Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
theory Polygon | |
imports Counterclockwise_2D_Strict | |
begin | |
subsection \<open>Polygonal chains\<close> | |
definition "polychain xs = (\<forall>i. Suc i<length xs \<longrightarrow> snd (xs ! i) = (fst (xs ! Suc i)))" | |
lemma polychainI: | |
assumes "\<And>i. Suc i < length xs \<Longrightarrow> snd (xs ! i) = fst (xs ! Suc i)" | |
shows "polychain xs" | |
by (auto intro!: assms simp: polychain_def) | |
lemma polychain_Nil[simp]: "polychain [] = True" | |
and polychain_singleton[simp]: "polychain [x] = True" | |
by (auto simp: polychain_def) | |
lemma polychain_Cons: | |
"polychain (y # ys) = (if ys = [] then True else snd y = fst (ys ! 0) \<and> polychain ys)" | |
by (auto simp: polychain_def nth_Cons split: nat.split) | |
lemma polychain_appendI: | |
"polychain xs \<Longrightarrow> polychain ys \<Longrightarrow> (xs \<noteq> [] \<Longrightarrow> ys \<noteq> [] \<Longrightarrow> snd (last xs) = fst (hd ys)) \<Longrightarrow> | |
polychain (xs @ ys)" | |
by (induct xs arbitrary: ys) | |
(auto simp add: polychain_Cons nth_append hd_conv_nth split: if_split_asm) | |
fun pairself where "pairself f (x, y) = (f x, f y)" | |
lemma pairself_apply: "pairself f x = (f (fst x), f (snd x))" | |
by (cases x, simp) | |
lemma polychain_map_pairself: "polychain xs \<Longrightarrow> polychain (map (pairself f) xs)" | |
by (auto simp: polychain_def pairself_apply) | |
definition "convex_polychain xs \<longleftrightarrow> | |
(polychain xs \<and> | |
(\<forall>i. Suc i < length xs \<longrightarrow> det3 (fst (xs ! i)) (snd (xs ! i)) (snd (xs ! Suc i)) > 0))" | |
lemma convex_polychain_Cons2[simp]: | |
"convex_polychain (x#y#zs) \<longleftrightarrow> | |
snd x = fst y \<and> det3 (fst x) (fst y) (snd y) > 0 \<and> convex_polychain (y#zs)" | |
by (auto simp add: convex_polychain_def polychain_def nth_Cons split: nat.split) | |
lemma convex_polychain_ConsD: | |
assumes "convex_polychain (x#xs)" | |
shows "convex_polychain xs" | |
using assms by (auto simp: convex_polychain_def polychain_def nth_Cons split: nat.split) | |
definition | |
"convex_polygon xs \<longleftrightarrow> (convex_polychain xs \<and> (xs \<noteq> [] \<longrightarrow> fst (hd xs) = snd (last xs)))" | |
lemma convex_polychain_Nil[simp]: "convex_polychain [] = True" | |
and convex_polychain_Cons[simp]: "convex_polychain [x] = True" | |
by (auto simp: convex_polychain_def) | |
lemma convex_polygon_Cons2[simp]: | |
"convex_polygon (x#y#zs) \<longleftrightarrow> fst x = snd (last (y#zs)) \<and> convex_polychain (x#y#zs)" | |
by (auto simp: convex_polygon_def convex_polychain_def polychain_def nth_Cons) | |
lemma polychain_append_connected: | |
"polychain (xs @ ys) \<Longrightarrow> xs \<noteq> [] \<Longrightarrow> ys \<noteq> [] \<Longrightarrow> fst (hd ys) = snd (last xs)" | |
by (auto simp: convex_polychain_def nth_append not_less polychain_def last_conv_nth hd_conv_nth | |
