Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
(* | |
Author: René Thiemann | |
Akihisa Yamada | |
License: BSD | |
*) | |
section \<open>Resultants\<close> | |
text \<open>We need some results on resultants to show that | |
a suitable prime for Berlekamp's algorithm always exists | |
if the input is square free. Most of this theory has | |
been developed for algebraic numbers, though. We moved this | |
theory here, so that algebraic numbers can already use the | |
factorization algorithm of this entry.\<close> | |
subsection \<open>Bivariate Polynomials\<close> | |
theory Bivariate_Polynomials | |
imports | |
Polynomial_Interpolation.Ring_Hom_Poly | |
Subresultants.More_Homomorphisms | |
Berlekamp_Zassenhaus.Unique_Factorization_Poly (* Only for preserving sublocaling *) | |
begin | |
subsubsection \<open>Evaluation of Bivariate Polynomials\<close> | |
definition poly2 :: "'a::comm_semiring_1 poly poly \<Rightarrow> 'a \<Rightarrow> 'a \<Rightarrow> 'a" | |
where "poly2 p x y = poly (poly p [: y :]) x" | |
lemma poly2_by_map: "poly2 p x = poly (map_poly (\<lambda>c. poly c x) p)" | |
apply (rule ext) unfolding poly2_def by (induct p; simp) | |
lemma poly2_const[simp]: "poly2 [:[:a:]:] x y = a" by (simp add: poly2_def) | |
lemma poly2_smult[simp,hom_distribs]: "poly2 (smult a p) x y = poly a x * poly2 p x y" by (simp add: poly2_def) | |
interpretation poly2_hom: comm_semiring_hom "\<lambda>p. poly2 p x y" by (unfold_locales; simp add: poly2_def) | |
interpretation poly2_hom: comm_ring_hom "\<lambda>p. poly2 p x y".. | |
interpretation poly2_hom: idom_hom "\<lambda>p. poly2 p x y".. | |
lemma poly2_pCons[simp,hom_distribs]: "poly2 (pCons a p) x y = poly a x + y * poly2 p x y" by (simp add: poly2_def) | |
lemma poly2_monom: "poly2 (monom a n) x y = poly a x * y ^ n" by (auto simp: poly_monom poly2_def) | |
lemma poly_poly_as_poly2: "poly2 p x (poly q x) = poly (poly p q) x" by (induct p; simp add:poly2_def) | |
text \<open>The following lemma is an extension rule for bivariate polynomials.\<close> | |
lemma poly2_ext: | |
fixes p q :: "'a :: {ring_char_0,idom} poly poly" | |
assumes "\<And>x y. poly2 p x y = poly2 q x y" shows "p = q" | |
proof(intro poly_ext) | |
fix r x | |
show "poly (poly p r) x = poly (poly q r) x" | |
unfolding poly_poly_as_poly2[symmetric] using assms by auto | |
qed | |
abbreviation (input) "coeff_lift2 == \<lambda>a. [:[: a :]:]" | |
lemma coeff_lift2_lift: "coeff_lift2 = coeff_lift \<circ> coeff_lift" by auto | |
definition "poly_lift = map_poly coeff_lift" | |
definition "poly_lift2 = map_poly coeff_lift2" | |
lemma degree_poly_lift[simp]: "degree (poly_lift p) = degree p" | |
unfolding poly_lift_def by(rule degree_map_poly; auto) | |
lemma poly_lift_0[simp]: "poly_lift 0 = 0" unfolding poly_lift_def by simp | |
lemma poly_lift_0_iff[simp]: "poly_lift p = 0 \<longleftrightarrow> p = 0" | |
