Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
(* Author: Joshua Schneider, ETH Zurich *) | |
subsection \<open>Sum types\<close> | |
theory Applicative_Sum imports | |
Applicative | |
"HOL-Library.Adhoc_Overloading" | |
begin | |
text \<open> | |
There are several ways to define an applicative functor based on sum types. First, we can choose | |
whether the left or the right type is fixed. Both cases are isomorphic, of course. Next, what | |
should happen if two values of the fixed type are combined? The corresponding operator must be | |
associative, or the idiom laws don't hold true. | |
We focus on the cases where the right type is fixed. We define two concrete functors: One based | |
on Haskell's \textsf{Either} datatype, which prefers the value of the left operand, and a generic | |
one using the @{class semigroup_add} class. Only the former lifts the \textbf{W} combinator, | |
though. | |
\<close> | |
fun ap_sum :: "('e \<Rightarrow> 'e \<Rightarrow> 'e) \<Rightarrow> ('a \<Rightarrow> 'b) + 'e \<Rightarrow> 'a + 'e \<Rightarrow> 'b + 'e" | |
where | |
"ap_sum _ (Inl f) (Inl x) = Inl (f x)" | |
| "ap_sum _ (Inl _) (Inr e) = Inr e" | |
| "ap_sum _ (Inr e) (Inl _) = Inr e" | |
| "ap_sum c (Inr e1) (Inr e2) = Inr (c e1 e2)" | |
abbreviation "ap_either \<equiv> ap_sum (\<lambda>x _. x)" | |
abbreviation "ap_plus \<equiv> ap_sum (plus :: 'a :: semigroup_add \<Rightarrow> _)" | |
abbreviation (input) pure_sum where "pure_sum \<equiv> Inl" | |
adhoc_overloading Applicative.pure pure_sum | |
adhoc_overloading Applicative.ap ap_either (* ap_plus *) | |
lemma ap_sum_id: "ap_sum c (Inl id) x = x" | |
by (cases x) simp_all | |
lemma ap_sum_ichng: "ap_sum c f (Inl x) = ap_sum c (Inl (\<lambda>f. f x)) f" | |
by (cases f) simp_all | |
lemma (in semigroup) ap_sum_comp: | |
"ap_sum f (ap_sum f (ap_sum f (Inl (o)) h) g) x = ap_sum f h (ap_sum f g x)" | |
by(cases h g x rule: sum.exhaust[case_product sum.exhaust, case_product sum.exhaust]) | |
(simp_all add: local.assoc) | |
lemma semigroup_const: "semigroup (\<lambda>x y. x)" | |
by unfold_locales simp | |
locale either_af = | |
fixes B :: "'b \<Rightarrow> 'b \<Rightarrow> bool" | |
assumes B_refl: "reflp B" | |
begin | |
applicative either (W) | |
for | |
pure: Inl | |
ap: ap_either | |
rel: "\<lambda>A. rel_sum A B" | |
proof - | |
include applicative_syntax | |
{ fix f :: "('c \<Rightarrow> 'c \<Rightarrow> 'd) + 'a" and x | |
show "pure (\<lambda>f x. f x x) \<diamondop> f \<diamondop> x = f \<diamondop> x \<diamondop> x" | |
by (cases f x rule: sum.exhaust[case_product sum.exhaust]) simp_all | |
next | |
interpret semigroup "\<lambda>x y. x" by(rule semigroup_const) | |
fix g :: "('d \<Rightarrow> 'e) + 'a" and f :: "('c \<Rightarrow> 'd) + 'a" and x | |
show "pure (\<lambda>g f x. g (f x)) \<diamondop> g \<diamondop> f \<diamondop> x = g \<diamondop> (f \<diamondop> x)" | |
by(rule ap_sum_comp[simplified comp_def[abs_def]]) | |
next | |
fix R and f :: "('c \<Rightarrow> 'd) + 'b" and g :: "('c \<Rightarrow> 'e) + 'b" and x | |
assume "rel_sum (rel_fun (eq_on UNIV) R) B f g" | |
then show "rel_sum R B (f \<diamondop> x) (g \<diamondop> x)" | |
by (cases f g x rule: sum.exhaust[case_product sum.exhaust, case_product sum.exhaust]) | |
(auto intro: B_refl[THEN reflpD] elim: rel_funE) | |
} | |
qed (auto intro: ap_sum_id[simplified id_def] ap_sum_ichng) | |
end (* locale *) | |
interpretation either_af "(=)" by unfold_locales simp | |
applicative semigroup_sum | |
for | |
pure: Inl | |
ap: ap_plus | |
using | |
ap_sum_id[simplified id_def] | |
ap_sum_ichng | |
add.ap_sum_comp[simplified comp_def[abs_def]] | |
by auto | |
no_adhoc_overloading Applicative.pure pure_sum | |
end | |