Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
(* Author: Andreas Lochbihler, ETH Zurich | |
Author: Joshua Schneider, ETH Zurich | |
*) | |
subsection \<open>Streams as an applicative functor\<close> | |
theory Applicative_Stream imports | |
Applicative | |
"HOL-Library.Stream" | |
"HOL-Library.Adhoc_Overloading" | |
begin | |
primcorec (transfer) ap_stream :: "('a \<Rightarrow> 'b) stream \<Rightarrow> 'a stream \<Rightarrow> 'b stream" | |
where | |
"shd (ap_stream f x) = shd f (shd x)" | |
| "stl (ap_stream f x) = ap_stream (stl f) (stl x)" | |
adhoc_overloading Applicative.pure sconst | |
adhoc_overloading Applicative.ap ap_stream | |
context includes lifting_syntax applicative_syntax | |
begin | |
lemma ap_stream_id: "pure (\<lambda>x. x) \<diamondop> x = x" | |
by (coinduction arbitrary: x) simp | |
lemma ap_stream_homo: "pure f \<diamondop> pure x = pure (f x)" | |
by coinduction simp | |
lemma ap_stream_interchange: "f \<diamondop> pure x = pure (\<lambda>f. f x) \<diamondop> f" | |
by (coinduction arbitrary: f) auto | |
lemma ap_stream_composition: "pure (\<lambda>g f x. g (f x)) \<diamondop> g \<diamondop> f \<diamondop> x = g \<diamondop> (f \<diamondop> x)" | |
by (coinduction arbitrary: g f x) auto | |
applicative stream (S, K) | |
for | |
pure: sconst | |
ap: ap_stream | |
rel: stream_all2 | |
set: sset | |
proof - | |
fix g :: "('b \<Rightarrow> 'a \<Rightarrow> 'c) stream" and f x | |
show "pure (\<lambda>g f x. g x (f x)) \<diamondop> g \<diamondop> f \<diamondop> x = g \<diamondop> x \<diamondop> (f \<diamondop> x)" | |
by (coinduction arbitrary: g f x) auto | |
next | |
fix x :: "'b stream" and y :: "'a stream" | |
show "pure (\<lambda>x y. x) \<diamondop> x \<diamondop> y = x" | |
by (coinduction arbitrary: x y) auto | |
next | |
fix R :: "'a \<Rightarrow> 'b \<Rightarrow> bool" | |
show "(R ===> stream_all2 R) pure pure" | |
proof | |
fix x y | |
assume "R x y" | |
then show "stream_all2 R (pure x) (pure y)" | |
by coinduction simp | |
qed | |
next | |
fix R and f :: "('a \<Rightarrow> 'b) stream" and g :: "('a \<Rightarrow> 'c) stream" and x | |
assume [transfer_rule]: "stream_all2 (eq_on (sset x) ===> R) f g" | |
have [transfer_rule]: "stream_all2 (eq_on (sset x)) x x" by(simp add: stream.rel_refl_strong) | |
show "stream_all2 R (f \<diamondop> x) (g \<diamondop> x)" by transfer_prover | |
qed (rule ap_stream_homo) | |
lemma smap_applicative[applicative_unfold]: "smap f x = pure f \<diamondop> x" | |
unfolding ap_stream_def by (coinduction arbitrary: x) auto | |
lemma smap2_applicative[applicative_unfold]: "smap2 f x y = pure f \<diamondop> x \<diamondop> y" | |
unfolding ap_stream_def by (coinduction arbitrary: x y) auto | |
end | |
end | |