Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
(* Title: Matrix Algebras for Aggregation and Minimisation | |
Author: Walter Guttmann | |
Maintainer: Walter Guttmann <walter.guttmann at canterbury.ac.nz> | |
*) | |
section \<open>Matrix Algebras for Aggregation and Minimisation\<close> | |
text \<open> | |
This theory formalises aggregation orders and lattices as introduced in \cite{Guttmann2018a}. | |
Aggregation in these algebras is an associative and commutative operation satisfying additional properties related to the partial order and its least element. | |
We apply the aggregation operation to finite matrices over the aggregation algebras, which shows that they form an s-algebra. | |
By requiring the aggregation algebras to be linearly ordered, we also obtain that the matrices form an m-algebra. | |
This is an intermediate step in demonstrating that weighted graphs form an s-algebra and an m-algebra. | |
The present theory specifies abstract properties for the edge weights and shows that matrices over such weights form an instance of s-algebras and m-algebras. | |
A second step taken in a separate theory gives concrete instances of edge weights satisfying the abstract properties introduced here. | |
Lifting the aggregation to matrices requires finite sums over elements taken from commutative semigroups with an element that is a unit on the image of the semigroup operation. | |
Because standard sums assume a commutative monoid we have to derive a number of properties of these generalised sums as their statements or proofs are different. | |
\<close> | |
theory Matrix_Aggregation_Algebras | |
imports Stone_Kleene_Relation_Algebras.Matrix_Kleene_Algebras Aggregation_Algebras Semigroups_Big | |
begin | |
no_notation | |
inf (infixl "\<sqinter>" 70) | |
and uminus ("- _" [81] 80) | |
subsection \<open>Aggregation Orders and Finite Sums\<close> | |
text \<open> | |
An aggregation order is a partial order with a least element and an associative commutative operation satisfying certain properties. | |
Axiom \<open>add_add_bot\<close> introduces almost a commutative monoid; we require that \<open>bot\<close> is a unit only on the image of the aggregation operation. | |
This is necessary since it is not a unit of a number of aggregation operations we are interested in. | |
Axiom \<open>add_right_isotone\<close> states that aggregation is $\leq$-isotone on the image of the aggregation operation. | |
Its assumption $x \neq bot$ is necessary because the introduction of new edges can decrease the aggregated value. | |
Axiom \<open>add_bot\<close> expresses that aggregation is zero-sum-free. | |
\<close> | |
class aggregation_order = order_bot + ab_semigroup_add + | |
assumes add_right_isotone: "x \<noteq> bot \<and> x + bot \<le> y + bot \<longrightarrow> x + z \<le> y + z" | |
assumes add_add_bot [simp]: "x + y + bot = x + y" | |
assumes add_bot: "x + y = bot \<longrightarrow> x = bot" | |
begin | |
abbreviation "zero \<equiv> bot + bot" | |
sublocale aggregation: ab_semigroup_add_0 where plus = plus and zero = zero | |
apply unfold_locales | |
using add_assoc add_add_bot by auto | |
lemma add_bot_bot_bot: | |
"x + bot + bot + bot = x + bot" | |
by simp | |
end | |
text \<open> | |
We introduce notation for finite sums over aggregation orders. | |
The index variable of the summation ranges over the finite universe of its type. | |
Finite sums are defined recursively using the binary aggregation and $\bot + \bot$ for the empty sum. | |
\<close> | |
syntax (xsymbols) | |
"_sum_ab_semigroup_add_0" :: "idt \<Rightarrow> 'a::bounded_semilattice_sup_bot \<Rightarrow> 'a" ("(\<Sum>\<^sub>_ _)" [0,10] 10) | |
translations | |
"\<Sum>\<^sub>x t" => "XCONST ab_semigroup_add_0.sum_0 XCONST plus (XCONST plus XCONST bot XCONST bot) (\<lambda>x . t) { x . CONST True }" | |
text \<open> | |
The following are basic properties of such sums. | |
\<close> | |
lemma agg_sum_bot: | |
"(\<Sum>\<^sub>k bot::'a::aggregation_order) = bot + bot" | |
proof (induct rule: infinite_finite_induct) | |
case (infinite A) | |
thus ?case | |
by simp | |
next | |
case empty | |
thus ?case | |
by simp | |
next | |
case (insert x F) | |
thus ?case | |
by (metis add.commute add_add_bot aggregation.sum_0.insert) | |
qed | |
lemma agg_sum_bot_bot: | |
"(\<Sum>\<^sub>k bot + bot::'a::aggregation_order) = bot + bot" | |
by (rule aggregation.sum_0.neutral_const) | |
lemma agg_sum_not_bot_1: | |
fixes f :: "'a::finite \<Rightarrow> 'b::aggregation_order" | |
assumes "f i \<noteq> bot" | |
shows "(\<Sum>\<^sub>k f k) \<noteq> bot" | |
by (metis assms add_bot aggregation.sum_0.remove finite_code mem_Collect_eq) | |
lemma agg_sum_not_bot: | |
fixes f :: "('a::finite,'b::aggregation_order) square" | |
assumes "f (i,j) \<noteq> bot" | |
shows "(\<Sum>\<^sub>k \<Sum>\<^sub>l f (k,l)) \<noteq> bot" | |
by (metis assms agg_sum_not_bot_1) | |
lemma agg_sum_distrib: | |
fixes f g :: "'a \<Rightarrow> 'b::aggregation_order" | |
shows "(\<Sum>\<^sub>k f k + g k) = (\<Sum>\<^sub>k f k) + (\<Sum>\<^sub>k g k)" | |
by (rule aggregation.sum_0.distrib) | |
lemma agg_sum_distrib_2: | |
fixes f g :: "('a,'b::aggregation_order) square" | |
shows "(\<Sum>\<^sub>k \<Sum>\<^sub>l f (k,l) + g (k,l)) = (\<Sum>\<^sub>k \<Sum>\<^sub>l f (k,l)) + (\<Sum>\<^sub>k \<Sum>\<^sub>l g (k,l))" | |
proof - | |
have "(\<Sum>\<^sub>k \<Sum>\<^sub>l f (k,l) + g (k,l)) = (\<Sum>\<^sub>k (\<Sum>\<^sub>l f (k,l)) + (\<Sum>\<^sub>l g (k,l)))" | |
by (metis (no_types) aggregation.sum_0.distrib) | |
also have "... = (\<Sum>\<^sub>k \<Sum>\<^sub>l f (k,l)) + (\<Sum>\<^sub>k \<Sum>\<^sub>l g (k,l))" | |
by (metis (no_types) aggregation.sum_0.distrib) | |
finally show ?thesis | |
. | |
qed | |
lemma agg_sum_add_bot: | |
fixes f :: "'a \<Rightarrow> 'b::aggregation_order" | |
shows "(\<Sum>\<^sub>k f k) = (\<Sum>\<^sub>k f k) + bot" | |
by (metis (no_types) add_add_bot aggregation.sum_0.F_one) | |
lemma agg_sum_add_bot_2: | |
fixes f :: "'a \<Rightarrow> 'b::aggregation_order" | |
shows "(\<Sum>\<^sub>k f k + bot) = (\<Sum>\<^sub>k f k)" | |
proof - | |
have "(\<Sum>\<^sub>k f k + bot) = (\<Sum>\<^sub>k f k) + (\<Sum>\<^sub>k::'a bot::'b)" | |
using agg_sum_distrib by simp | |
also have "... = (\<Sum>\<^sub>k f k) + (bot + bot)" | |
by (metis agg_sum_bot) | |
also have "... = (\<Sum>\<^sub>k f k)" | |
by simp | |
finally show ?thesis | |
by simp | |
qed | |
lemma agg_sum_commute: | |