dest!: spec[where x = "length xs - 1"]) | |
lemma convex_polychain_appendI: | |
assumes cxs: "convex_polychain xs" | |
assumes cys: "convex_polychain ys" | |
assumes pxy: "polychain (xs @ ys)" | |
assumes "xs \<noteq> [] \<Longrightarrow> ys \<noteq> [] \<Longrightarrow> det3 (fst (last xs)) (snd (last xs)) (snd (hd ys)) > 0" | |
shows "convex_polychain (xs @ ys)" | |
proof - | |
{ | |
fix i | |
assume "i < length xs" "length xs \<le> Suc i" "Suc i < length xs + length ys" | |
hence "xs \<noteq> []" "ys \<noteq> []" "i = length xs - 1" by auto | |
} | |
thus ?thesis | |
using assms | |
by (auto simp: hd_conv_nth convex_polychain_def nth_append Suc_diff_le last_conv_nth ) | |
qed | |
lemma convex_polychainI: | |
assumes "polychain xs" | |
assumes "\<And>i. Suc i < length xs \<Longrightarrow> det3 (fst (xs ! i)) (snd (xs ! i)) (snd (xs ! Suc i)) > 0" | |
shows "convex_polychain xs" | |
by (auto intro!: assms simp: convex_polychain_def ccw'_def) | |
lemma convex_polygon_skip: | |
assumes "convex_polygon (x # y # z # w # ws)" | |
assumes "ccw'.sortedP (fst x) (map snd (butlast (x # y # z # w # ws)))" | |
shows "convex_polygon ((fst x, snd y) # z # w # ws)" | |
using assms by (auto elim!: ccw'.sortedP_Cons simp: ccw'_def[symmetric]) | |
primrec polychain_of::"'a::ab_group_add \<Rightarrow> 'a list \<Rightarrow> ('a*'a) list" where | |
"polychain_of xc [] = []" | |
| "polychain_of xc (xm#xs) = (xc, xc + xm)#polychain_of (xc + xm) xs" | |
lemma in_set_polychain_ofD: "ab \<in> set (polychain_of x xs) \<Longrightarrow> (snd ab - fst ab) \<in> set xs" | |
by (induct xs arbitrary: x) auto | |
lemma fst_polychain_of_nth_0[simp]: "xs \<noteq> [] \<Longrightarrow> fst ((polychain_of p xs) ! 0) = p" | |
by (cases xs) (auto simp: Let_def) | |
lemma fst_hd_polychain_of: "xs \<noteq> [] \<Longrightarrow> fst (hd (polychain_of x xs)) = x" | |
by (cases xs) (auto simp: ) | |
lemma length_polychain_of_eq[simp]: | |
shows "length (polychain_of p qs) = length qs" | |
by (induct qs arbitrary: p) simp_all | |
lemma | |
polychain_of_subsequent_eq: | |
assumes "Suc i < length qs" | |
shows "snd (polychain_of p qs ! i) = fst (polychain_of p qs ! Suc i)" | |
using assms | |
by (induct qs arbitrary: p i) (auto simp add: nth_Cons split: nat.split) | |
lemma polychain_of_eq_empty_iff[simp]: "polychain_of p xs = [] \<longleftrightarrow> xs = []" | |
by (cases xs) (auto simp: Let_def) | |
lemma in_set_polychain_of_imp_sum_list: | |
assumes "z \<in> set (polychain_of Pc Ps)" | |
obtains d where "z = (Pc + sum_list (take d Ps), Pc + sum_list (take (Suc d) Ps))" | |
using assms | |
apply atomize_elim | |
proof (induction Ps arbitrary: Pc z) | |
case Nil thus ?case by simp | |
next | |
case (Cons P Ps) | |
hence "z = (Pc, Pc + P) \<or> z \<in> set (polychain_of (Pc + P) Ps)" | |
by auto | |
thus ?case | |
proof | |
assume "z \<in> set ((polychain_of (Pc + P) Ps))" | |
from Cons.IH[OF this] | |
obtain d | |