unfolding poly_lift_def by(induct p;simp) | |
lemma poly_lift_pCons[simp]: | |
"poly_lift (pCons a p) = pCons [:a:] (poly_lift p)" | |
unfolding poly_lift_def map_poly_simps by simp | |
lemma coeff_poly_lift[simp]: | |
fixes p:: "'a :: comm_monoid_add poly" | |
shows "coeff (poly_lift p) i = coeff_lift (coeff p i)" | |
unfolding poly_lift_def by simp | |
lemma pcompose_conv_poly: "pcompose p q = poly (poly_lift p) q" | |
by (induction p) auto | |
interpretation poly_lift_hom: inj_comm_monoid_add_hom poly_lift | |
proof- | |
interpret map_poly_inj_comm_monoid_add_hom coeff_lift.. | |
show "inj_comm_monoid_add_hom poly_lift" by (unfold_locales, auto simp: poly_lift_def hom_distribs) | |
qed | |
interpretation poly_lift_hom: inj_comm_semiring_hom poly_lift | |
proof- | |
interpret map_poly_inj_comm_semiring_hom coeff_lift.. | |
show "inj_comm_semiring_hom poly_lift" by (unfold_locales, auto simp add: poly_lift_def hom_distribs) | |
qed | |
interpretation poly_lift_hom: inj_comm_ring_hom poly_lift.. | |
interpretation poly_lift_hom: inj_idom_hom poly_lift.. | |
lemma (in comm_monoid_add_hom) map_poly_hom_coeff_lift[simp, hom_distribs]: | |
"map_poly hom (coeff_lift a) = coeff_lift (hom a)" by (cases "a=0";simp) | |
lemma (in comm_ring_hom) map_poly_coeff_lift_hom: | |
"map_poly (coeff_lift \<circ> hom) p = map_poly (map_poly hom) (map_poly coeff_lift p)" | |
proof (induct p) | |
case (pCons a p) show ?case | |
proof(cases "a = 0") | |
case True | |
hence "poly_lift p \<noteq> 0" using pCons(1) by simp | |
thus ?thesis | |
unfolding map_poly_pCons[OF pCons(1)] | |
unfolding pCons(2) True by simp | |
next case False | |
hence "coeff_lift a \<noteq> 0" by simp | |
thus ?thesis | |
unfolding map_poly_pCons[OF pCons(1)] | |
unfolding pCons(2) by simp | |
qed | |
qed auto | |
lemma poly_poly_lift[simp]: | |
fixes p :: "'a :: comm_semiring_0 poly" | |
shows "poly (poly_lift p) [:x:] = [: poly p x :]" | |
proof (induct p) | |
case 0 show ?case by simp | |
next case (pCons a p) show ?case | |
unfolding poly_lift_pCons | |
unfolding poly_pCons | |
unfolding pCons apply (subst mult.commute) by auto | |
qed | |
lemma degree_poly_lift2[simp]: | |
"degree (poly_lift2 p) = degree p" unfolding poly_lift2_def by (induct p; auto) | |
lemma poly_lift2_0[simp]: "poly_lift2 0 = 0" unfolding poly_lift2_def by simp | |
lemma poly_lift2_0_iff[simp]: "poly_lift2 p = 0 \<longleftrightarrow> p = 0" | |
unfolding poly_lift2_def by(induct p;simp) | |
lemma poly_lift2_pCons[simp]: | |
"poly_lift2 (pCons a p) = pCons [:[:a:]:] (poly_lift2 p)" | |
unfolding poly_lift2_def map_poly_simps by simp | |
lemma poly_lift2_lift: "poly_lift2 = poly_lift \<circ> poly_lift" (is "?l = ?r") | |
proof | |
fix p show "?l p = ?r p" | |
unfolding poly_lift2_def coeff_lift2_lift poly_lift_def by (induct p; auto) | |