fixes f :: "('a,'b::aggregation_order) square" | |
shows "(\<Sum>\<^sub>k \<Sum>\<^sub>l f (k,l)) = (\<Sum>\<^sub>l \<Sum>\<^sub>k f (k,l))" | |
by (rule aggregation.sum_0.swap) | |
lemma agg_delta: | |
fixes f :: "'a::finite \<Rightarrow> 'b::aggregation_order" | |
shows "(\<Sum>\<^sub>l if l = j then f l else zero) = f j + bot" | |
apply (subst aggregation.sum_0.delta) | |
apply simp | |
by (metis add.commute add.left_commute add_add_bot mem_Collect_eq) | |
lemma agg_delta_1: | |
fixes f :: "'a::finite \<Rightarrow> 'b::aggregation_order" | |
shows "(\<Sum>\<^sub>l if l = j then f l else bot) = f j + bot" | |
proof - | |
let ?f = "(\<lambda>l . if l = j then f l else bot)" | |
let ?S = "{l::'a . True}" | |
show ?thesis | |
proof (cases "j \<in> ?S") | |
case False | |
thus ?thesis by simp | |
next | |
case True | |
let ?A = "?S - {j}" | |
let ?B = "{j}" | |
from True have eq: "?S = ?A \<union> ?B" | |
by blast | |
have dj: "?A \<inter> ?B = {}" | |
by simp | |
have fAB: "finite ?A" "finite ?B" | |
by auto | |
have "aggregation.sum_0 ?f ?S = aggregation.sum_0 ?f ?A + aggregation.sum_0 ?f ?B" | |
using aggregation.sum_0.union_disjoint[OF fAB dj, of ?f, unfolded eq [symmetric]] by simp | |
also have "... = aggregation.sum_0 (\<lambda>l . bot) ?A + aggregation.sum_0 ?f ?B" | |
by (subst aggregation.sum_0.cong[where ?B="?A"]) simp_all | |
also have "... = zero + aggregation.sum_0 ?f ?B" | |
by (metis (no_types, lifting) add.commute add_add_bot aggregation.sum_0.F_g_one aggregation.sum_0.neutral) | |
also have "... = zero + (f j + zero)" | |
by simp | |
also have "... = f j + bot" | |
by (metis add.commute add.left_commute add_add_bot) | |
finally show ?thesis | |
. | |
qed | |
qed | |
lemma agg_delta_2: | |
fixes f :: "('a::finite,'b::aggregation_order) square" | |
shows "(\<Sum>\<^sub>k \<Sum>\<^sub>l if k = i \<and> l = j then f (k,l) else bot) = f (i,j) + bot" | |
proof - | |
have "\<forall>k . (\<Sum>\<^sub>l if k = i \<and> l = j then f (k,l) else bot) = (if k = i then f (k,j) + bot else zero)" | |
proof | |
fix k | |
have "(\<Sum>\<^sub>l if k = i \<and> l = j then f (k,l) else bot) = (\<Sum>\<^sub>l if l = j then if k = i then f (k,l) else bot else bot)" | |
by meson | |
also have "... = (if k = i then f (k,j) else bot) + bot" | |
by (rule agg_delta_1) | |
finally show "(\<Sum>\<^sub>l if k = i \<and> l = j then f (k,l) else bot) = (if k = i then f (k,j) + bot else zero)" | |
by simp | |
qed | |
hence "(\<Sum>\<^sub>k \<Sum>\<^sub>l if k = i \<and> l = j then f (k,l) else bot) = (\<Sum>\<^sub>k if k = i then f (k,j) + bot else zero)" | |
using aggregation.sum_0.cong by auto | |
also have "... = f (i,j) + bot" | |
apply (subst agg_delta) | |
by simp | |
finally show ?thesis | |
. | |
qed | |
subsection \<open>Matrix Aggregation\<close> | |
text \<open> | |
The following definitions introduce the matrix of unit elements, componentwise aggregation and aggregation on matrices. | |
The aggregation of a matrix is a single value, but because s-algebras are single-sorted the result has to be encoded as a matrix of the same type (size) as the input. | |
We store the aggregated matrix value in the `first' entry of a matrix, setting all other entries to the unit value. | |
The first entry is determined by requiring an enumeration of indices. | |
It does not have to be the first entry; any fixed location in the matrix would work as well. | |
\<close> | |
definition zero_matrix :: "('a,'b::{plus,bot}) square" ("mzero") where "mzero = (\<lambda>e . bot + bot)" | |
definition plus_matrix :: "('a,'b::plus) square \<Rightarrow> ('a,'b) square \<Rightarrow> ('a,'b) square" (infixl "\<oplus>\<^sub>M" 65) where "plus_matrix f g = (\<lambda>e . f e + g e)" | |
definition sum_matrix :: "('a::enum,'b::{plus,bot}) square \<Rightarrow> ('a,'b) square" ("sum\<^sub>M _" [80] 80) where "sum_matrix f = (\<lambda>(i,j) . if i = hd enum_class.enum \<and> j = i then \<Sum>\<^sub>k \<Sum>\<^sub>l f (k,l) else bot + bot)" | |
text \<open> | |
Basic properties of these operations are given in the following. | |
\<close> | |
lemma bot_plus_bot: | |
"mbot \<oplus>\<^sub>M mbot = mzero" | |
by (simp add: plus_matrix_def bot_matrix_def zero_matrix_def) | |
lemma sum_bot: | |
"sum\<^sub>M (mbot :: ('a::enum,'b::aggregation_order) square) = mzero" | |
proof (rule ext, rule prod_cases) | |
fix i j :: "'a" | |
have "(sum\<^sub>M mbot :: ('a,'b) square) (i,j) = (if i = hd enum_class.enum \<and> j = i then \<Sum>\<^sub>(k::'a) \<Sum>\<^sub>(l::'a) bot else bot + bot)" | |
by (unfold sum_matrix_def bot_matrix_def) simp | |
also have "... = bot + bot" | |
using agg_sum_bot aggregation.sum_0.neutral by fastforce | |
also have "... = mzero (i,j)" | |
by (simp add: zero_matrix_def) | |
finally show "(sum\<^sub>M mbot :: ('a,'b) square) (i,j) = mzero (i,j)" | |
. | |
qed | |
lemma sum_plus_bot: | |
fixes f :: "('a::enum,'b::aggregation_order) square" | |
shows "sum\<^sub>M f \<oplus>\<^sub>M mbot = sum\<^sub>M f" | |
proof (rule ext, rule prod_cases) | |
let ?h = "hd enum_class.enum" | |
fix i j | |
have "(sum\<^sub>M f \<oplus>\<^sub>M mbot) (i,j) = (if i = ?h \<and> j = i then (\<Sum>\<^sub>k \<Sum>\<^sub>l f (k,l)) + bot else zero + bot)" | |
by (simp add: plus_matrix_def bot_matrix_def sum_matrix_def) | |
also have "... = (if i = ?h \<and> j = i then \<Sum>\<^sub>k \<Sum>\<^sub>l f (k,l) else zero)" | |
by (metis (no_types, lifting) add_add_bot aggregation.sum_0.F_one) | |
also have "... = (sum\<^sub>M f) (i,j)" | |
by (simp add: sum_matrix_def) | |
finally show "(sum\<^sub>M f \<oplus>\<^sub>M mbot) (i,j) = (sum\<^sub>M f) (i,j)" | |
by simp | |
qed | |
lemma sum_plus_zero: | |
fixes f :: "('a::enum,'b::aggregation_order) square" | |
shows "sum\<^sub>M f \<oplus>\<^sub>M mzero = sum\<^sub>M f" | |
by (rule ext, rule prod_cases) (simp add: plus_matrix_def zero_matrix_def sum_matrix_def) | |
lemma agg_matrix_bot: | |
fixes f :: "('a,'b::aggregation_order) square" | |
assumes "\<forall>i j . f (i,j) = bot" | |
shows "f = mbot" | |
apply (unfold bot_matrix_def) | |
using assms by auto | |
text \<open> | |
We consider a different implementation of matrix aggregation which stores the aggregated value in all entries of the matrix instead of a particular one. | |
This does not require an enumeration of the indices. | |
All results continue to hold using this alternative implementation. | |
\<close> | |