where "z = (Pc + P + sum_list (take d Ps), Pc + P + sum_list (take (Suc d) Ps))" | |
by auto | |
thus ?case | |
by (auto intro!: exI[where x="Suc d"]) | |
qed (auto intro!: exI[where x=0]) | |
qed | |
lemma last_polychain_of: "length xs > 0 \<Longrightarrow> snd (last (polychain_of p xs)) = p + sum_list xs" | |
by (induct xs arbitrary: p) simp_all | |
lemma polychain_of_singleton_iff: "polychain_of p xs = [a] \<longleftrightarrow> fst a = p \<and> xs = [(snd a - p)]" | |
by (induct xs) auto | |
lemma polychain_of_add: "polychain_of (x + y) xs = map (((+) (y, y))) (polychain_of x xs)" | |
by (induct xs arbitrary: x y) (auto simp: algebra_simps) | |
subsection \<open>Dirvec: Inverse of Polychain\<close> | |
primrec dirvec where "dirvec (x, y) = (y - x)" | |
lemma dirvec_minus: "dirvec x = snd x - fst x" | |
by (cases x) simp | |
lemma dirvec_nth_polychain_of: "n < length xs \<Longrightarrow> dirvec ((polychain_of p xs) ! n ) = (xs ! n)" | |
by (induct xs arbitrary: p n) (auto simp: nth_Cons split: nat.split) | |
lemma dirvec_hd_polychain_of: "xs \<noteq> [] \<Longrightarrow> dirvec (hd (polychain_of p xs)) = (hd xs)" | |
by (simp add: hd_conv_nth dirvec_nth_polychain_of) | |
lemma dirvec_last_polychain_of: "xs \<noteq> [] \<Longrightarrow> dirvec (last (polychain_of p xs)) = (last xs)" | |
by (simp add: last_conv_nth dirvec_nth_polychain_of) | |
lemma map_dirvec_polychain_of[simp]: "map dirvec (polychain_of x xs) = xs" | |
by (induct xs arbitrary: x) simp_all | |
subsection \<open>Polychain of Sorted (@{term polychain_of}, @{term ccw'.sortedP})\<close> | |
lemma ccw'_sortedP_translateD: | |
"linorder_list0.sortedP (ccw' x0) (map ((+) x \<circ> g) xs) \<Longrightarrow> | |
linorder_list0.sortedP (ccw' (x0 - x)) (map g xs)" | |
proof (induct xs arbitrary: x0 x) | |
case Nil thus ?case by (auto simp: linorder_list0.sortedP.Nil) | |
next | |
case (Cons a xs x0 x) | |
hence "\<forall>y\<in>set xs. ccw' (x0 - x) (g a) (g y)" | |
by (auto elim!: linorder_list0.sortedP_Cons simp: ccw'.translate_origin algebra_simps) | |
thus ?case | |
using Cons.prems(1) | |
by (auto elim!: linorder_list0.sortedP_Cons intro!: linorder_list0.sortedP.Cons simp: Cons.hyps) | |
qed | |
lemma ccw'_sortedP_translateI: | |
"linorder_list0.sortedP (ccw' (x0 - x)) (map g xs) \<Longrightarrow> | |
linorder_list0.sortedP (ccw' x0) (map ((+) x \<circ> g) xs)" | |
using ccw'_sortedP_translateD[of "x0 - x" "-x" "(+) x o g" xs] | |
by (simp add: o_def) | |
lemma ccw'_sortedP_translate_comp[simp]: | |
"linorder_list0.sortedP (ccw' x0) (map ((+) x \<circ> g) xs) \<longleftrightarrow> | |
linorder_list0.sortedP (ccw' (x0 - x)) (map g xs)" | |
by (metis ccw'_sortedP_translateD ccw'_sortedP_translateI) | |
lemma snd_plus_commute: "snd \<circ> (+) (x0, x0) = (+) x0 o snd" | |
by auto | |
lemma ccw'_sortedP_renormalize: | |
"ccw'.sortedP a (map snd (polychain_of (x0 + x) xs)) \<longleftrightarrow> | |
ccw'.sortedP (a - x0) (map snd (polychain_of x xs))" | |
