Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
(* Author: Joshua Schneider, ETH Zurich *) | |
subsection \<open>Set with Cartesian product\<close> | |
theory Applicative_Set imports | |
Applicative | |
"HOL-Library.Adhoc_Overloading" | |
begin | |
definition ap_set :: "('a \<Rightarrow> 'b) set \<Rightarrow> 'a set \<Rightarrow> 'b set" | |
where "ap_set F X = {f x | f x. f \<in> F \<and> x \<in> X}" | |
adhoc_overloading Applicative.ap ap_set | |
lemma ap_set_transfer[transfer_rule]: | |
"rel_fun (rel_set (rel_fun A B)) (rel_fun (rel_set A) (rel_set B)) ap_set ap_set" | |
unfolding ap_set_def[abs_def] rel_set_def | |
by (fastforce elim: rel_funE) | |
applicative set (C) | |
for | |
pure: "\<lambda>x. {x}" | |
ap: ap_set | |
rel: rel_set | |
set: "\<lambda>x. x" | |
proof - | |
fix R :: "'a \<Rightarrow> 'b \<Rightarrow> bool" | |
show "rel_fun R (rel_set R) (\<lambda>x. {x}) (\<lambda>x. {x})" by (auto intro: rel_setI) | |
next | |
fix R and f :: "('a \<Rightarrow> 'b) set" and g :: "('a \<Rightarrow> 'c) set" and x | |
assume [transfer_rule]: "rel_set (rel_fun (eq_on x) R) f g" | |
have [transfer_rule]: "rel_set (eq_on x) x x" by (auto intro: rel_setI) | |
show "rel_set R (ap_set f x) (ap_set g x)" by transfer_prover | |
qed (unfold ap_set_def, fast+) | |
end | |