definition sum_matrix_2 :: "('a,'b::{plus,bot}) square \<Rightarrow> ('a,'b) square" ("sum2\<^sub>M _" [80] 80) where "sum_matrix_2 f = (\<lambda>e . \<Sum>\<^sub>k \<Sum>\<^sub>l f (k,l))" | |
lemma sum_bot_2: | |
"sum2\<^sub>M (mbot :: ('a,'b::aggregation_order) square) = mzero" | |
proof | |
fix e | |
have "(sum2\<^sub>M mbot :: ('a,'b) square) e = (\<Sum>\<^sub>(k::'a) \<Sum>\<^sub>(l::'a) bot)" | |
by (unfold sum_matrix_2_def bot_matrix_def) simp | |
also have "... = bot + bot" | |
using agg_sum_bot aggregation.sum_0.neutral by fastforce | |
also have "... = mzero e" | |
by (simp add: zero_matrix_def) | |
finally show "(sum2\<^sub>M mbot :: ('a,'b) square) e = mzero e" | |
. | |
qed | |
lemma sum_plus_bot_2: | |
fixes f :: "('a,'b::aggregation_order) square" | |
shows "sum2\<^sub>M f \<oplus>\<^sub>M mbot = sum2\<^sub>M f" | |
proof | |
fix e | |
have "(sum2\<^sub>M f \<oplus>\<^sub>M mbot) e = (\<Sum>\<^sub>k \<Sum>\<^sub>l f (k,l)) + bot" | |
by (simp add: plus_matrix_def bot_matrix_def sum_matrix_2_def) | |
also have "... = (\<Sum>\<^sub>k \<Sum>\<^sub>l f (k,l))" | |
by (metis (no_types, lifting) add_add_bot aggregation.sum_0.F_one) | |
also have "... = (sum2\<^sub>M f) e" | |
by (simp add: sum_matrix_2_def) | |
finally show "(sum2\<^sub>M f \<oplus>\<^sub>M mbot) e = (sum2\<^sub>M f) e" | |
by simp | |
qed | |
lemma sum_plus_zero_2: | |
fixes f :: "('a,'b::aggregation_order) square" | |
shows "sum2\<^sub>M f \<oplus>\<^sub>M mzero = sum2\<^sub>M f" | |
by (simp add: plus_matrix_def zero_matrix_def sum_matrix_2_def) | |
subsection \<open>Aggregation Lattices\<close> | |
text \<open> | |
We extend aggregation orders to dense bounded distributive lattices. | |
Axiom \<open>add_lattice\<close> implements the inclusion-exclusion principle at the level of edge weights. | |
\<close> | |
class aggregation_lattice = bounded_distrib_lattice + dense_lattice + aggregation_order + | |
assumes add_lattice: "x + y = (x \<squnion> y) + (x \<sqinter> y)" | |
text \<open> | |
Aggregation lattices form a Stone relation algebra by reusing the meet operation as composition, using identity as converse and a standard implementation of pseudocomplement. | |
\<close> | |
class aggregation_algebra = aggregation_lattice + uminus + one + times + conv + | |
assumes uminus_def [simp]: "-x = (if x = bot then top else bot)" | |
assumes one_def [simp]: "1 = top" | |
assumes times_def [simp]: "x * y = x \<sqinter> y" | |
assumes conv_def [simp]: "x\<^sup>T = x" | |
begin | |
subclass stone_algebra | |
apply unfold_locales | |
using bot_meet_irreducible bot_unique by auto | |
subclass stone_relation_algebra | |
apply unfold_locales | |
prefer 9 using bot_meet_irreducible apply auto[1] | |
by (simp_all add: inf.assoc le_infI2 inf_sup_distrib1 inf_sup_distrib2 inf.commute inf.left_commute) | |
end | |
text \<open> | |
We show that matrices over aggregation lattices form an s-algebra using the above operations. | |
\<close> | |
interpretation agg_square_s_algebra: s_algebra where sup = sup_matrix and inf = inf_matrix and less_eq = less_eq_matrix and less = less_matrix and bot = "bot_matrix::('a::enum,'b::aggregation_algebra) square" and top = top_matrix and uminus = uminus_matrix and one = one_matrix and times = times_matrix and conv = conv_matrix and plus = plus_matrix and sum = sum_matrix | |
proof | |
fix f g h :: "('a,'b) square" | |
show "f \<noteq> mbot \<and> sum\<^sub>M f \<preceq> sum\<^sub>M g \<longrightarrow> h \<oplus>\<^sub>M sum\<^sub>M f \<preceq> h \<oplus>\<^sub>M sum\<^sub>M g" | |
proof | |
let ?h = "hd enum_class.enum" | |
assume 1: "f \<noteq> mbot \<and> sum\<^sub>M f \<preceq> sum\<^sub>M g" | |
hence "\<exists>k l . f (k,l) \<noteq> bot" | |
by (meson agg_matrix_bot) | |
hence 2: "(\<Sum>\<^sub>k \<Sum>\<^sub>l f (k,l)) \<noteq> bot" | |
using agg_sum_not_bot by blast | |
have "(\<Sum>\<^sub>k \<Sum>\<^sub>l f (k,l)) = (sum\<^sub>M f) (?h,?h)" | |
by (simp add: sum_matrix_def) | |
also have "... \<le> (sum\<^sub>M g) (?h,?h)" | |
using 1 by (simp add: less_eq_matrix_def) | |
also have "... = (\<Sum>\<^sub>k \<Sum>\<^sub>l g (k,l))" | |
by (simp add: sum_matrix_def) | |
finally have "(\<Sum>\<^sub>k \<Sum>\<^sub>l f (k,l)) \<le> (\<Sum>\<^sub>k \<Sum>\<^sub>l g (k,l))" | |
by simp | |
hence 3: "(\<Sum>\<^sub>k \<Sum>\<^sub>l f (k,l)) + bot \<le> (\<Sum>\<^sub>k \<Sum>\<^sub>l g (k,l)) + bot" | |
by (metis (no_types, lifting) add_add_bot aggregation.sum_0.F_one) | |
show "h \<oplus>\<^sub>M sum\<^sub>M f \<preceq> h \<oplus>\<^sub>M sum\<^sub>M g" | |
proof (unfold less_eq_matrix_def, rule allI, rule prod_cases, unfold plus_matrix_def) | |
fix i j | |
have 4: "h (i,j) + (\<Sum>\<^sub>k \<Sum>\<^sub>l f (k,l)) \<le> h (i,j) + (\<Sum>\<^sub>k \<Sum>\<^sub>l g (k,l))" | |
using 2 3 by (metis (no_types, lifting) add_right_isotone add.commute) | |
have "h (i,j) + (sum\<^sub>M f) (i,j) = h (i,j) + (if i = ?h \<and> j = i then \<Sum>\<^sub>k \<Sum>\<^sub>l f (k,l) else zero)" | |
by (simp add: sum_matrix_def) | |
also have "... = (if i = ?h \<and> j = i then h (i,j) + (\<Sum>\<^sub>k \<Sum>\<^sub>l f (k,l)) else h (i,j) + zero)" | |
by simp | |
also have "... \<le> (if i = ?h \<and> j = i then h (i,j) + (\<Sum>\<^sub>k \<Sum>\<^sub>l g (k,l)) else h (i,j) + zero)" | |
using 4 order.eq_iff by auto | |
also have "... = h (i,j) + (if i = ?h \<and> j = i then \<Sum>\<^sub>k \<Sum>\<^sub>l g (k,l) else zero)" | |
by simp | |
finally show "h (i,j) + (sum\<^sub>M f) (i,j) \<le> h (i,j) + (sum\<^sub>M g) (i,j)" | |
by (simp add: sum_matrix_def) | |
qed | |
qed | |
next | |
fix f :: "('a,'b) square" | |
show "sum\<^sub>M f \<oplus>\<^sub>M sum\<^sub>M mbot = sum\<^sub>M f" | |
by (simp add: sum_bot sum_plus_zero) | |
next | |
fix f g :: "('a,'b) square" | |
show "sum\<^sub>M f \<oplus>\<^sub>M sum\<^sub>M g = sum\<^sub>M (f \<oplus> g) \<oplus>\<^sub>M sum\<^sub>M (f \<otimes> g)" | |
proof (rule ext, rule prod_cases) | |
fix i j | |
let ?h = "hd enum_class.enum" | |
have "(sum\<^sub>M f \<oplus>\<^sub>M sum\<^sub>M g) (i,j) = (sum\<^sub>M f) (i,j) + (sum\<^sub>M g) (i,j)" | |
by (simp add: plus_matrix_def) | |
also have "... = (if i = ?h \<and> j = i then \<Sum>\<^sub>k \<Sum>\<^sub>l f (k,l) else zero) + (if i = ?h \<and> j = i then \<Sum>\<^sub>k \<Sum>\<^sub>l g (k,l) else zero)" | |
by (simp add: sum_matrix_def) | |
also have "... = (if i = ?h \<and> j = i then (\<Sum>\<^sub>k \<Sum>\<^sub>l f (k,l)) + (\<Sum>\<^sub>k \<Sum>\<^sub>l g (k,l)) else zero)" | |