by (simp add: polychain_of_add add.commute snd_plus_commute) | |
lemma ccw'_sortedP_polychain_of01: | |
shows "ccw'.sortedP 0 [u] \<Longrightarrow> ccw'.sortedP x0 (map snd (polychain_of x0 [u]))" | |
and "ccw'.sortedP 0 [] \<Longrightarrow> ccw'.sortedP x0 (map snd (polychain_of x0 []))" | |
by (auto intro!: linorder_list0.sortedP.Nil linorder_list0.sortedP.Cons simp: ac_simps) | |
lemma ccw'_sortedP_polychain_of2: | |
assumes "ccw'.sortedP 0 [u, v]" | |
shows "ccw'.sortedP x0 (map snd (polychain_of x0 [u, v]))" | |
using assms | |
by (auto intro!: linorder_list0.sortedP.Nil linorder_list0.sortedP.Cons | |
elim!: linorder_list0.sortedP_Cons simp: ac_simps ccw'.translate_origin) | |
lemma ccw'_sortedP_polychain_of3: | |
assumes "ccw'.sortedP 0 (u#v#w#xs)" | |
shows "ccw'.sortedP x0 (map snd (polychain_of x0 (u#v#w#xs)))" | |
using assms | |
proof (induct xs arbitrary: x0 u v w) | |
case Nil | |
then have *: "ccw' 0 u v" "ccw' 0 v w" "ccw' 0 u w" | |
by (auto intro!: linorder_list0.sortedP.Nil linorder_list0.sortedP.Cons | |
elim!: linorder_list0.sortedP_Cons simp: ac_simps) | |
moreover have "ccw' 0 (u + v) (u + (v + w))" | |
by (metis add.assoc ccw'.add1 ccw'.add3_self *(2-)) | |
ultimately show ?case | |
by (auto intro!: linorder_list0.sortedP.Nil linorder_list0.sortedP.Cons | |
elim!: linorder_list0.sortedP_Cons simp: ac_simps ccw'.translate_origin ccw'.add3) | |
next | |
case (Cons y ys) | |
have s1: "linorder_list0.sortedP (ccw' 0) ((u + v)#w#y#ys)" using Cons.prems | |
by (auto intro!: linorder_list0.sortedP.Nil linorder_list0.sortedP.Cons | |
elim!: linorder_list0.sortedP_Cons simp: ccw'.add1) | |
have s2: "linorder_list0.sortedP (ccw' 0) (u#(v + w)#y#ys)" using Cons.prems | |
by (auto intro!: linorder_list0.sortedP.Nil linorder_list0.sortedP.Cons | |
elim!: linorder_list0.sortedP_Cons simp: ccw'.add3 ccw'.add1) | |
have s3: "linorder_list0.sortedP (ccw' 0) (u#v#(w + y)#ys)" using Cons.prems | |
by (auto intro!: linorder_list0.sortedP.Nil linorder_list0.sortedP.Cons | |
elim!: linorder_list0.sortedP_Cons simp: ccw'.add3 ccw'.add1) | |
show ?case | |
using Cons.hyps[OF s1, of x0] Cons.hyps[OF s2, of x0] Cons.hyps[OF s3, of x0] Cons.prems | |
by (auto intro!: linorder_list0.sortedP.Nil linorder_list0.sortedP.Cons | |
elim!: linorder_list0.sortedP_Cons simp: ac_simps) | |
qed | |
lemma ccw'_sortedP_polychain_of_snd: | |
assumes "ccw'.sortedP 0 xs" | |
shows "ccw'.sortedP x0 (map snd (polychain_of x0 xs))" | |
using assms | |
by (metis ccw'_sortedP_polychain_of01 ccw'_sortedP_polychain_of2 ccw'_sortedP_polychain_of3 | |
list.exhaust) | |
lemma ccw'_sortedP_implies_distinct: | |
assumes "ccw'.sortedP x qs" | |
shows "distinct qs" | |
using assms | |
proof induct | |
case Cons thus ?case by (meson ccw'_contra distinct.simps(2)) | |
qed simp | |
lemma ccw'_sortedP_implies_nonaligned: | |
assumes "ccw'.sortedP x qs" | |
assumes "y \<in> set qs" "z \<in> set qs" "y \<noteq> z" | |
