Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
(*<*) | |
theory Propositional_Logic | |
imports Abstract_Completeness | |
begin | |
(*>*) | |
section \<open>Toy instantiation: Propositional Logic\<close> | |
datatype fmla = Atom nat | Neg fmla | Conj fmla fmla | |
primrec max_depth where | |
"max_depth (Atom _) = 0" | |
| "max_depth (Neg \<phi>) = Suc (max_depth \<phi>)" | |
| "max_depth (Conj \<phi> \<psi>) = Suc (max (max_depth \<phi>) (max_depth \<psi>))" | |
lemma max_depth_0: "max_depth \<phi> = 0 = (\<exists>n. \<phi> = Atom n)" | |
by (cases \<phi>) auto | |
lemma max_depth_Suc: "max_depth \<phi> = Suc n = ((\<exists>\<psi>. \<phi> = Neg \<psi> \<and> max_depth \<psi> = n) \<or> | |
(\<exists>\<psi>1 \<psi>2. \<phi> = Conj \<psi>1 \<psi>2 \<and> max (max_depth \<psi>1) (max_depth \<psi>2) = n))" | |
by (cases \<phi>) auto | |
abbreviation "atoms \<equiv> smap Atom nats" | |
abbreviation "depth1 \<equiv> | |
sinterleave (smap Neg atoms) (smap (case_prod Conj) (sproduct atoms atoms))" | |
abbreviation "sinterleaves \<equiv> fold sinterleave" | |
fun extendLevel where "extendLevel (belowN, N) = | |
(let Next = sinterleaves | |
(map (smap (case_prod Conj)) [sproduct belowN N, sproduct N belowN, sproduct N N]) | |
(smap Neg N) | |
in (sinterleave belowN N, Next))" | |
lemma extendLevel_step: | |
"\<lbrakk>sset belowN = {\<phi>. max_depth \<phi> < n}; | |
sset N = {\<phi>. max_depth \<phi> = n}; st = (belowN, N)\<rbrakk> \<Longrightarrow> | |
\<exists>belowNext Next. extendLevel st = (belowNext, Next) \<and> | |
sset belowNext = {\<phi>. max_depth \<phi> < Suc n} \<and> sset Next = {\<phi>. max_depth \<phi> = Suc n}" | |
by (auto simp: sset_sinterleave sset_sproduct stream.set_map | |
image_iff max_depth_Suc) | |
lemma sset_atoms: "sset atoms = {\<phi>. max_depth \<phi> < 1}" | |
by (auto simp: stream.set_map max_depth_0) | |
lemma sset_depth1: "sset depth1 = {\<phi>. max_depth \<phi> = 1}" | |
by (auto simp: sset_sinterleave sset_sproduct stream.set_map | |
max_depth_Suc max_depth_0 max_def image_iff) | |
lemma extendLevel_Nsteps: | |
"\<lbrakk>sset belowN = {\<phi>. max_depth \<phi> < n}; sset N = {\<phi>. max_depth \<phi> = n}\<rbrakk> \<Longrightarrow> | |
\<exists>belowNext Next. (extendLevel ^^ m) (belowN, N) = (belowNext, Next) \<and> | |
sset belowNext = {\<phi>. max_depth \<phi> < n + m} \<and> sset Next = {\<phi>. max_depth \<phi> = n + m}" | |
proof (induction m arbitrary: belowN N n) | |
case (Suc m) | |
then obtain belowNext Next where "(extendLevel ^^ m) (belowN, N) = (belowNext, Next)" | |
"sset belowNext = {\<phi>. max_depth \<phi> < n + m}" "sset Next = {\<phi>. max_depth \<phi> = n + m}" | |
by blast | |
thus ?case unfolding funpow.simps o_apply add_Suc_right | |
by (intro extendLevel_step[of belowNext _ Next]) | |
qed simp | |
corollary extendLevel: | |
"\<exists>belowNext Next. (extendLevel ^^ m) (atoms, depth1) = (belowNext, Next) \<and> | |
sset belowNext = {\<phi>. max_depth \<phi> < 1 + m} \<and> sset Next = {\<phi>. max_depth \<phi> = 1 + m}" | |
by (rule extendLevel_Nsteps) (auto simp: sset_atoms sset_depth1) | |
definition "fmlas = sinterleave atoms (smerge (smap snd (siterate extendLevel (atoms, depth1))))" | |
lemma fmlas_UNIV: "sset fmlas = (UNIV :: fmla set)" | |
proof (intro equalityI subsetI UNIV_I) | |
fix \<phi> | |
show "\<phi> \<in> sset fmlas" | |
proof (cases "max_depth \<phi>") | |