by simp | |
also have "... = (if i = ?h \<and> j = i then \<Sum>\<^sub>k \<Sum>\<^sub>l f (k,l) + g (k,l) else zero)" | |
using agg_sum_distrib_2 by (metis (no_types)) | |
also have "... = (if i = ?h \<and> j = i then \<Sum>\<^sub>k \<Sum>\<^sub>l (f (k,l) \<squnion> g (k,l)) + (f (k,l) \<sqinter> g (k,l)) else zero)" | |
using add_lattice aggregation.sum_0.cong by (metis (no_types, lifting)) | |
also have "... = (if i = ?h \<and> j = i then \<Sum>\<^sub>k \<Sum>\<^sub>l (f \<oplus> g) (k,l) + (f \<otimes> g) (k,l) else zero)" | |
by (simp add: sup_matrix_def inf_matrix_def) | |
also have "... = (if i = ?h \<and> j = i then (\<Sum>\<^sub>k \<Sum>\<^sub>l (f \<oplus> g) (k,l)) + (\<Sum>\<^sub>k \<Sum>\<^sub>l (f \<otimes> g) (k,l)) else zero)" | |
using agg_sum_distrib_2 by (metis (no_types)) | |
also have "... = (if i = ?h \<and> j = i then \<Sum>\<^sub>k \<Sum>\<^sub>l (f \<oplus> g) (k,l) else zero) + (if i = ?h \<and> j = i then \<Sum>\<^sub>k \<Sum>\<^sub>l (f \<otimes> g) (k,l) else zero)" | |
by simp | |
also have "... = (sum\<^sub>M (f \<oplus> g)) (i,j) + (sum\<^sub>M (f \<otimes> g)) (i,j)" | |
by (simp add: sum_matrix_def) | |
also have "... = (sum\<^sub>M (f \<oplus> g) \<oplus>\<^sub>M sum\<^sub>M (f \<otimes> g)) (i,j)" | |
by (simp add: plus_matrix_def) | |
finally show "(sum\<^sub>M f \<oplus>\<^sub>M sum\<^sub>M g) (i,j) = (sum\<^sub>M (f \<oplus> g) \<oplus>\<^sub>M sum\<^sub>M (f \<otimes> g)) (i,j)" | |
. | |
qed | |
next | |
fix f :: "('a,'b) square" | |
show "sum\<^sub>M (f\<^sup>t) = sum\<^sub>M f" | |
proof (rule ext, rule prod_cases) | |
fix i j | |
let ?h = "hd enum_class.enum" | |
have "(sum\<^sub>M (f\<^sup>t)) (i,j) = (if i = ?h \<and> j = i then \<Sum>\<^sub>k \<Sum>\<^sub>l (f\<^sup>t) (k,l) else zero)" | |
by (simp add: sum_matrix_def) | |
also have "... = (if i = ?h \<and> j = i then \<Sum>\<^sub>k \<Sum>\<^sub>l (f (l,k))\<^sup>T else zero)" | |
by (simp add: conv_matrix_def) | |
also have "... = (if i = ?h \<and> j = i then \<Sum>\<^sub>k \<Sum>\<^sub>l f (l,k) else zero)" | |
by simp | |
also have "... = (if i = ?h \<and> j = i then \<Sum>\<^sub>l \<Sum>\<^sub>k f (l,k) else zero)" | |
by (metis agg_sum_commute) | |
also have "... = (sum\<^sub>M f) (i,j)" | |
by (simp add: sum_matrix_def) | |
finally show "(sum\<^sub>M (f\<^sup>t)) (i,j) = (sum\<^sub>M f) (i,j)" | |
. | |
qed | |
qed | |
text \<open> | |
We show the same for the alternative implementation that stores the result of aggregation in all elements of the matrix. | |
\<close> | |
interpretation agg_square_s_algebra_2: s_algebra where sup = sup_matrix and inf = inf_matrix and less_eq = less_eq_matrix and less = less_matrix and bot = "bot_matrix::('a::finite,'b::aggregation_algebra) square" and top = top_matrix and uminus = uminus_matrix and one = one_matrix and times = times_matrix and conv = conv_matrix and plus = plus_matrix and sum = sum_matrix_2 | |
proof | |
fix f g h :: "('a,'b) square" | |
show "f \<noteq> mbot \<and> sum2\<^sub>M f \<preceq> sum2\<^sub>M g \<longrightarrow> h \<oplus>\<^sub>M sum2\<^sub>M f \<preceq> h \<oplus>\<^sub>M sum2\<^sub>M g" | |
proof | |
assume 1: "f \<noteq> mbot \<and> sum2\<^sub>M f \<preceq> sum2\<^sub>M g" | |
hence "\<exists>k l . f (k,l) \<noteq> bot" | |
by (meson agg_matrix_bot) | |
hence 2: "(\<Sum>\<^sub>k \<Sum>\<^sub>l f (k,l)) \<noteq> bot" | |
using agg_sum_not_bot by blast | |
obtain c :: 'a where True | |
by simp | |
have "(\<Sum>\<^sub>k \<Sum>\<^sub>l f (k,l)) = (sum2\<^sub>M f) (c,c)" | |
by (simp add: sum_matrix_2_def) | |
also have "... \<le> (sum2\<^sub>M g) (c,c)" | |
using 1 by (simp add: less_eq_matrix_def) | |
also have "... = (\<Sum>\<^sub>k \<Sum>\<^sub>l g (k,l))" | |
by (simp add: sum_matrix_2_def) | |
finally have "(\<Sum>\<^sub>k \<Sum>\<^sub>l f (k,l)) \<le> (\<Sum>\<^sub>k \<Sum>\<^sub>l g (k,l))" | |
by simp | |
hence 3: "(\<Sum>\<^sub>k \<Sum>\<^sub>l f (k,l)) + bot \<le> (\<Sum>\<^sub>k \<Sum>\<^sub>l g (k,l)) + bot" | |
by (metis (no_types, lifting) add_add_bot aggregation.sum_0.F_one) | |
show "h \<oplus>\<^sub>M sum2\<^sub>M f \<preceq> h \<oplus>\<^sub>M sum2\<^sub>M g" | |
proof (unfold less_eq_matrix_def, rule allI, unfold plus_matrix_def) | |
fix e | |
have "h e + (sum2\<^sub>M f) e = h e + (\<Sum>\<^sub>k \<Sum>\<^sub>l f (k,l))" | |
by (simp add: sum_matrix_2_def) | |
also have "... \<le> h e + (\<Sum>\<^sub>k \<Sum>\<^sub>l g (k,l))" | |
using 2 3 by (metis (no_types, lifting) add_right_isotone add.commute) | |
finally show "h e + (sum2\<^sub>M f) e \<le> h e + (sum2\<^sub>M g) e" | |
by (simp add: sum_matrix_2_def) | |
qed | |
qed | |
next | |
fix f :: "('a,'b) square" | |
show "sum2\<^sub>M f \<oplus>\<^sub>M sum2\<^sub>M mbot = sum2\<^sub>M f" | |
by (simp add: sum_bot_2 sum_plus_zero_2) | |
next | |
fix f g :: "('a,'b) square" | |
show "sum2\<^sub>M f \<oplus>\<^sub>M sum2\<^sub>M g = sum2\<^sub>M (f \<oplus> g) \<oplus>\<^sub>M sum2\<^sub>M (f \<otimes> g)" | |
proof | |
fix e | |
have "(sum2\<^sub>M f \<oplus>\<^sub>M sum2\<^sub>M g) e = (sum2\<^sub>M f) e + (sum2\<^sub>M g) e" | |
by (simp add: plus_matrix_def) | |
also have "... = (\<Sum>\<^sub>k \<Sum>\<^sub>l f (k,l)) + (\<Sum>\<^sub>k \<Sum>\<^sub>l g (k,l))" | |
by (simp add: sum_matrix_2_def) | |
also have "... = (\<Sum>\<^sub>k \<Sum>\<^sub>l f (k,l) + g (k,l))" | |
using agg_sum_distrib_2 by (metis (no_types)) | |
also have "... = (\<Sum>\<^sub>k \<Sum>\<^sub>l (f (k,l) \<squnion> g (k,l)) + (f (k,l) \<sqinter> g (k,l)))" | |
using add_lattice aggregation.sum_0.cong by (metis (no_types, lifting)) | |
also have "... = (\<Sum>\<^sub>k \<Sum>\<^sub>l (f \<oplus> g) (k,l) + (f \<otimes> g) (k,l))" | |
by (simp add: sup_matrix_def inf_matrix_def) | |
also have "... = (\<Sum>\<^sub>k \<Sum>\<^sub>l (f \<oplus> g) (k,l)) + (\<Sum>\<^sub>k \<Sum>\<^sub>l (f \<otimes> g) (k,l))" | |
using agg_sum_distrib_2 by (metis (no_types)) | |
also have "... = (sum2\<^sub>M (f \<oplus> g)) e + (sum2\<^sub>M (f \<otimes> g)) e" | |
by (simp add: sum_matrix_2_def) | |
also have "... = (sum2\<^sub>M (f \<oplus> g) \<oplus>\<^sub>M sum2\<^sub>M (f \<otimes> g)) e" | |
by (simp add: plus_matrix_def) | |
finally show "(sum2\<^sub>M f \<oplus>\<^sub>M sum2\<^sub>M g) e = (sum2\<^sub>M (f \<oplus> g) \<oplus>\<^sub>M sum2\<^sub>M (f \<otimes> g)) e" | |
. | |
qed | |
next | |
fix f :: "('a,'b) square" | |
show "sum2\<^sub>M (f\<^sup>t) = sum2\<^sub>M f" | |