shows "\<not> coll x y z" | |
using assms | |
by induct (force simp: ccw'_def det3_def' algebra_simps)+ | |
lemma list_all_mp: "list_all P xs \<Longrightarrow> (\<And>x. x \<in> set xs \<Longrightarrow> P x \<Longrightarrow> Q x) \<Longrightarrow> list_all Q xs" | |
by (auto simp: list_all_iff) | |
lemma | |
ccw'_scale_origin: | |
assumes "e \<in> UNIV \<rightarrow> {0<..<1}" | |
assumes "x \<in> set (polychain_of Pc (P # QRRs))" | |
assumes "ccw'.sortedP 0 (P # QRRs)" | |
assumes "ccw' (fst x) (snd x) (P + (Pc + (\<Sum>P\<in>set QRRs. e P *\<^sub>R P)))" | |
shows "ccw' (fst x) (snd x) (e P *\<^sub>R P + (Pc + (\<Sum>P\<in>set QRRs. e P *\<^sub>R P)))" | |
proof - | |
from assms(2) have "fst x = Pc \<and> snd x = Pc + P \<or> x \<in> set (polychain_of (Pc + P) QRRs)" by auto | |
thus ?thesis | |
proof | |
assume x: "x \<in> set (polychain_of (Pc + P) QRRs)" | |
define q where "q = snd x - fst x" | |
from Polygon.in_set_polychain_of_imp_sum_list[OF x] | |
obtain d where d: "fst x = (Pc + P + sum_list (take d QRRs))" by (auto simp: prod_eq_iff) | |
from in_set_polychain_ofD[OF x] | |
have q_in: "q \<in> set QRRs" by (simp add: q_def) | |
define R where "R = set QRRs - {q}" | |
hence QRRs: "set QRRs = R \<union> {q}" "q \<notin> R" "finite R" using q_in by auto | |
have "ccw' 0 q (-P)" | |
using assms(3) | |
by (auto simp: ccw'.sortedP_Cons_iff q_in) | |
hence "ccw' 0 q ((1 - e P) *\<^sub>R (-P))" | |
using assms(1) by (subst ccw'.scaleR2_eq) (auto simp: algebra_simps) | |
moreover | |
from assms(4) have "ccw' 0 q ((\<Sum>P\<in>set QRRs. e P *\<^sub>R P) - sum_list (take d QRRs))" | |
by (auto simp: q_def ccw'.translate_origin d) | |
ultimately | |
have "ccw' 0 q ((1 - e P) *\<^sub>R (-P) + ((\<Sum>P\<in>set QRRs. e P *\<^sub>R P) - sum_list (take d QRRs)))" | |
by (intro ccw'.add3) auto | |
thus ?thesis | |
by (auto simp: ccw'.translate_origin q_def algebra_simps d) | |
qed (metis (no_types, lifting) add.left_commute assms(4) ccw'.add3_self ccw'.scale_add3 | |
ccw'.translate) | |
qed | |
lemma polychain_of_ccw_convex: | |
assumes "e \<in> UNIV \<rightarrow> {0 <..< 1}" | |
assumes sorted: "linorder_list0.sortedP (ccw' 0) (P#Q#Ps)" | |
shows "list_all | |
(\<lambda>(xi, xj). ccw' xi xj (Pc + (\<Sum>P \<in> set (P#Q#Ps). e P *\<^sub>R P))) | |
(polychain_of Pc (P#Q#Ps))" | |
using assms(1) assms(2) | |
proof (induct Ps arbitrary: P Q Pc) | |
case Nil | |
have eq: "e P *\<^sub>R P + e Q *\<^sub>R Q - P = (1 - e P) *\<^sub>R (- P) + e Q *\<^sub>R Q" | |
using \<open>e \<in> _\<close> | |
by (auto simp add: algebra_simps) | |
from Nil ccw'_sortedP_implies_distinct[OF Nil(2)] | |
have "P \<noteq> Q" "e P < 1" "0 < e Q" "ccw' 0 P Q" | |
by (auto elim!: linorder_list0.sortedP_Cons) | |
thus ?case | |
by (auto simp: ccw'_not_coll ccw'.translate_origin eq) | |
next | |
case (Cons R Rs) | |
hence "ccw' 0 P Q" "P \<noteq> Q" using ccw'_sortedP_implies_distinct[OF Cons(3)] | |
by (auto elim!: linorder_list0.sortedP_Cons) | |
