Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
section \<open>Dyadic Rational Representation of Real\<close> | |
theory Float_Real | |
imports | |
"HOL-Library.Float" | |
Optimize_Float | |
begin | |
text \<open>\label{sec:floatreal}\<close> | |
code_datatype real_of_float | |
abbreviation | |
float_of_nat :: "nat \<Rightarrow> float" | |
where | |
"float_of_nat \<equiv> of_nat" | |
abbreviation | |
float_of_int :: "int \<Rightarrow> float" | |
where | |
"float_of_int \<equiv> of_int" | |
text\<open>Collapse nested embeddings\<close> | |
text \<open>Operations\<close> | |
text \<open>Undo code setup for @{term Ratreal}.\<close> | |
lemma of_rat_numeral_eq [code_abbrev]: | |
"real_of_float (numeral w) = Ratreal (numeral w)" | |
by simp | |
lemma zero_real_code [code]: | |
"0 = real_of_float 0" | |
by simp | |
lemma one_real_code [code]: | |
"1 = real_of_float 1" | |
by simp | |
lemma [code_abbrev]: | |
"(real_of_float (of_int a) :: real) = (Ratreal (Rat.of_int a) :: real)" | |
by (auto simp: Rat.of_int_def ) | |
lemma [code_abbrev]: | |
"real_of_float 0 \<equiv> Ratreal 0" | |
by simp | |
lemma [code_abbrev]: | |
"real_of_float 1 = Ratreal 1" | |
by simp | |
lemmas compute_real_of_float[code del] | |
lemmas [code del] = | |
real_equal_code | |
real_less_eq_code | |
real_less_code | |
real_plus_code | |
real_times_code | |
real_uminus_code | |
real_minus_code | |
real_inverse_code | |
real_divide_code | |
real_floor_code | |
Float.compute_truncate_down | |
Float.compute_truncate_up | |
lemma real_equal_code [code]: | |
"HOL.equal (real_of_float x) (real_of_float y) \<longleftrightarrow> HOL.equal x y" | |
by (metis (poly_guards_query) equal real_of_float_inverse) | |
abbreviation FloatR::"int\<Rightarrow>int\<Rightarrow>real" where | |
"FloatR a b \<equiv> real_of_float (Float a b)" | |
lemma real_less_eq_code' [code]: "real_of_float x \<le> real_of_float y \<longleftrightarrow> x \<le> y" | |
and real_less_code' [code]: "real_of_float x < real_of_float y \<longleftrightarrow> x < y" | |
and real_plus_code' [code]: "real_of_float x + real_of_float y = real_of_float (x + y)" | |
and real_times_code' [code]: "real_of_float x * real_of_float y = real_of_float (x * y)" | |
and real_uminus_code' [code]: "- real_of_float x = real_of_float (- x)" | |
and real_minus_code' [code]: "real_of_float x - real_of_float y = real_of_float (x - y)" | |
and real_inverse_code' [code]: "inverse (FloatR a b) = | |
(if FloatR a b = 2 then FloatR 1 (-1) else | |
if a = 1 then FloatR 1 (- b) else | |
Code.abort (STR ''inverse not of 2'') (\<lambda>_. inverse (FloatR a b)))" | |
and real_divide_code' [code]: "FloatR a b / FloatR c d = | |
(if FloatR c d = 2 then if a mod 2 = 0 then FloatR (a div 2) b else FloatR a (b - 1) else | |
if c = 1 then FloatR a (b - d) else | |
Code.abort (STR ''division not by 2'') (\<lambda>_. FloatR a b / FloatR c d))" | |
and real_floor_code' [code]: "floor (real_of_float x) = int_floor_fl x" | |
and real_abs_code' [code]: "abs (real_of_float x) = real_of_float (abs x)" | |
by (auto simp add: int_floor_fl.rep_eq powr_diff powr_minus inverse_eq_divide) | |
lemma compute_round_down[code]: "round_down prec (real_of_float f) = real_of_float (float_down prec f)" | |
by simp | |
lemma compute_round_up[code]: "round_up prec (real_of_float f) = real_of_float (float_up prec f)" | |
by simp | |
lemma compute_truncate_down[code]: | |
"truncate_down prec (real_of_float f) = real_of_float (float_round_down prec f)" | |
by (simp add: Float.float_round_down.rep_eq truncate_down_def) | |
lemma compute_truncate_up[code]: | |
"truncate_up prec (real_of_float f) = real_of_float (float_round_up prec f)" | |
by (simp add: float_round_up.rep_eq truncate_up_def) | |
lemma [code]: "real_divl p (real_of_float x) (real_of_float y) = real_of_float (float_divl p x y)" | |
by (simp add: float_divl.rep_eq real_divl_def) | |
lemma [code]: "real_divr p (real_of_float x) (real_of_float y) = real_of_float (float_divr p x y)" | |
by (simp add: float_divr.rep_eq real_divr_def) | |
lemmas [code] = real_of_float_inverse | |
end | |