qed | |
lemma poly2_poly_lift[simp]: "poly2 (poly_lift p) x y = poly p y" by (induct p;simp) | |
lemma poly_lift2_nonzero: | |
assumes "p \<noteq> 0" shows "poly_lift2 p \<noteq> 0" | |
unfolding poly_lift2_def | |
apply (subst map_poly_zero) | |
using assms by auto | |
subsubsection \<open>Swapping the Order of Variables\<close> | |
definition | |
"poly_y_x p \<equiv> \<Sum>i\<le>degree p. \<Sum>j\<le>degree (coeff p i). monom (monom (coeff (coeff p i) j) i) j" | |
lemma poly_y_x_fix_y_deg: | |
assumes ydeg: "\<forall>i\<le>degree p. degree (coeff p i) \<le> d" | |
shows "poly_y_x p = (\<Sum>i\<le>degree p. \<Sum>j\<le>d. monom (monom (coeff (coeff p i) j) i) j)" | |
(is "_ = sum (\<lambda>i. sum (?f i) _) _") | |
unfolding poly_y_x_def | |
apply (rule sum.cong,simp) | |
unfolding atMost_iff | |
proof - | |
fix i assume i: "i \<le> degree p" | |
let ?d = "degree (coeff p i)" | |
have "{..d} = {..?d} \<union> {Suc ?d .. d}" using ydeg[rule_format, OF i] by auto | |
also have "sum (?f i) ... = sum (?f i) {..?d} + sum (?f i) {Suc ?d .. d}" | |
by(rule sum.union_disjoint,auto) | |
also { fix j | |
assume j: "j \<in> { Suc ?d .. d }" | |
have "coeff (coeff p i) j = 0" apply (rule coeff_eq_0) using j by auto | |
hence "?f i j = 0" by auto | |
} hence "sum (?f i) {Suc ?d .. d} = 0" by auto | |
finally show "sum (?f i) {..?d} = sum (?f i) {..d}" by auto | |
qed | |
lemma poly_y_x_fixed_deg: | |
fixes p :: "'a :: comm_monoid_add poly poly" | |
defines "d \<equiv> Max { degree (coeff p i) | i. i \<le> degree p }" | |
shows "poly_y_x p = (\<Sum>i\<le>degree p. \<Sum>j\<le>d. monom (monom (coeff (coeff p i) j) i) j)" | |
apply (rule poly_y_x_fix_y_deg, intro allI impI) | |
unfolding d_def | |
by (subst Max_ge,auto) | |
lemma poly_y_x_swapped: | |
fixes p :: "'a :: comm_monoid_add poly poly" | |
defines "d \<equiv> Max { degree (coeff p i) | i. i \<le> degree p }" | |
shows "poly_y_x p = (\<Sum>j\<le>d. \<Sum>i\<le>degree p. monom (monom (coeff (coeff p i) j) i) j)" | |
using poly_y_x_fixed_deg[of p, folded d_def] sum.swap by auto | |
lemma poly2_poly_y_x[simp]: "poly2 (poly_y_x p) x y = poly2 p y x" | |
using [[unfold_abs_def = false]] | |
apply(subst(3) poly_as_sum_of_monoms[symmetric]) | |
apply(subst poly_as_sum_of_monoms[symmetric,of "coeff p _"]) | |
unfolding poly_y_x_def | |
unfolding coeff_sum monom_sum | |
unfolding poly2_hom.hom_sum | |
apply(rule sum.cong, simp) | |
apply(rule sum.cong, simp) | |
unfolding poly2_monom poly_monom | |
unfolding mult.assoc | |
unfolding mult.commute.. | |
context begin | |
private lemma poly_monom_mult: | |
fixes p :: "'a :: comm_semiring_1" | |
shows "poly (monom p i * q ^ j) y = poly (monom p j * [:y:] ^ i) (poly q y)" | |
unfolding poly_hom.hom_mult | |
unfolding poly_monom | |
apply(subst mult.assoc) | |
apply(subst(2) mult.commute) | |
by (auto simp: mult.assoc) | |