have "list_all (\<lambda>(xi, xj). ccw' xi xj ((Pc + P) + (\<Sum>P\<in>set (Q # R # Rs). e P *\<^sub>R P))) | |
(polychain_of (Pc + P) (Q # R # Rs))" | |
using Cons(2-) | |
by (intro Cons(1)) (auto elim: linorder_list0.sortedP_Cons) | |
also have "polychain_of (Pc + P) (Q # R # Rs) = tl (polychain_of Pc (P # Q # R # Rs))" | |
by simp | |
finally have "list_all (\<lambda>(xi, xj). ccw' xi xj (Pc + P + (\<Sum>P\<in>set (Q # R # Rs). e P *\<^sub>R P))) | |
(tl (polychain_of Pc (P # Q # R # Rs)))" . | |
moreover | |
have "list_all | |
(\<lambda>(xi, xj). ccw' xi xj (P + (\<Sum>P\<in>set (Q # R # Rs). e P *\<^sub>R P))) | |
(polychain_of P (Q # R # Rs))" | |
using Cons(2-) | |
by (intro Cons(1)) (auto elim: linorder_list0.sortedP_Cons) | |
have "(\<lambda>(xi, xj). ccw' xi xj (Pc + P + (\<Sum>P\<in>set (Q # R # Rs). e P *\<^sub>R P))) | |
(hd (polychain_of Pc (P # Q # R # Rs)))" | |
using ccw'_sortedP_implies_nonaligned[OF Cons(3), of P Q] | |
ccw'_sortedP_implies_nonaligned[OF Cons(3), of Q R] | |
ccw'_sortedP_implies_nonaligned[OF Cons(3), of P R] | |
Cons(2,3) | |
by (auto simp add: Pi_iff add.assoc simp del: scaleR_Pair intro!: ccw'.sum | |
elim!: linorder_list0.sortedP_Cons) | |
ultimately | |
have "list_all | |
(\<lambda>(xi, xj). ccw' xi xj (P + (Pc + (\<Sum>P\<in>set (Q # R # Rs). e P *\<^sub>R P)))) | |
(polychain_of Pc (P # Q # R # Rs))" | |
by (simp add: ac_simps) | |
hence "list_all | |
(\<lambda>(xi, xj). ccw' xi xj (e P *\<^sub>R P + (Pc + (\<Sum>P\<in>set (Q # R # Rs). e P *\<^sub>R P)))) | |
(polychain_of Pc (P # Q # R # Rs))" | |
unfolding split_beta' | |
by (rule list_all_mp, intro ccw'_scale_origin[OF assms(1)]) | |
(auto intro!: ccw'_scale_origin Cons(3)) | |
thus ?case | |
using ccw'_sortedP_implies_distinct[OF Cons(3)] Cons | |
by (simp add: ac_simps) | |
qed | |
lemma polychain_of_ccw: | |
assumes "e \<in> UNIV \<rightarrow> {0 <..< 1}" | |
assumes sorted: "ccw'.sortedP 0 qs" | |
assumes qs: "length qs \<noteq> 1" | |
shows "list_all (\<lambda>(xi, xj). ccw' xi xj (Pc + (\<Sum>P \<in> set qs. e P *\<^sub>R P))) (polychain_of Pc qs)" | |
using assms | |
proof (cases qs) | |
case (Cons Q Qs) | |
note CQ = this | |
show ?thesis using assms | |
proof (cases Qs) | |
case (Cons R Rs) | |
thus ?thesis using assms | |
unfolding CQ Cons | |
by (intro polychain_of_ccw_convex) (auto simp: CQ Cons intro!: polychain_of_ccw_convex) | |
qed (auto simp: CQ) | |
qed simp | |
lemma in_polychain_of_ccw: | |
assumes "e \<in> UNIV \<rightarrow> {0 <..< 1}" | |
assumes "ccw'.sortedP 0 qs" | |
assumes "length qs \<noteq> 1" | |
assumes "seg \<in> set (polychain_of Pc qs)" | |
shows "ccw' (fst seg) (snd seg) (Pc + (\<Sum>P \<in> set qs. e P *\<^sub>R P))" | |
using polychain_of_ccw[OF assms(1,2,3)] assms(4) | |
by (simp add: list_all_iff split_beta) | |
lemma distinct_butlast_ne_last: "distinct xs \<Longrightarrow> x \<in> set (butlast xs) \<Longrightarrow> x \<noteq> last xs" | |
