Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
Zhangir Azerbayev
squashed?
4365a98
raw
history blame
27.9 kB
(* Title: Inductive definition of Hoare logic for total correctness
Author: Tobias Nipkow, 2001/2006
Maintainer: Tobias Nipkow
*)
theory PHoareTotal imports PHoare PTermi begin
subsection\<open>Hoare logic for total correctness\<close>
text\<open>Validity is defined as expected:\<close>
definition
tvalid :: "'a assn \<Rightarrow> com \<Rightarrow> 'a assn \<Rightarrow> bool" ("\<Turnstile>\<^sub>t {(1_)}/ (_)/ {(1_)}" 50) where
"\<Turnstile>\<^sub>t {P}c{Q} \<longleftrightarrow> \<Turnstile> {P}c{Q} \<and> (\<forall>z s. P z s \<longrightarrow> c\<down>s)"
definition
ctvalid :: "'a cntxt \<Rightarrow> 'a assn \<Rightarrow> com \<Rightarrow> 'a assn \<Rightarrow> bool"
("(_ /\<Turnstile>\<^sub>t {(1_)}/ (_)/ {(1_))}" 50) where
"C \<Turnstile>\<^sub>t {P}c{Q} \<longleftrightarrow> (\<forall>(P',c',Q') \<in> C. \<Turnstile>\<^sub>t {P'}c'{Q'}) \<longrightarrow> \<Turnstile>\<^sub>t {P}c{Q}"
inductive
thoare :: "'a cntxt \<Rightarrow> 'a assn \<Rightarrow> com \<Rightarrow> 'a assn \<Rightarrow> bool"
("(_ \<turnstile>\<^sub>t/ ({(1_)}/ (_)/ {(1_)}))" [50,0,0,0] 50)
where
Do: "C \<turnstile>\<^sub>t {\<lambda>z s. (\<forall>t \<in> f s . P z t) \<and> f s \<noteq> {}} Do f {P}"
| Semi: "\<lbrakk> C \<turnstile>\<^sub>t {P}c1{Q}; C \<turnstile>\<^sub>t {Q}c2{R} \<rbrakk> \<Longrightarrow> C \<turnstile>\<^sub>t {P} c1;c2 {R}"
| If: "\<lbrakk> C \<turnstile>\<^sub>t {\<lambda>z s. P z s \<and> b s}c{Q}; C \<turnstile>\<^sub>t {\<lambda>z s. P z s \<and> ~b s}d{Q} \<rbrakk> \<Longrightarrow>
C \<turnstile>\<^sub>t {P} IF b THEN c ELSE d {Q}"
| While:
"\<lbrakk>wf r; \<forall>s'. C \<turnstile>\<^sub>t {\<lambda>z s. P z s \<and> b s \<and> s' = s} c {\<lambda>z s. P z s \<and> (s,s') \<in> r}\<rbrakk>
\<Longrightarrow> C \<turnstile>\<^sub>t {P} WHILE b DO c {\<lambda>z s. P z s \<and> \<not>b s}"
| Call:
"\<lbrakk>wf r; \<forall>s'. {(\<lambda>z s. P z s \<and> (s,s') \<in> r, CALL, Q)}
\<turnstile>\<^sub>t {\<lambda>z s. P z s \<and> s = s'} body {Q}\<rbrakk>
\<Longrightarrow> {} \<turnstile>\<^sub>t {P} CALL {Q}"
| Asm: "{(P,CALL,Q)} \<turnstile>\<^sub>t {P} CALL {Q}"
| Conseq:
"\<lbrakk> C \<turnstile>\<^sub>t {P'}c{Q'};
(\<forall>s t. (\<forall>z. P' z s \<longrightarrow> Q' z t) \<longrightarrow> (\<forall>z. P z s \<longrightarrow> Q z t)) \<and>
(\<forall>s. (\<exists>z. P z s) \<longrightarrow> (\<exists>z. P' z s)) \<rbrakk>
\<Longrightarrow> C \<turnstile>\<^sub>t {P}c{Q}"
| Local: "\<lbrakk> \<forall>s'. C \<turnstile>\<^sub>t {\<lambda>z s. P z s' \<and> s = f s'} c {\<lambda>z t. Q z (g s' t)} \<rbrakk> \<Longrightarrow>
C \<turnstile>\<^sub>t {P} LOCAL f;c;g {Q}"
