Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
(* Author: Joshua Schneider, ETH Zurich *) | |
subsection \<open>Combinators defined as closed lambda terms\<close> | |
theory Combinators | |
imports Beta_Eta | |
begin | |
definition I_def: "\<I> = Abs (Var 0)" | |
definition B_def: "\<B> = Abs (Abs (Abs (Var 2 \<degree> (Var 1 \<degree> Var 0))))" | |
definition T_def: "\<T> = Abs (Abs (Var 0 \<degree> Var 1))" \<comment> \<open>reverse application\<close> | |
lemma I_eval: "\<I> \<degree> x \<rightarrow>\<^sub>\<beta> x" | |
proof - | |
have "\<I> \<degree> x \<rightarrow>\<^sub>\<beta> Var 0[x/0]" unfolding I_def .. | |
then show ?thesis by simp | |
qed | |
lemma I_equiv[iff]: "\<I> \<degree> x \<leftrightarrow> x" | |
using I_eval .. | |
lemma I_closed[simp]: "liftn n \<I> k = \<I>" | |
unfolding I_def by simp | |
lemma B_eval1: "\<B> \<degree> g \<rightarrow>\<^sub>\<beta> Abs (Abs (lift (lift g 0) 0 \<degree> (Var 1 \<degree> Var 0)))" | |
proof - | |
have "\<B> \<degree> g \<rightarrow>\<^sub>\<beta> Abs (Abs (Var 2 \<degree> (Var 1 \<degree> Var 0))) [g/0]" unfolding B_def .. | |
then show ?thesis by (simp add: numerals) | |
qed | |
lemma B_eval2: "\<B> \<degree> g \<degree> f \<rightarrow>\<^sub>\<beta>\<^sup>* Abs (lift g 0 \<degree> (lift f 0 \<degree> Var 0))" | |
proof - | |
have "\<B> \<degree> g \<degree> f \<rightarrow>\<^sub>\<beta>\<^sup>* Abs (Abs (lift (lift g 0) 0 \<degree> (Var 1 \<degree> Var 0))) \<degree> f" | |
using B_eval1 by blast | |
also have "... \<rightarrow>\<^sub>\<beta> Abs (lift (lift g 0) 0 \<degree> (Var 1 \<degree> Var 0)) [f/0]" .. | |
also have "... = Abs (lift g 0 \<degree> (lift f 0 \<degree> Var 0))" by simp | |
finally show ?thesis . | |
qed | |
lemma B_eval: "\<B> \<degree> g \<degree> f \<degree> x \<rightarrow>\<^sub>\<beta>\<^sup>* g \<degree> (f \<degree> x)" | |
proof - | |
have "\<B> \<degree> g \<degree> f \<degree> x \<rightarrow>\<^sub>\<beta>\<^sup>* Abs (lift g 0 \<degree> (lift f 0 \<degree> Var 0)) \<degree> x" | |
using B_eval2 by blast | |
also have "... \<rightarrow>\<^sub>\<beta> (lift g 0 \<degree> (lift f 0 \<degree> Var 0)) [x/0]" .. | |
also have "... = g \<degree> (f \<degree> x)" by simp | |
finally show ?thesis . | |
qed | |
lemma B_equiv[iff]: "\<B> \<degree> g \<degree> f \<degree> x \<leftrightarrow> g \<degree> (f \<degree> x)" | |
using B_eval .. | |
lemma B_closed[simp]: "liftn n \<B> k = \<B>" | |
unfolding B_def by simp | |
lemma T_eval1: "\<T> \<degree> x \<rightarrow>\<^sub>\<beta> Abs (Var 0 \<degree> lift x 0)" | |
proof - | |
have "\<T> \<degree> x \<rightarrow>\<^sub>\<beta> Abs (Var 0 \<degree> Var 1) [x/0]" unfolding T_def .. | |
then show ?thesis by simp | |
qed | |
lemma T_eval: "\<T> \<degree> x \<degree> f \<rightarrow>\<^sub>\<beta>\<^sup>* f \<degree> x" | |
proof - | |
have "\<T> \<degree> x \<degree> f \<rightarrow>\<^sub>\<beta>\<^sup>* Abs (Var 0 \<degree> lift x 0) \<degree> f" | |
using T_eval1 by blast | |
also have "... \<rightarrow>\<^sub>\<beta> (Var 0 \<degree> lift x 0) [f/0]" .. | |
also have "... = f \<degree> x" by simp | |
finally show ?thesis . | |
qed | |
lemma T_equiv[iff]: "\<T> \<degree> x \<degree> f \<leftrightarrow> f \<degree> x" | |
using T_eval .. | |
lemma T_closed[simp]: "liftn n \<T> k = \<T>" | |
unfolding T_def by simp | |
end | |