proof | |
fix e | |
have "(sum2\<^sub>M (f\<^sup>t)) e = (\<Sum>\<^sub>k \<Sum>\<^sub>l (f\<^sup>t) (k,l))" | |
by (simp add: sum_matrix_2_def) | |
also have "... = (\<Sum>\<^sub>k \<Sum>\<^sub>l (f (l,k))\<^sup>T)" | |
by (simp add: conv_matrix_def) | |
also have "... = (\<Sum>\<^sub>k \<Sum>\<^sub>l f (l,k))" | |
by simp | |
also have "... = (\<Sum>\<^sub>l \<Sum>\<^sub>k f (l,k))" | |
by (metis agg_sum_commute) | |
also have "... = (sum2\<^sub>M f) e" | |
by (simp add: sum_matrix_2_def) | |
finally show "(sum2\<^sub>M (f\<^sup>t)) e = (sum2\<^sub>M f) e" | |
. | |
qed | |
qed | |
subsection \<open>Matrix Minimisation\<close> | |
text \<open> | |
We construct an operation that finds the minimum entry of a matrix. | |
Because a matrix can have several entries with the same minimum value, we introduce a lexicographic order on the indices to make the operation deterministic. | |
The order is obtained by enumerating the universe of the index. | |
\<close> | |
primrec enum_pos' :: "'a list \<Rightarrow> 'a::enum \<Rightarrow> nat" where | |
"enum_pos' Nil x = 0" | |
| "enum_pos' (y#ys) x = (if x = y then 0 else 1 + enum_pos' ys x)" | |
lemma enum_pos'_inverse: | |
"List.member xs x \<Longrightarrow> xs!(enum_pos' xs x) = x" | |
apply (induct xs) | |
apply (simp add: member_rec(2)) | |
by (metis diff_add_inverse enum_pos'.simps(2) less_one member_rec(1) not_add_less1 nth_Cons') | |
text \<open> | |
The following function finds the position of an index in the enumerated universe. | |
\<close> | |
fun enum_pos :: "'a::enum \<Rightarrow> nat" where "enum_pos x = enum_pos' (enum_class.enum::'a list) x" | |
lemma enum_pos_inverse [simp]: | |
"enum_class.enum!(enum_pos x) = x" | |
apply (unfold enum_pos.simps) | |
apply (rule enum_pos'_inverse) | |
by (metis in_enum List.member_def) | |
lemma enum_pos_injective [simp]: | |
"enum_pos x = enum_pos y \<Longrightarrow> x = y" | |
by (metis enum_pos_inverse) | |
text \<open> | |
The position in the enumerated universe determines the order. | |
\<close> | |
abbreviation enum_pos_less_eq :: "'a::enum \<Rightarrow> 'a \<Rightarrow> bool" where "enum_pos_less_eq x y \<equiv> (enum_pos x \<le> enum_pos y)" | |
abbreviation enum_pos_less :: "'a::enum \<Rightarrow> 'a \<Rightarrow> bool" where "enum_pos_less x y \<equiv> (enum_pos x < enum_pos y)" | |
sublocale enum < enum_order: order where less_eq = "\<lambda>x y . enum_pos_less_eq x y" and less = "\<lambda>x y . enum_pos x < enum_pos y" | |
apply unfold_locales | |
by auto | |
text \<open> | |
Based on this, a lexicographic order is defined on pairs, which represent locations in a matrix. | |
\<close> | |
abbreviation enum_lex_less :: "'a::enum \<times> 'a \<Rightarrow> 'a \<times> 'a \<Rightarrow> bool" where "enum_lex_less \<equiv> (\<lambda>(i,j) (k,l) . enum_pos_less i k \<or> (i = k \<and> enum_pos_less j l))" | |
abbreviation enum_lex_less_eq :: "'a::enum \<times> 'a \<Rightarrow> 'a \<times> 'a \<Rightarrow> bool" where "enum_lex_less_eq \<equiv> (\<lambda>(i,j) (k,l) . enum_pos_less i k \<or> (i = k \<and> enum_pos_less_eq j l))" | |
text \<open> | |
The $m$-operation determines the location of the non-$\bot$ minimum element which is first in the lexicographic order. | |
The result is returned as a regular matrix with $\top$ at that location and $\bot$ everywhere else. | |
In the weighted-graph model, this represents a single unweighted edge of the graph. | |
\<close> | |
definition minarc_matrix :: "('a::enum,'b::{bot,ord,plus,top}) square \<Rightarrow> ('a,'b) square" ("minarc\<^sub>M _" [80] 80) where "minarc_matrix f = (\<lambda>e . if f e \<noteq> bot \<and> (\<forall>d . (f d \<noteq> bot \<longrightarrow> (f e + bot \<le> f d + bot \<and> (enum_lex_less d e \<longrightarrow> f e + bot \<noteq> f d + bot)))) then top else bot)" | |
lemma minarc_at_most_one: | |
fixes f :: "('a::enum,'b::{aggregation_order,top}) square" | |
assumes "(minarc\<^sub>M f) e \<noteq> bot" | |
and "(minarc\<^sub>M f) d \<noteq> bot" | |
shows "e = d" | |
proof - | |
have 1: "f e + bot \<le> f d + bot" | |
by (metis assms minarc_matrix_def) | |
have "f d + bot \<le> f e + bot" | |
by (metis assms minarc_matrix_def) | |
hence "f e + bot = f d + bot" | |
using 1 by simp | |
hence "\<not> enum_lex_less d e \<and> \<not> enum_lex_less e d" | |
using assms by (unfold minarc_matrix_def) (metis (lifting)) | |
thus ?thesis | |
using enum_pos_injective less_linear by auto | |
qed | |
subsection \<open>Linear Aggregation Lattices\<close> | |
text \<open> | |
We now assume that the aggregation order is linear and forms a bounded lattice. | |
It follows that these structures are aggregation lattices. | |
A linear order on matrix entries is necessary to obtain a unique minimum entry. | |
\<close> | |
class linear_aggregation_lattice = linear_bounded_lattice + aggregation_order | |
begin | |
subclass aggregation_lattice | |
apply unfold_locales | |
by (metis add_commute sup_inf_selective) | |
sublocale heyting: bounded_heyting_lattice where implies = "\<lambda>x y . if x \<le> y then top else y" | |
apply unfold_locales | |
by (simp add: inf_less_eq) | |
end | |
text \<open> | |
Every non-empty set with a transitive total relation has a least element with respect to this relation. | |
\<close> | |
lemma least_order: | |
assumes transitive: "\<forall>x y z . le x y \<and> le y z \<longrightarrow> le x z" | |
and total: "\<forall>x y . le x y \<or> le y x" | |
shows "finite A \<Longrightarrow> A \<noteq> {} \<Longrightarrow> \<exists>x . x \<in> A \<and> (\<forall>y . y \<in> A \<longrightarrow> le x y)" | |
proof (induct A rule: finite_ne_induct) | |
case singleton | |
thus ?case | |
using total by auto | |
next | |
case insert | |
thus ?case | |
by (metis insert_iff transitive total) | |
qed | |
lemma minarc_at_least_one: | |
fixes f :: "('a::enum,'b::linear_aggregation_lattice) square" | |
assumes "f \<noteq> mbot" | |
shows "\<exists>e . (minarc\<^sub>M f) e = top" | |
proof - | |
let ?nbe = "{ (e,f e) | e . f e \<noteq> bot }" | |
have 1: "finite ?nbe" | |
using finite_code finite_image_set by blast | |
have 2: "?nbe \<noteq> {}" | |
using assms agg_matrix_bot by fastforce | |
let ?le = "\<lambda>(e::'a \<times> 'a,fe::'b) (d::'a \<times> 'a,fd) . fe + bot \<le> fd + bot" | |
have 3: "\<forall>x y z . ?le x y \<and> ?le y z \<longrightarrow> ?le x z" | |
by auto | |
have 4: "\<forall>x y . ?le x y \<or> ?le y x" | |