lemma poly_poly_y_x: | |
fixes p :: "'a :: comm_semiring_1 poly poly" | |
shows "poly (poly (poly_y_x p) q) y = poly (poly p [:y:]) (poly q y)" | |
apply(subst(5) poly_as_sum_of_monoms[symmetric]) | |
apply(subst poly_as_sum_of_monoms[symmetric,of "coeff p _"]) | |
unfolding poly_y_x_def | |
unfolding coeff_sum monom_sum | |
unfolding poly_hom.hom_sum | |
apply(rule sum.cong, simp) | |
apply(rule sum.cong, simp) | |
unfolding atMost_iff | |
unfolding poly2_monom poly_monom | |
apply(subst poly_monom_mult).. | |
end | |
interpretation poly_y_x_hom: zero_hom poly_y_x by (unfold_locales, auto simp: poly_y_x_def) | |
interpretation poly_y_x_hom: one_hom poly_y_x by (unfold_locales, auto simp: poly_y_x_def monom_0) | |
lemma map_poly_sum_commute: | |
assumes "h 0 = 0" "\<forall>p q. h (p + q) = h p + h q" | |
shows "sum (\<lambda>i. map_poly h (f i)) S = map_poly h (sum f S)" | |
apply(induct S rule: infinite_finite_induct) | |
using map_poly_add[OF assms] by auto | |
lemma poly_y_x_const: "poly_y_x [:p:] = poly_lift p" (is "?l = ?r") | |
proof - | |
have "?l = (\<Sum>j\<le>degree p. monom [:coeff p j:] j)" | |
unfolding poly_y_x_def by (simp add: monom_0) | |
also have "... = poly_lift (\<Sum>x\<le>degree p. monom (coeff p x) x)" | |
unfolding poly_lift_hom.hom_sum unfolding poly_lift_def by simp | |
also have "... = poly_lift p" unfolding poly_as_sum_of_monoms.. | |
finally show ?thesis. | |
qed | |
lemma poly_y_x_pCons: | |
shows "poly_y_x (pCons a p) = poly_lift a + map_poly (pCons 0) (poly_y_x p)" | |
proof(cases "p = 0") | |
interpret ml: map_poly_comm_monoid_add_hom "coeff_lift".. | |
interpret mc: map_poly_comm_monoid_add_hom "pCons 0".. | |
interpret mm: map_poly_comm_monoid_add_hom "\<lambda>x. monom x i" for i.. | |
{ case False show ?thesis (* I know this is a worst kind of a proof... *) | |
apply(subst(1) poly_y_x_fixed_deg) | |
apply(unfold degree_pCons_eq[OF False]) | |
apply(subst(2) atLeast0AtMost[symmetric]) | |
apply(subst atLeastAtMost_insertL[OF le0,symmetric]) | |
apply(subst sum.insert,simp,simp) | |
apply(unfold coeff_pCons_0) | |
apply(unfold monom_0) | |
apply(fold coeff_lift_hom.map_poly_hom_monom poly_lift_def) | |
apply(fold poly_lift_hom.hom_sum) | |
apply(subst poly_as_sum_of_monoms', subst Max_ge,simp,simp,force,simp) | |
apply(rule cong[of "\<lambda>x. poly_lift a + x", OF refl]) | |
apply(simp only: image_Suc_atLeastAtMost [symmetric]) | |
apply(unfold atLeast0AtMost) | |
apply(subst sum.reindex,simp) | |
apply(unfold o_def) | |
apply(unfold coeff_pCons_Suc) | |
apply(unfold monom_Suc) | |
apply (subst poly_y_x_fix_y_deg[of _ "Max {degree (coeff (pCons a p) i) | i. i \<le> Suc (degree p)}"]) | |
apply (intro allI impI) | |
apply (rule Max.coboundedI) | |
by (auto simp: hom_distribs intro: exI[of _ "Suc _"]) | |
} | |
case True show ?thesis by (simp add: True poly_y_x_const) | |