case 0 thus ?thesis unfolding fmlas_def sset_sinterleave stream.set_map | |
by (intro UnI1) (auto simp: max_depth_0) | |
next | |
case (Suc m) thus ?thesis using extendLevel[of m] | |
unfolding fmlas_def sset_smerge sset_siterate sset_sinterleave stream.set_map | |
by (intro UnI2) (auto, metis (mono_tags) mem_Collect_eq) | |
qed | |
qed | |
datatype rule = Idle | Ax nat | NegL fmla | NegR fmla | ConjL fmla fmla | ConjR fmla fmla | |
abbreviation "mkRules f \<equiv> smap f fmlas" | |
abbreviation "mkRulePairs f \<equiv> smap (case_prod f) (sproduct fmlas fmlas)" | |
definition rules where | |
"rules = Idle ## | |
sinterleaves [mkRules NegL, mkRules NegR, mkRulePairs ConjL, mkRulePairs ConjR] | |
(smap Ax nats)" | |
lemma rules_UNIV: "sset rules = (UNIV :: rule set)" | |
unfolding rules_def by (auto simp: sset_sinterleave sset_sproduct stream.set_map | |
fmlas_UNIV image_iff) (metis rule.exhaust) | |
type_synonym state = "fmla fset * fmla fset" | |
fun eff' :: "rule \<Rightarrow> state \<Rightarrow> state fset option" where | |
"eff' Idle (\<Gamma>, \<Delta>) = Some {|(\<Gamma>, \<Delta>)|}" | |
| "eff' (Ax n) (\<Gamma>, \<Delta>) = | |
(if Atom n |\<in>| \<Gamma> \<and> Atom n |\<in>| \<Delta> then Some {||} else None)" | |
| "eff' (NegL \<phi>) (\<Gamma>, \<Delta>) = | |
(if Neg \<phi> |\<in>| \<Gamma> then Some {|(\<Gamma> |-| {| Neg \<phi> |}, finsert \<phi> \<Delta>)|} else None)" | |
| "eff' (NegR \<phi>) (\<Gamma>, \<Delta>) = | |
(if Neg \<phi> |\<in>| \<Delta> then Some {|(finsert \<phi> \<Gamma>, \<Delta> |-| {| Neg \<phi> |})|} else None)" | |
| "eff' (ConjL \<phi> \<psi>) (\<Gamma>, \<Delta>) = | |
(if Conj \<phi> \<psi> |\<in>| \<Gamma> | |
then Some {|(finsert \<phi> (finsert \<psi> (\<Gamma> |-| {| Conj \<phi> \<psi> |})), \<Delta>)|} | |
else None)" | |
| "eff' (ConjR \<phi> \<psi>) (\<Gamma>, \<Delta>) = | |
(if Conj \<phi> \<psi> |\<in>| \<Delta> | |
then Some {|(\<Gamma>, finsert \<phi> (\<Delta> |-| {| Conj \<phi> \<psi> |})), (\<Gamma>, finsert \<psi> (\<Delta> |-| {| Conj \<phi> \<psi> |}))|} | |
else None)" | |
abbreviation "Disj \<phi> \<psi> \<equiv> Neg (Conj (Neg \<phi>) (Neg \<psi>))" | |
abbreviation "Imp \<phi> \<psi> \<equiv> Disj (Neg \<phi>) \<psi>" | |
abbreviation "Iff \<phi> \<psi> \<equiv> Conj (Imp \<phi> \<psi>) (Imp \<psi> \<phi>)" | |
definition "thm1 \<equiv> ({|Conj (Atom 0) (Neg (Atom 0))|}, {||})" | |
declare Stream.smember_code [code del] | |
lemma [code]: "Stream.smember x (y ## s) = (x = y \<or> Stream.smember x s)" | |
unfolding Stream.smember_def by auto | |
interpretation RuleSystem "\<lambda>r s ss. eff' r s = Some ss" rules UNIV | |
by unfold_locales (auto simp: rules_UNIV intro: exI[of _ Idle]) | |
interpretation PersistentRuleSystem "\<lambda>r s ss. eff' r s = Some ss" rules UNIV | |
proof (unfold_locales, unfold enabled_def per_def rules_UNIV, clarsimp) | |
fix r \<Gamma> \<Delta> ss r' \<Gamma>' \<Delta>' ss' | |
assume "r' \<noteq> r" "eff' r (\<Gamma>, \<Delta>) = Some ss" "eff' r' (\<Gamma>, \<Delta>) = Some ss'" "(\<Gamma>', \<Delta>') |\<in>| ss'" | |
then show "\<exists>sl. eff' r (\<Gamma>', \<Delta>') = Some sl" | |
by (cases r r' rule: rule.exhaust[case_product rule.exhaust]) (auto split: if_splits) | |
qed | |
definition "rho \<equiv> i.fenum rules" | |
definition "propTree \<equiv> i.mkTree eff' rho" | |
export_code propTree thm1 in Haskell module_name PropInstance (* file "." *) | |
(*<*) | |
end | |
(*>*) | |