by (metis append_butlast_last_id distinct_butlast empty_iff in_set_butlastD list.set(1) | |
not_distinct_conv_prefix) | |
lemma | |
ccw'_sortedP_convex_rotate_aux: | |
assumes "ccw'.sortedP 0 (zs)" "ccw'.sortedP x (map snd (polychain_of x (zs)))" | |
shows "ccw'.sortedP (snd (last (polychain_of x (zs)))) (map snd (butlast (polychain_of x (zs))))" | |
using assms | |
proof (induct zs arbitrary: x rule: list.induct) | |
case (Cons z zs) | |
{ | |
assume "zs \<noteq> []" | |
have "ccw'.sortedP (snd (last (polychain_of (x + z) zs))) | |
(map snd (butlast (polychain_of (x + z) zs)))" | |
using Cons.prems | |
by (auto elim!: ccw'.sortedP_Cons intro!: ccw'_sortedP_polychain_of_snd Cons.hyps) | |
from _ this | |
have "linorder_list0.sortedP (ccw' (snd (last (polychain_of (x + z) zs)))) | |
((x + z) # map snd (butlast (polychain_of (x + z) zs)))" | |
proof (rule ccw'.sortedP.Cons, safe) | |
fix c d | |
assume cd: "(c, d) \<in> set (map snd (butlast (polychain_of (x + z) zs)))" | |
then obtain a b where ab: "((a, b), c, d) \<in> set (butlast (polychain_of (x + z) zs))" | |
by auto | |
have cd': "(c, d) \<in> set (butlast (map snd (polychain_of (x + z) zs)))" using cd | |
by (auto simp: map_butlast) | |
have "ccw' (x + z) (c, d) (last (map snd (polychain_of (x + z) zs)))" | |
proof (rule ccw'.sortedP_right_of_last) | |
show "ccw'.sortedP (x + z) (map snd (polychain_of (x + z) zs))" | |
using Cons | |
by (force intro!: ccw'.sortedP.Cons ccw'.sortedP.Nil ccw'_sortedP_polychain_of_snd | |
elim!: ccw'.sortedP_Cons) | |
show "(c, d) \<in> set (map snd (polychain_of (x + z) zs))" | |
using in_set_butlastD[OF ab] | |
by force | |
from Cons(3) cd' | |
show "(c, d) \<noteq> last (map snd (polychain_of (x + z) zs))" | |
by (intro distinct_butlast_ne_last ccw'_sortedP_implies_distinct[where x=x]) | |
(auto elim!: ccw'.sortedP_Cons) | |
qed | |
thus "ccw' (snd (last (polychain_of (x + z) zs))) (x + z) (c, d)" | |
by (auto simp: last_map[symmetric, where f= snd] \<open>zs \<noteq> []\<close> intro: ccw'.cyclicI) | |
qed | |
} | |
thus ?case | |
by (auto simp: ccw'.sortedP.Nil) | |
qed (simp add: ccw'.sortedP.Nil) | |
lemma ccw'_polychain_of_sorted_center_last: | |
assumes set_butlast: "(c, d) \<in> set (butlast (polychain_of x0 xs))" | |
assumes sorted: "ccw'.sortedP 0 xs" | |
assumes ne: "xs \<noteq> []" | |
shows "ccw' x0 d (snd (last (polychain_of x0 xs)))" | |
proof - | |
from ccw'_sortedP_polychain_of_snd[OF sorted, of x0] | |
have "ccw'.sortedP x0 (map snd (polychain_of x0 xs))" . | |
also | |
from set_butlast obtain ys zs where "butlast (polychain_of x0 xs) = ys@((c, d)#zs)" | |
by (auto simp add: in_set_conv_decomp) | |
hence "polychain_of x0 xs = ys @ (c, d) # zs @ [last (polychain_of x0 xs)]" | |
by (metis append_Cons append_assoc append_butlast_last_id ne polychain_of_eq_empty_iff) | |
finally show ?thesis by (auto elim!: ccw'.sortedP_Cons simp: ccw'.sortedP_append_iff) | |
qed | |
end | |