qed | |
lemma poly_y_x_pCons_0: "poly_y_x (pCons 0 p) = map_poly (pCons 0) (poly_y_x p)" | |
proof(cases "p=0") | |
case False | |
interpret mc: map_poly_comm_monoid_add_hom "pCons 0".. | |
interpret mm: map_poly_comm_monoid_add_hom "\<lambda>x. monom x i" for i.. | |
from False show ?thesis | |
apply (unfold poly_y_x_def degree_pCons_eq) | |
apply (unfold sum.atMost_Suc_shift) | |
by (simp add: hom_distribs monom_Suc) | |
qed simp | |
lemma poly_y_x_map_poly_pCons_0: "poly_y_x (map_poly (pCons 0) p) = pCons 0 (poly_y_x p)" | |
proof- | |
let ?l = "\<lambda>i j. monom (monom (coeff (pCons 0 (coeff p i)) j) i) j" | |
let ?r = "\<lambda>i j. pCons 0 (monom (monom (coeff (coeff p i) j) i) j)" | |
have *: "(\<Sum>j\<le>degree (pCons 0 (coeff p i)). ?l i j) = (\<Sum>j\<le>degree (coeff p i). ?r i j)" for i | |
proof(cases "coeff p i = 0") | |
case True then show ?thesis by simp | |
next | |
case False | |
show ?thesis | |
apply (unfold degree_pCons_eq[OF False]) | |
apply (unfold sum.atMost_Suc_shift,simp) | |
apply (fold monom_Suc).. | |
qed | |
show ?thesis | |
apply (unfold poly_y_x_def) | |
apply (unfold hom_distribs pCons_0_hom.degree_map_poly_hom pCons_0_hom.coeff_map_poly_hom) | |
unfolding *.. | |
qed | |
interpretation poly_y_x_hom: comm_monoid_add_hom "poly_y_x :: 'a :: comm_monoid_add poly poly \<Rightarrow> _" | |
proof (unfold_locales) | |
fix p q :: "'a poly poly" | |
show "poly_y_x (p + q) = poly_y_x p + poly_y_x q" | |
proof (induct p arbitrary:q) | |
case 0 show ?case by simp | |
next | |
case p: (pCons a p) | |
show ?case | |
proof (induct q) | |
case q: (pCons b q) | |
show ?case | |
apply (unfold add_pCons) | |
apply (unfold poly_y_x_pCons) | |
apply (unfold p) | |
by (simp add: poly_y_x_const ac_simps hom_distribs) | |
qed auto | |
qed | |
qed | |
text \<open>@{const poly_y_x} is bijective.\<close> | |
lemma poly_y_x_poly_lift: | |
fixes p :: "'a :: comm_monoid_add poly" | |
shows "poly_y_x (poly_lift p) = [:p:]" | |
apply(subst poly_y_x_fix_y_deg[of _ 0],force) | |
apply(subst(10) poly_as_sum_of_monoms[symmetric]) | |
by (auto simp add: monom_sum monom_0 hom_distribs) | |
lemma poly_y_x_id[simp]: | |
fixes p:: "'a :: comm_monoid_add poly poly" | |
shows "poly_y_x (poly_y_x p) = p" | |
proof (induct p) | |
case 0 | |
then show ?case by simp | |
next | |
case (pCons a p) | |
interpret mm: map_poly_comm_monoid_add_hom "\<lambda>x. monom x i" for i.. | |
interpret mc: map_poly_comm_monoid_add_hom "pCons 0" .. | |
have pCons_as_add: "pCons a p = [:a:] + pCons 0 p" by simp | |
from pCons show ?case | |
apply (unfold pCons_as_add) | |
by (simp add: poly_y_x_pCons poly_y_x_poly_lift poly_y_x_map_poly_pCons_0 hom_distribs) | |
qed | |
interpretation poly_y_x_hom: | |
bijective "poly_y_x :: 'a :: comm_monoid_add poly poly \<Rightarrow> _" | |
