Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
(* Author: Joshua Schneider, ETH Zurich *) | |
subsection \<open>Lists\<close> | |
theory Applicative_List imports | |
Applicative | |
"HOL-Library.Adhoc_Overloading" | |
begin | |
definition "ap_list fs xs = List.bind fs (\<lambda>f. List.bind xs (\<lambda>x. [f x]))" | |
adhoc_overloading Applicative.ap ap_list | |
lemma Nil_ap[simp]: "ap_list [] xs = []" | |
unfolding ap_list_def by simp | |
lemma ap_Nil[simp]: "ap_list fs [] = []" | |
unfolding ap_list_def by (induction fs) simp_all | |
lemma ap_list_transfer[transfer_rule]: | |
"rel_fun (list_all2 (rel_fun A B)) (rel_fun (list_all2 A) (list_all2 B)) ap_list ap_list" | |
unfolding ap_list_def[abs_def] List.bind_def | |
by transfer_prover | |
context includes applicative_syntax | |
begin | |
lemma cons_ap_list: "(f # fs) \<diamondop> xs = map f xs @ fs \<diamondop> xs" | |
unfolding ap_list_def by (induction xs) simp_all | |
lemma append_ap_distrib: "(fs @ gs) \<diamondop> xs = fs \<diamondop> xs @ gs \<diamondop> xs" | |
unfolding ap_list_def by (induction fs) simp_all | |
applicative list | |
for | |
pure: "\<lambda>x. [x]" | |
ap: ap_list | |
rel: list_all2 | |
set: set | |
proof - | |
fix x :: "'a list" | |
show "[\<lambda>x. x] \<diamondop> x = x" unfolding ap_list_def by (induction x) simp_all | |
next | |
fix g :: "('b \<Rightarrow> 'c) list" and f :: "('a \<Rightarrow> 'b) list" and x | |
let ?B = "\<lambda>g f x. g (f x)" | |
show "[?B] \<diamondop> g \<diamondop> f \<diamondop> x = g \<diamondop> (f \<diamondop> x)" | |
proof (induction g) | |
case Nil show ?case by simp | |
next | |
case (Cons g gs) | |
have g_comp: "[?B g] \<diamondop> f \<diamondop> x = [g] \<diamondop> (f \<diamondop> x)" | |
proof (induction f) | |
case Nil show ?case by simp | |
next | |
case (Cons f fs) | |
have "[?B g] \<diamondop> (f # fs) \<diamondop> x = [g] \<diamondop> ([f] \<diamondop> x) @ [?B g] \<diamondop> fs \<diamondop> x" | |
by (simp add: cons_ap_list) | |
also have "... = [g] \<diamondop> ([f] \<diamondop> x) @ [g] \<diamondop> (fs \<diamondop> x)" using Cons.IH .. | |
also have "... = [g] \<diamondop> ((f # fs) \<diamondop> x)" by (simp add: cons_ap_list) | |
finally show ?case . | |
qed | |
have "[?B] \<diamondop> (g # gs) \<diamondop> f \<diamondop> x = [?B g] \<diamondop> f \<diamondop> x @ [?B] \<diamondop> gs \<diamondop> f \<diamondop> x" | |
by (simp add: cons_ap_list append_ap_distrib) | |
also have "... = [g] \<diamondop> (f \<diamondop> x) @ gs \<diamondop> (f \<diamondop> x)" using g_comp Cons.IH by simp | |
also have "... = (g # gs) \<diamondop> (f \<diamondop> x)" by (simp add: cons_ap_list) | |
finally show ?case . | |
qed | |
next | |
fix f :: "('a \<Rightarrow> 'b) list" and x | |
show "f \<diamondop> [x] = [\<lambda>f. f x] \<diamondop> f" unfolding ap_list_def by simp | |
next | |
fix R :: "'a \<Rightarrow> 'b \<Rightarrow> bool" | |
show "rel_fun R (list_all2 R) (\<lambda>x. [x]) (\<lambda>x. [x])" by transfer_prover | |
next | |
fix R and f :: "('a \<Rightarrow> 'b) list" and g :: "('a \<Rightarrow> 'c) list" and x | |
assume [transfer_rule]: "list_all2 (rel_fun (eq_on (set x)) R) f g" | |
have [transfer_rule]: "list_all2 (eq_on (set x)) x x" by (simp add: list_all2_same) | |
show "list_all2 R (f \<diamondop> x) (g \<diamondop> x)" by transfer_prover | |
qed (simp add: cons_ap_list) | |
lemma map_ap_conv[applicative_unfold]: "map f x = [f] \<diamondop> x" | |
unfolding ap_list_def List.bind_def | |
by simp | |
end | |
end | |