Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
theory Affine_Arithmetic_Auxiliarities | |
imports "HOL-Analysis.Multivariate_Analysis" | |
begin | |
subsection \<open>@{term sum_list}\<close> | |
lemma sum_list_nth_eqI: | |
fixes xs ys::"'a::monoid_add list" | |
shows | |
"length xs = length ys \<Longrightarrow> (\<And>x y. (x, y) \<in> set (zip xs ys) \<Longrightarrow> x = y) \<Longrightarrow> | |
sum_list xs = sum_list ys" | |
by (induct xs ys rule: list_induct2) auto | |
lemma fst_sum_list: "fst (sum_list xs) = sum_list (map fst xs)" | |
by (induct xs) auto | |
lemma snd_sum_list: "snd (sum_list xs) = sum_list (map snd xs)" | |
by (induct xs) auto | |
lemma take_greater_eqI: "take c xs = take c ys \<Longrightarrow> c \<ge> a \<Longrightarrow> take a xs = take a ys" | |
proof (induct xs arbitrary: a c ys) | |
case (Cons x xs) note ICons = Cons | |
thus ?case | |
proof (cases a) | |
case (Suc b) | |
thus ?thesis using Cons(2,3) | |
proof (cases ys) | |
case (Cons z zs) | |
from ICons obtain d where c: "c = Suc d" | |
by (auto simp: Cons Suc dest!: Suc_le_D) | |
show ?thesis | |
using ICons(2,3) | |
by (auto simp: Suc Cons c intro: ICons(1)) | |
qed simp | |
qed simp | |
qed (metis le_0_eq take_eq_Nil) | |
lemma take_max_eqD: | |
"take (max a b) xs = take (max a b) ys \<Longrightarrow> take a xs = take a ys \<and> take b xs = take b ys" | |
by (metis max.cobounded1 max.cobounded2 take_greater_eqI) | |
lemma take_Suc_eq: "take (Suc n) xs = (if n < length xs then take n xs @ [xs ! n] else xs)" | |
by (auto simp: take_Suc_conv_app_nth) | |
subsection \<open>Radiant and Degree\<close> | |
definition "rad_of w = w * pi / 180" | |
definition "deg_of w = 180 * w / pi" | |
lemma rad_of_inverse[simp]: "deg_of (rad_of w) = w" | |
and deg_of_inverse[simp]: "rad_of (deg_of w) = w" | |
by (auto simp: deg_of_def rad_of_def) | |
lemma deg_of_monoI: "x \<le> y \<Longrightarrow> deg_of x \<le> deg_of y" | |
by (auto simp: deg_of_def intro!: divide_right_mono) | |
lemma rad_of_monoI: "x \<le> y \<Longrightarrow> rad_of x \<le> rad_of y" | |
by (auto simp: rad_of_def) | |
lemma deg_of_strict_monoI: "x < y \<Longrightarrow> deg_of x < deg_of y" | |
by (auto simp: deg_of_def intro!: divide_strict_right_mono) | |
lemma rad_of_strict_monoI: "x < y \<Longrightarrow> rad_of x < rad_of y" | |
by (auto simp: rad_of_def) | |
lemma deg_of_mono[simp]: "deg_of x \<le> deg_of y \<longleftrightarrow> x \<le> y" | |
using rad_of_monoI | |
by (fastforce intro!: deg_of_monoI) | |
lemma rad_of_mono[simp]: "rad_of x \<le> rad_of y \<longleftrightarrow> x \<le> y" | |
using rad_of_monoI | |
by (fastforce intro!: deg_of_monoI) | |
lemma deg_of_strict_mono[simp]: "deg_of x < deg_of y \<longleftrightarrow> x < y" | |
using rad_of_strict_monoI | |
by (fastforce intro!: deg_of_strict_monoI) | |
lemma rad_of_strict_mono[simp]: "rad_of x < rad_of y \<longleftrightarrow> x < y" | |
using rad_of_strict_monoI | |
by (fastforce intro!: deg_of_strict_monoI) | |
lemma rad_of_lt_iff: "rad_of d < r \<longleftrightarrow> d < deg_of r" | |
and rad_of_gt_iff: "rad_of d > r \<longleftrightarrow> d > deg_of r" | |
and rad_of_le_iff: "rad_of d \<le> r \<longleftrightarrow> d \<le> deg_of r" | |
and rad_of_ge_iff: "rad_of d \<ge> r \<longleftrightarrow> d \<ge> deg_of r" | |
using rad_of_strict_mono[of d "deg_of r"] rad_of_mono[of d "deg_of r"] | |
by auto | |
end | |