by(unfold bijective_eq_bij, auto intro!:o_bij[of poly_y_x]) | |
lemma inv_poly_y_x[simp]: "Hilbert_Choice.inv poly_y_x = poly_y_x" by auto | |
interpretation poly_y_x_hom: comm_monoid_add_isom poly_y_x | |
by (unfold_locales, auto) | |
lemma pCons_as_add: | |
fixes p :: "'a :: comm_semiring_1 poly" | |
shows "pCons a p = [:a:] + monom 1 1 * p" by (auto simp: monom_Suc) | |
lemma mult_pCons_0: "(*) (pCons 0 1) = pCons 0" by auto | |
lemma pCons_0_as_mult:(*TODO: Move *) | |
shows "pCons (0 :: 'a :: comm_semiring_1) = (\<lambda>p. pCons 0 1 * p)" by auto | |
lemma map_poly_pCons_0_as_mult: | |
fixes p :: "'a :: comm_semiring_1 poly poly" | |
shows "map_poly (pCons 0) p = [:pCons 0 1:] * p" | |
apply (subst(1) pCons_0_as_mult) | |
apply (fold smult_as_map_poly) by simp | |
lemma poly_y_x_monom: | |
fixes a :: "'a :: comm_semiring_1 poly" | |
shows "poly_y_x (monom a n) = smult (monom 1 n) (poly_lift a)" | |
proof (cases "a = 0") | |
case True then show ?thesis by simp | |
next | |
case False | |
interpret map_poly_comm_monoid_add_hom "\<lambda>x. c * x" for c :: "'a poly".. | |
from False show ?thesis | |
apply (unfold poly_y_x_def) | |
apply (unfold degree_monom_eq) | |
apply (subst(2) lessThan_Suc_atMost[symmetric]) | |
apply (unfold sum.lessThan_Suc) | |
apply (subst sum.neutral,force) | |
apply (subst(14) poly_as_sum_of_monoms[symmetric]) | |
apply (unfold smult_as_map_poly) | |
by (auto simp: monom_altdef[unfolded x_as_monom x_pow_n,symmetric] hom_distribs) | |
qed | |
lemma poly_y_x_smult: | |
fixes c :: "'a :: comm_semiring_1 poly" | |
shows "poly_y_x (smult c p) = poly_lift c * poly_y_x p" (is "?l = ?r") | |
proof- | |
have "smult c p = (\<Sum>i\<le>degree p. monom (coeff (smult c p) i) i)" | |
by (metis (no_types, lifting) degree_smult_le poly_as_sum_of_monoms' sum.cong) | |
also have "... = (\<Sum>i\<le>degree p. monom (c * coeff p i) i)" | |
by auto | |
also have "poly_y_x ... = poly_lift c * (\<Sum>i\<le>degree p. smult (monom 1 i) (poly_lift (coeff p i)))" | |
by (simp add: poly_y_x_monom hom_distribs) | |
also have "... = poly_lift c * poly_y_x (\<Sum>i\<le>degree p. monom (coeff p i) i)" | |
by (simp add: poly_y_x_monom hom_distribs) | |
finally show ?thesis by (simp add: poly_as_sum_of_monoms) | |
qed | |
interpretation poly_y_x_hom: | |
comm_semiring_isom "poly_y_x :: 'a :: comm_semiring_1 poly poly \<Rightarrow> _" | |
proof | |
fix p q :: "'a poly poly" | |
show "poly_y_x (p * q) = poly_y_x p * poly_y_x q" | |
proof (induct p) | |
case (pCons a p) | |
show ?case | |
apply (unfold mult_pCons_left) | |
apply (unfold hom_distribs) | |
apply (unfold poly_y_x_smult) | |
apply (unfold poly_y_x_pCons_0) | |
apply (unfold pCons) | |
by (simp add: poly_y_x_pCons map_poly_pCons_0_as_mult field_simps) | |
qed simp | |
qed | |
interpretation poly_y_x_hom: comm_ring_isom "poly_y_x".. | |