by (simp add: linear) | |
have "\<exists>x . x \<in> ?nbe \<and> (\<forall>y . y \<in> ?nbe \<longrightarrow> ?le x y)" | |
by (rule least_order, rule 3, rule 4, rule 1, rule 2) | |
then obtain e fe where 5: "(e,fe) \<in> ?nbe \<and> (\<forall>y . y \<in> ?nbe \<longrightarrow> ?le (e,fe) y)" | |
by auto | |
let ?me = "{ e . f e \<noteq> bot \<and> f e + bot = fe + bot }" | |
have 6: "finite ?me" | |
using finite_code finite_image_set by blast | |
have 7: "?me \<noteq> {}" | |
using 5 by auto | |
have 8: "\<forall>x y z . enum_lex_less_eq x y \<and> enum_lex_less_eq y z \<longrightarrow> enum_lex_less_eq x z" | |
by auto | |
have 9: "\<forall>x y . enum_lex_less_eq x y \<or> enum_lex_less_eq y x" | |
by auto | |
have "\<exists>x . x \<in> ?me \<and> (\<forall>y . y \<in> ?me \<longrightarrow> enum_lex_less_eq x y)" | |
by (rule least_order, rule 8, rule 9, rule 6, rule 7) | |
then obtain m where 10: "m \<in> ?me \<and> (\<forall>y . y \<in> ?me \<longrightarrow> enum_lex_less_eq m y)" | |
by auto | |
have 11: "f m \<noteq> bot" | |
using 10 5 by auto | |
have 12: "\<forall>d. f d \<noteq> bot \<longrightarrow> f m + bot \<le> f d + bot" | |
using 10 5 by simp | |
have "\<forall>d. f d \<noteq> bot \<and> enum_lex_less d m \<longrightarrow> f m + bot \<noteq> f d + bot" | |
using 10 by fastforce | |
hence "(minarc\<^sub>M f) m = top" | |
using 11 12 by (simp add: minarc_matrix_def) | |
thus ?thesis | |
by blast | |
qed | |
text \<open> | |
Linear aggregation lattices form a Stone relation algebra by reusing the meet operation as composition, using identity as converse and a standard implementation of pseudocomplement. | |
\<close> | |
class linear_aggregation_algebra = linear_aggregation_lattice + uminus + one + times + conv + | |
assumes uminus_def_2 [simp]: "-x = (if x = bot then top else bot)" | |
assumes one_def_2 [simp]: "1 = top" | |
assumes times_def_2 [simp]: "x * y = x \<sqinter> y" | |
assumes conv_def_2 [simp]: "x\<^sup>T = x" | |
begin | |
subclass aggregation_algebra | |
apply unfold_locales | |
using inf_dense by auto | |
lemma regular_bot_top_2: | |
"regular x \<longleftrightarrow> x = bot \<or> x = top" | |
by simp | |
sublocale heyting: heyting_stone_algebra where implies = "\<lambda>x y . if x \<le> y then top else y" | |
apply unfold_locales | |
apply (simp add: order.antisym) | |
by auto | |
end | |
text \<open> | |
We show that matrices over linear aggregation lattices form an m-algebra using the above operations. | |
\<close> | |
interpretation agg_square_m_algebra: m_algebra where sup = sup_matrix and inf = inf_matrix and less_eq = less_eq_matrix and less = less_matrix and bot = "bot_matrix::('a::enum,'b::linear_aggregation_algebra) square" and top = top_matrix and uminus = uminus_matrix and one = one_matrix and times = times_matrix and conv = conv_matrix and plus = plus_matrix and sum = sum_matrix and minarc = minarc_matrix | |
proof | |
fix f :: "('a,'b) square" | |
show "minarc\<^sub>M f \<preceq> \<ominus>\<ominus>f" | |
proof (unfold less_eq_matrix_def, rule allI) | |
fix e :: "'a \<times> 'a" | |
have "(minarc\<^sub>M f) e \<le> (if f e \<noteq> bot then top else --(f e))" | |
by (simp add: minarc_matrix_def) | |
also have "... = --(f e)" | |
by simp | |
also have "... = (\<ominus>\<ominus>f) e" | |
by (simp add: uminus_matrix_def) | |
finally show "(minarc\<^sub>M f) e \<le> (\<ominus>\<ominus>f) e" | |
. | |
qed | |
next | |
fix f :: "('a,'b) square" | |
let ?at = "bounded_distrib_allegory_signature.arc mone times_matrix less_eq_matrix mtop conv_matrix" | |
show "f \<noteq> mbot \<longrightarrow> ?at (minarc\<^sub>M f)" | |
proof | |
assume 1: "f \<noteq> mbot" | |
have "minarc\<^sub>M f \<odot> mtop \<odot> (minarc\<^sub>M f \<odot> mtop)\<^sup>t = minarc\<^sub>M f \<odot> mtop \<odot> (minarc\<^sub>M f)\<^sup>t" | |
by (metis matrix_bounded_idempotent_semiring.surjective_top_closed matrix_monoid.mult_assoc matrix_stone_relation_algebra.conv_dist_comp matrix_stone_relation_algebra.conv_top) | |
also have "... \<preceq> mone" | |
proof (unfold less_eq_matrix_def, rule allI, rule prod_cases) | |
fix i j | |
have "(minarc\<^sub>M f \<odot> mtop \<odot> (minarc\<^sub>M f)\<^sup>t) (i,j) = (\<Squnion>\<^sub>l (\<Squnion>\<^sub>k (minarc\<^sub>M f) (i,k) * mtop (k,l)) * ((minarc\<^sub>M f)\<^sup>t) (l,j))" | |
by (simp add: times_matrix_def) | |
also have "... = (\<Squnion>\<^sub>l (\<Squnion>\<^sub>k (minarc\<^sub>M f) (i,k) * top) * ((minarc\<^sub>M f) (j,l))\<^sup>T)" | |
by (simp add: top_matrix_def conv_matrix_def) | |
also have "... = (\<Squnion>\<^sub>l \<Squnion>\<^sub>k (minarc\<^sub>M f) (i,k) * top * ((minarc\<^sub>M f) (j,l))\<^sup>T)" | |
by (metis comp_right_dist_sum) | |
also have "... = (\<Squnion>\<^sub>l \<Squnion>\<^sub>k if i = j \<and> l = k then (minarc\<^sub>M f) (i,k) * top * ((minarc\<^sub>M f) (j,l))\<^sup>T else bot)" | |
apply (rule sup_monoid.sum.cong) | |
apply simp | |
by (metis (no_types, lifting) comp_left_zero comp_right_zero conv_bot prod.inject minarc_at_most_one) | |
also have "... = (if i = j then (\<Squnion>\<^sub>l \<Squnion>\<^sub>k if l = k then (minarc\<^sub>M f) (i,k) * top * ((minarc\<^sub>M f) (j,l))\<^sup>T else bot) else bot)" | |
by auto | |
also have "... \<le> (if i = j then top else bot)" | |
by simp | |
also have "... = mone (i,j)" | |
by (simp add: one_matrix_def) | |
finally show "(minarc\<^sub>M f \<odot> mtop \<odot> (minarc\<^sub>M f)\<^sup>t) (i,j) \<le> mone (i,j)" | |
. | |
qed | |
finally have 2: "minarc\<^sub>M f \<odot> mtop \<odot> (minarc\<^sub>M f \<odot> mtop)\<^sup>t \<preceq> mone" | |
. | |
have 3: "mtop \<odot> (minarc\<^sub>M f \<odot> mtop) = mtop" | |
proof (rule ext, rule prod_cases) | |
fix i j | |
from minarc_at_least_one obtain ei ej where "(minarc\<^sub>M f) (ei,ej) = top" | |
using 1 by force | |
hence 4: "top * top \<le> (\<Squnion>\<^sub>l (minarc\<^sub>M f) (ei,l) * top)" | |
by (metis comp_inf.ub_sum) | |
have "top * (\<Squnion>\<^sub>l (minarc\<^sub>M f) (ei,l) * top) \<le> (\<Squnion>\<^sub>k top * (\<Squnion>\<^sub>l (minarc\<^sub>M f) (k,l) * top))" | |
by (rule comp_inf.ub_sum) | |
hence "top \<le> (\<Squnion>\<^sub>k top * (\<Squnion>\<^sub>l (minarc\<^sub>M f) (k,l) * top))" | |
using 4 by auto | |
also have "... = (\<Squnion>\<^sub>k mtop (i,k) * (\<Squnion>\<^sub>l (minarc\<^sub>M f) (k,l) * mtop (l,j)))" | |
by (simp add: top_matrix_def) | |
also have "... = (mtop \<odot> (minarc\<^sub>M f \<odot> mtop)) (i,j)" | |
