondop> l \<diamondop> r))" | |
have "State_Monad.return dlabels \<diamondop> label_tree (Node l r) = | |
pure ?f \<diamondop> (pure dlabels \<diamondop> label_tree l) \<diamondop> (pure dlabels \<diamondop> label_tree r)" | |
unfolding label_tree_simps by applicative_nf simp | |
also have "\<dots> = pure ?f \<diamondop> (pure (assert distinct) \<diamondop> symbols (leaves l)) \<diamondop> (pure (assert distinct) \<diamondop> symbols (leaves r))" | |
unfolding IH distinct .. | |
also have "\<dots> = pure (assert distinct) \<diamondop> symbols (leaves (Node l r))" | |
unfolding leaves_simps repeatM_plus by applicative_nf simp | |
also have "\<dots> = symbols (leaves (Node l r))" by(rule distinct) | |
finally show "pure dlabels \<diamondop> label_tree (Node l r) = symbols (leaves (Node l r))" . | |
qed | |
end | |
subsubsection \<open>Probabilistic tree relabelling\<close> | |
primrec mirror :: "'a tree \<Rightarrow> 'a tree" | |
where | |
"mirror (Leaf x) = Leaf x" | |
| "mirror (Node l r) = Node (mirror r) (mirror l)" | |
datatype dir = Left | Right | |
hide_const (open) path | |
function (sequential) subtree :: "dir list \<Rightarrow> 'a tree \<Rightarrow> 'a tree" | |
where | |
"subtree (Left # path) (Node l r) = subtree path l" | |
| "subtree (Right # path) (Node l r) = subtree path r" | |
| "subtree _ (Leaf x) = Leaf x" | |
| "subtree [] t = t" | |
by pat_completeness auto | |
termination by lexicographic_order | |
adhoc_overloading Applicative.pure pure_pmf | |
context fixes p :: "'a \<Rightarrow> 'b pmf" begin | |
primrec plabel :: "'a tree \<Rightarrow> 'b tree pmf" | |
where | |
"plabel (Leaf x) = pure Leaf \<diamondop> p x" | |
| "plabel (Node l r) = pure Node \<diamondop> plabel l \<diamondop> plabel r" | |
lemma plabel_mirror: "plabel (mirror t) = pure mirror \<diamondop> plabel t" | |
proof(induction t) | |
case (Leaf x) | |
show ?case unfolding plabel.simps mirror.simps by(applicative_lifting) simp | |
next | |
case (Node t1 t2) | |
show ?case unfolding plabel.simps mirror.simps Node.IH by(applicative_lifting) simp | |
qed | |
lemma plabel_subtree: "plabel (subtree path t) = pure (subtree path) \<diamondop> plabel t" | |
proof(induction path t rule: subtree.induct) | |
case Left: (1 path l r) | |
show ?case unfolding plabel.simps subtree.simps Left.IH by(applicative_lifting) simp | |
next | |
case Right: (2 path l r) | |
show ?case unfolding plabel.simps subtree.simps Right.IH by(applicative_lifting) simp | |
next | |
case (3 uu x) | |
show ?case unfolding plabel.simps subtree.simps by(applicative_lifting) simp | |
next | |
case (4 v va) | |
show ?case unfolding plabel.simps subtree.simps by(applicative_lifting) simp | |
qed | |
end | |
end | |