interpretation poly_y_x_hom: idom_isom "poly_y_x".. | |
lemma Max_degree_coeff_pCons: | |
"Max { degree (coeff (pCons a p) i) | i. i \<le> degree (pCons a p)} = | |
max (degree a) (Max {degree (coeff p x) |x. x \<le> degree p})" | |
proof (cases "p = 0") | |
case False show ?thesis | |
unfolding degree_pCons_eq[OF False] | |
unfolding image_Collect[symmetric] | |
unfolding atMost_def[symmetric] | |
apply(subst(1) atLeast0AtMost[symmetric]) | |
unfolding atLeastAtMost_insertL[OF le0,symmetric] | |
unfolding image_insert | |
apply(subst Max_insert,simp,simp) | |
unfolding image_Suc_atLeastAtMost [symmetric] | |
unfolding image_image | |
unfolding atLeast0AtMost by simp | |
qed simp | |
lemma degree_poly_y_x: | |
fixes p :: "'a :: comm_ring_1 poly poly" | |
assumes "p \<noteq> 0" | |
shows "degree (poly_y_x p) = Max { degree (coeff p i) | i. i \<le> degree p }" | |
(is "_ = ?d p") | |
using assms | |
proof(induct p) | |
interpret rhm: map_poly_comm_ring_hom coeff_lift .. | |
let ?f = "\<lambda>p i j. monom (monom (coeff (coeff p i) j) i) j" | |
case (pCons a p) | |
show ?case | |
proof(cases "p=0") | |
case True show ?thesis unfolding True unfolding poly_y_x_pCons by auto | |
next case False | |
note IH = pCons(2)[OF False] | |
let ?a = "poly_lift a" | |
let ?p = "map_poly (pCons 0) (poly_y_x p)" | |
show ?thesis | |
proof(cases rule:linorder_cases[of "degree ?a" "degree ?p"]) | |
case less | |
have dle: "degree a \<le> degree (poly_y_x p)" | |
apply(rule le_trans[OF less_imp_le[OF less[simplified]]]) | |
using degree_map_poly_le by auto | |
show ?thesis | |
unfolding poly_y_x_pCons | |
unfolding degree_add_eq_right[OF less] | |
unfolding Max_degree_coeff_pCons | |
unfolding IH[symmetric] | |
unfolding max_absorb2[OF dle] | |
apply (rule degree_map_poly) by auto | |
next case equal | |
have dega: "degree ?a = degree a" by auto | |
have degp: "degree (poly_y_x p) = degree a" | |
using equal[unfolded dega] | |
using degree_map_poly[of "pCons 0" "poly_y_x p"] by auto | |
have *: "degree (?a + ?p) = degree a" | |
proof(cases "a = 0") | |
case True show ?thesis using equal unfolding True by auto | |
next case False show ?thesis | |
apply(rule antisym) | |
apply(rule degree_add_le, simp, fold equal, simp) | |
apply(rule le_degree) | |
unfolding coeff_add | |
using False | |
by auto | |
qed | |
show ?thesis unfolding poly_y_x_pCons | |
unfolding * | |
unfolding Max_degree_coeff_pCons | |
unfolding IH[symmetric] | |
unfolding degp by auto | |
next case greater | |
have dge: "degree a \<ge> degree (poly_y_x p)" | |
apply(rule le_trans[OF _ less_imp_le[OF greater[simplified]]]) | |
by auto | |
show ?thesis | |
unfolding poly_y_x_pCons | |
unfolding degree_add_eq_left[OF greater] | |
unfolding Max_degree_coeff_pCons | |
unfolding IH[symmetric] | |
unfolding max_absorb1[OF dge] by simp | |
qed | |
qed | |
qed auto | |
end | |