by (simp add: times_matrix_def) | |
finally show "(mtop \<odot> (minarc\<^sub>M f \<odot> mtop)) (i,j) = mtop (i,j)" | |
by (simp add: eq_iff top_matrix_def) | |
qed | |
have "(minarc\<^sub>M f)\<^sup>t \<odot> mtop \<odot> ((minarc\<^sub>M f)\<^sup>t \<odot> mtop)\<^sup>t = (minarc\<^sub>M f)\<^sup>t \<odot> mtop \<odot> (minarc\<^sub>M f)" | |
by (metis matrix_stone_relation_algebra.comp_associative matrix_stone_relation_algebra.conv_dist_comp matrix_stone_relation_algebra.conv_involutive matrix_stone_relation_algebra.conv_top matrix_bounded_idempotent_semiring.surjective_top_closed) | |
also have "... \<preceq> mone" | |
proof (unfold less_eq_matrix_def, rule allI, rule prod_cases) | |
fix i j | |
have "((minarc\<^sub>M f)\<^sup>t \<odot> mtop \<odot> minarc\<^sub>M f) (i,j) = (\<Squnion>\<^sub>l (\<Squnion>\<^sub>k ((minarc\<^sub>M f)\<^sup>t) (i,k) * mtop (k,l)) * (minarc\<^sub>M f) (l,j))" | |
by (simp add: times_matrix_def) | |
also have "... = (\<Squnion>\<^sub>l (\<Squnion>\<^sub>k ((minarc\<^sub>M f) (k,i))\<^sup>T * top) * (minarc\<^sub>M f) (l,j))" | |
by (simp add: top_matrix_def conv_matrix_def) | |
also have "... = (\<Squnion>\<^sub>l \<Squnion>\<^sub>k ((minarc\<^sub>M f) (k,i))\<^sup>T * top * (minarc\<^sub>M f) (l,j))" | |
by (metis comp_right_dist_sum) | |
also have "... = (\<Squnion>\<^sub>l \<Squnion>\<^sub>k if i = j \<and> l = k then ((minarc\<^sub>M f) (k,i))\<^sup>T * top * (minarc\<^sub>M f) (l,j) else bot)" | |
apply (rule sup_monoid.sum.cong) | |
apply simp | |
by (metis (no_types, lifting) comp_left_zero comp_right_zero conv_bot prod.inject minarc_at_most_one) | |
also have "... = (if i = j then (\<Squnion>\<^sub>l \<Squnion>\<^sub>k if l = k then ((minarc\<^sub>M f) (k,i))\<^sup>T * top * (minarc\<^sub>M f) (l,j) else bot) else bot)" | |
by auto | |
also have "... \<le> (if i = j then top else bot)" | |
by simp | |
also have "... = mone (i,j)" | |
by (simp add: one_matrix_def) | |
finally show "((minarc\<^sub>M f)\<^sup>t \<odot> mtop \<odot> (minarc\<^sub>M f)) (i,j) \<le> mone (i,j)" | |
. | |
qed | |
finally have 5: "(minarc\<^sub>M f)\<^sup>t \<odot> mtop \<odot> ((minarc\<^sub>M f)\<^sup>t \<odot> mtop)\<^sup>t \<preceq> mone" | |
. | |
have "mtop \<odot> ((minarc\<^sub>M f)\<^sup>t \<odot> mtop) = mtop" | |
using 3 by (metis matrix_monoid.mult_assoc matrix_stone_relation_algebra.conv_dist_comp matrix_stone_relation_algebra.conv_top) | |
thus "?at (minarc\<^sub>M f)" | |
using 2 3 5 by blast | |
qed | |
next | |
fix f g :: "('a,'b) square" | |
let ?at = "bounded_distrib_allegory_signature.arc mone times_matrix less_eq_matrix mtop conv_matrix" | |
show "?at g \<and> g \<otimes> f \<noteq> mbot \<longrightarrow> sum\<^sub>M (minarc\<^sub>M f \<otimes> f) \<preceq> sum\<^sub>M (g \<otimes> f)" | |
proof | |
assume 1: "?at g \<and> g \<otimes> f \<noteq> mbot" | |
hence 2: "g = \<ominus>\<ominus>g" | |
using matrix_stone_relation_algebra.arc_regular by blast | |
show "sum\<^sub>M (minarc\<^sub>M f \<otimes> f) \<preceq> sum\<^sub>M (g \<otimes> f)" | |
proof (unfold less_eq_matrix_def, rule allI, rule prod_cases) | |
fix i j | |
from minarc_at_least_one obtain ei ej where 3: "(minarc\<^sub>M f) (ei,ej) = top" | |
using 1 by force | |
hence 4: "\<forall>k l . \<not>(k = ei \<and> l = ej) \<longrightarrow> (minarc\<^sub>M f) (k,l) = bot" | |
by (metis (mono_tags, opaque_lifting) bot.extremum inf.bot_unique prod.inject minarc_at_most_one) | |
from agg_matrix_bot obtain di dj where 5: "(g \<otimes> f) (di,dj) \<noteq> bot" | |
using 1 by force | |
hence 6: "g (di,dj) \<noteq> bot" | |
by (metis inf_bot_left inf_matrix_def) | |
hence 7: "g (di,dj) = top" | |
using 2 by (metis uminus_matrix_def uminus_def) | |
hence 8: "(g \<otimes> f) (di,dj) = f (di,dj)" | |
by (metis inf_matrix_def inf_top.left_neutral) | |
have 9: "\<forall>k l . k \<noteq> di \<longrightarrow> g (k,l) = bot" | |
proof (intro allI, rule impI) | |
fix k l | |
assume 10: "k \<noteq> di" | |
have "top * (g (k,l))\<^sup>T = g (di,dj) * top * (g\<^sup>t) (l,k)" | |
using 7 by (simp add: conv_matrix_def) | |
also have "... \<le> (\<Squnion>\<^sub>n g (di,n) * top) * (g\<^sup>t) (l,k)" | |
by (metis comp_inf.ub_sum comp_right_dist_sum) | |
also have "... \<le> (\<Squnion>\<^sub>m (\<Squnion>\<^sub>n g (di,n) * top) * (g\<^sup>t) (m,k))" | |
by (metis comp_inf.ub_sum) | |
also have "... = (g \<odot> mtop \<odot> g\<^sup>t) (di,k)" | |
by (simp add: times_matrix_def top_matrix_def) | |
also have "... \<le> mone (di,k)" | |
using 1 by (metis matrix_stone_relation_algebra.arc_expanded less_eq_matrix_def) | |
also have "... = bot" | |
apply (unfold one_matrix_def) | |
using 10 by auto | |
finally have "g (k,l) \<noteq> top" | |
using 5 by (metis bot.extremum conv_def inf.bot_unique mult.left_neutral one_def) | |
thus "g (k,l) = bot" | |
using 2 by (metis uminus_def uminus_matrix_def) | |
qed | |
have "\<forall>k l . l \<noteq> dj \<longrightarrow> g (k,l) = bot" | |
proof (intro allI, rule impI) | |
fix k l | |
assume 11: "l \<noteq> dj" | |
have "(g (k,l))\<^sup>T * top = (g\<^sup>t) (l,k) * top * g (di,dj)" | |
using 7 by (simp add: comp_associative conv_matrix_def) | |
also have "... \<le> (\<Squnion>\<^sub>n (g\<^sup>t) (l,n) * top) * g (di,dj)" | |
by (metis comp_inf.ub_sum comp_right_dist_sum) | |
also have "... \<le> (\<Squnion>\<^sub>m (\<Squnion>\<^sub>n (g\<^sup>t) (l,n) * top) * g (m,dj))" | |
by (metis comp_inf.ub_sum) | |
also have "... = (g\<^sup>t \<odot> mtop \<odot> g) (l,dj)" | |
by (simp add: times_matrix_def top_matrix_def) | |
also have "... \<le> mone (l,dj)" | |
using 1 by (metis matrix_stone_relation_algebra.arc_expanded less_eq_matrix_def) | |
also have "... = bot" | |
apply (unfold one_matrix_def) | |
using 11 by auto | |
finally have "g (k,l) \<noteq> top" | |
using 5 by (metis bot.extremum comp_right_one conv_def one_def top.extremum_unique) | |
thus "g (k,l) = bot" | |
using 2 by (metis uminus_def uminus_matrix_def) | |
qed | |
hence 12: "\<forall>k l . \<not>(k = di \<and> l = dj) \<longrightarrow> (g \<otimes> f) (k,l) = bot" | |
using 9 by (metis inf_bot_left inf_matrix_def) | |
have "(\<Sum>\<^sub>k \<Sum>\<^sub>l (minarc\<^sub>M f \<otimes> f) (k,l)) = (\<Sum>\<^sub>k \<Sum>\<^sub>l if k = ei \<and> l = ej then (minarc\<^sub>M f \<otimes> f) (k,l) else (minarc\<^sub>M f \<otimes> f) (k,l))" | |
by simp | |
also have "... = (\<Sum>\<^sub>k \<Sum>\<^sub>l if k = ei \<and> l = ej then (minarc\<^sub>M f \<otimes> f) (k,l) else (minarc\<^sub>M f) (k,l) \<sqinter> f (k,l))" | |
by (unfold inf_matrix_def) simp | |
also have "... = (\<Sum>\<^sub>k \<Sum>\<^sub>l if k = ei \<and> l = ej then (minarc\<^sub>M f \<otimes> f) (k,l) else bot)" | |
apply (rule aggregation.sum_0.cong) | |
apply simp | |
using 4 by (metis inf_bot_left) | |
also have "... = (minarc\<^sub>M f \<otimes> f) (ei,ej) + bot" | |
by (unfold agg_delta_2) simp | |
also have "... = f (ei,ej) + bot" | |
using 3 by (simp add: inf_matrix_def) | |
also have "... \<le> (g \<otimes> f) (di,dj) + bot" | |
using 3 5 6 7 8 by (metis minarc_matrix_def) | |
also have "... = (\<Sum>\<^sub>k \<Sum>\<^sub>l if k = di \<and> l = dj then (g \<otimes> f) (k,l) else bot)" | |
by (unfold agg_delta_2) simp | |
also have "... = (\<Sum>\<^sub>k \<Sum>\<^sub>l if k = di \<and> l = dj then (g \<otimes> f) (k,l) else (g \<otimes> f) (k,l))" | |
apply (rule aggregation.sum_0.cong) | |
apply simp | |
using 12 by metis | |
also have "... = (\<Sum>\<^sub>k \<Sum>\<^sub>l (g \<otimes> f) (k,l))" | |
by simp | |
finally show "(sum\<^sub>M (minarc\<^sub>M f \<otimes> f)) (i,j) \<le> (sum\<^sub>M (g \<otimes> f)) (i,j)" | |
by (simp add: sum_matrix_def) | |
qed | |
qed | |
next | |
fix f g :: "('a,'b) square" | |
let ?h = "hd enum_class.enum" | |
show "sum\<^sub>M f \<preceq> sum\<^sub>M g \<or> sum\<^sub>M g \<preceq> sum\<^sub>M f" | |
proof (cases "(sum\<^sub>M f) (?h,?h) \<le> (sum\<^sub>M g) (?h,?h)") | |
case 1: True | |
have "sum\<^sub>M f \<preceq> sum\<^sub>M g" | |
apply (unfold less_eq_matrix_def, rule allI, rule prod_cases) | |
using 1 by (unfold sum_matrix_def) auto | |
thus ?thesis | |
by simp | |
next | |
case False | |
hence 2: "(sum\<^sub>M g) (?h,?h) \<le> (sum\<^sub>M f) (?h,?h)" | |
by (simp add: linear) | |
have "sum\<^sub>M g \<preceq> sum\<^sub>M f" | |
apply (unfold less_eq_matrix_def, rule allI, rule prod_cases) | |
using 2 by (unfold sum_matrix_def) auto | |
thus ?thesis | |
by simp | |
qed | |
next | |
have "finite { f :: ('a,'b) square . (\<forall>e . regular (f e)) }" | |
by (unfold regular_bot_top_2, rule finite_set_of_finite_funs_pred) auto | |
thus "finite { f :: ('a,'b) square . matrix_p_algebra.regular f }" | |
by (unfold uminus_matrix_def) meson | |
qed | |
text \<open> | |
We show the same for the alternative implementation that stores the result of aggregation in all elements of the matrix. | |
\<close> | |
interpretation agg_square_m_algebra_2: m_algebra where sup = sup_matrix and inf = inf_matrix and less_eq = less_eq_matrix and less = less_matrix and bot = "bot_matrix::('a::enum,'b::linear_aggregation_algebra) square" and top = top_matrix and uminus = uminus_matrix and one = one_matrix and times = times_matrix and conv = conv_matrix and plus = plus_matrix and sum = sum_matrix_2 and minarc = minarc_matrix | |
proof | |
fix f :: "('a,'b) square" | |
show "minarc\<^sub>M f \<preceq> \<ominus>\<ominus>f" | |
by (simp add: agg_square_m_algebra.minarc_below) | |
next | |
fix f :: "('a,'b) square" | |
let ?at = "bounded_distrib_allegory_signature.arc mone times_matrix less_eq_matrix mtop conv_matrix" | |
show "f \<noteq> mbot \<longrightarrow> ?at (minarc\<^sub>M f)" | |
by (simp add: agg_square_m_algebra.minarc_arc) | |
next | |
fix f g :: "('a,'b) square" | |
let ?at = "bounded_distrib_allegory_signature.arc mone times_matrix less_eq_matrix mtop conv_matrix" | |
show "?at g \<and> g \<otimes> f \<noteq> mbot \<longrightarrow> sum2\<^sub>M (minarc\<^sub>M f \<otimes> f) \<preceq> sum2\<^sub>M (g \<otimes> f)" | |
proof | |
let ?h = "hd enum_class.enum" | |
assume "?at g \<and> g \<otimes> f \<noteq> mbot" | |
hence "sum\<^sub>M (minarc\<^sub>M f \<otimes> f) \<preceq> sum\<^sub>M (g \<otimes> f)" | |
by (simp add: agg_square_m_algebra.minarc_min) | |
hence "(sum\<^sub>M (minarc\<^sub>M f \<otimes> f)) (?h,?h) \<le> (sum\<^sub>M (g \<otimes> f)) (?h,?h)" | |
by (simp add: less_eq_matrix_def) | |
thus "sum2\<^sub>M (minarc\<^sub>M f \<otimes> f) \<preceq> sum2\<^sub>M (g \<otimes> f)" | |
by (simp add: sum_matrix_def sum_matrix_2_def less_eq_matrix_def) | |
qed | |
next | |
fix f g :: "('a,'b) square" | |
let ?h = "hd enum_class.enum" | |
have "sum\<^sub>M f \<preceq> sum\<^sub>M g \<or> sum\<^sub>M g \<preceq> sum\<^sub>M f" | |
by (simp add: agg_square_m_algebra.sum_linear) | |
hence "(sum\<^sub>M f) (?h,?h) \<le> (sum\<^sub>M g) (?h,?h) \<or> (sum\<^sub>M g) (?h,?h) \<le> (sum\<^sub>M f) (?h,?h)" | |
using less_eq_matrix_def by auto | |
thus "sum2\<^sub>M f \<preceq> sum2\<^sub>M g \<or> sum2\<^sub>M g \<preceq> sum2\<^sub>M f" | |
by (simp add: sum_matrix_def sum_matrix_2_def less_eq_matrix_def) | |
next | |
show "finite { f :: ('a,'b) square . matrix_p_algebra.regular f }" | |
by (simp add: agg_square_m_algebra.finite_regular) | |
qed | |
text \<open> | |
By defining the Kleene star as $\top$ aggregation lattices form a Kleene algebra. | |
\<close> | |
class aggregation_kleene_algebra = aggregation_algebra + star + | |
assumes star_def [simp]: "x\<^sup>\<star> = top" | |
begin | |
subclass stone_kleene_relation_algebra | |
apply unfold_locales | |
by (simp_all add: inf.assoc le_infI2 inf_sup_distrib1 inf_sup_distrib2) | |
end | |
class linear_aggregation_kleene_algebra = linear_aggregation_algebra + star + | |
assumes star_def_2 [simp]: "x\<^sup>\<star> = top" | |
begin | |
subclass aggregation_kleene_algebra | |
apply unfold_locales | |
by simp | |
end | |
interpretation agg_square_m_kleene_algebra: m_kleene_algebra where sup = sup_matrix and inf = inf_matrix and less_eq = less_eq_matrix and less = less_matrix and bot = "bot_matrix::('a::enum,'b::linear_aggregation_kleene_algebra) square" and top = top_matrix and uminus = uminus_matrix and one = one_matrix and times = times_matrix and conv = conv_matrix and star = star_matrix and plus = plus_matrix and sum = sum_matrix and minarc = minarc_matrix .. | |
interpretation agg_square_m_kleene_algebra_2: m_kleene_algebra where sup = sup_matrix and inf = inf_matrix and less_eq = less_eq_matrix and less = less_matrix and bot = "bot_matrix::('a::enum,'b::linear_aggregation_kleene_algebra) square" and top = top_matrix and uminus = uminus_matrix and one = one_matrix and times = times_matrix and conv = conv_matrix and star = star_matrix and plus = plus_matrix and sum = sum_matrix_2 and minarc = minarc_matrix .. | |
end | |