abbreviation hoare1 :: "'a cntxt \<Rightarrow> 'a assn \<times> com \<times> 'a assn \<Rightarrow> bool" ("_ \<turnstile>\<^sub>t _") where
"C \<turnstile>\<^sub>t x \<equiv> C \<turnstile>\<^sub>t {fst x}fst (snd x){snd (snd x)}"
text\<open>The side condition in our rule of consequence looks quite different
from the one by Kleymann, but the two are in fact equivalent:\<close>
lemma "((\<forall>s t. (\<forall>z. P' z s \<longrightarrow> Q' z t) \<longrightarrow> (\<forall>z. P z s \<longrightarrow> Q z t)) \<and>
(\<forall>s. (\<exists>z. P z s) \<longrightarrow> (\<exists>z. P' z s)))
= (\<forall>z s. P z s \<longrightarrow> (\<forall>t.\<exists>z'. P' z' s \<and> (Q' z' t \<longrightarrow> Q z t)))"
by blast
text\<open>The key difference to the work by Kleymann (and America and de
Boer) is that soundness and completeness are shown for arbitrary,
i.e.\ unbounded nondeterminism. This is a significant extension and
appears to have been an open problem. The details are found below and
are explained in a separate paper~\cite{Nipkow-CSL02}.\<close>
lemma strengthen_pre:
"\<lbrakk> \<forall>z s. P' z s \<longrightarrow> P z s; C \<turnstile>\<^sub>t {P}c{Q} \<rbrakk> \<Longrightarrow> C \<turnstile>\<^sub>t {P'}c{Q}"
by(rule thoare.Conseq, assumption, blast)
lemma weaken_post:
"\<lbrakk> C \<turnstile>\<^sub>t {P}c{Q}; \<forall>z s. Q z s \<longrightarrow> Q' z s \<rbrakk> \<Longrightarrow> C \<turnstile>\<^sub>t {P}c{Q'}"
by(erule thoare.Conseq, blast)
lemmas tvalid_defs = tvalid_def ctvalid_def valid_defs
lemma [iff]:
"(\<Turnstile>\<^sub>t {\<lambda>z s. \<exists>n. P n z s}c{Q}) = (\<forall>n. \<Turnstile>\<^sub>t {P n}c{Q})"
apply(unfold tvalid_defs)
apply fast
done
lemma [iff]:
"(\<Turnstile>\<^sub>t {\<lambda>z s. P z s \<and> P'}c{Q}) = (P' \<longrightarrow> \<Turnstile>\<^sub>t {P}c{Q})"
apply(unfold tvalid_defs)
apply fast
done
lemma [iff]: "(\<Turnstile>\<^sub>t {P}CALL{Q}) = (\<Turnstile>\<^sub>t {P}body{Q})"
apply(unfold tvalid_defs)
apply fast
done
theorem "C \<turnstile>\<^sub>t {P}c{Q} \<Longrightarrow> C \<Turnstile>\<^sub>t {P}c{Q}"
apply(erule thoare.induct)
apply(simp only:tvalid_defs)
apply fast
apply(simp only:tvalid_defs)
apply fast
apply(simp only:tvalid_defs)
apply clarsimp
prefer 3
apply(simp add:tvalid_defs)
prefer 3
apply(simp only:tvalid_defs)
apply blast
apply(simp only:tvalid_defs)
apply(rule impI, rule conjI)
apply(rule allI)
apply(erule wf_induct)
apply clarify
apply(drule unfold_while[THEN iffD1])
apply (simp split: if_split_asm)
apply fast
apply(rule allI, rule allI)
apply(erule wf_induct)
apply clarify
apply(case_tac "b x")
prefer 2
apply (erule termi.WhileFalse)
apply(rule termi.WhileTrue, assumption)
apply fast
apply (subgoal_tac "(t,x):r")
apply fast
apply blast
apply(simp (no_asm_use) add:ctvalid_def)
apply(subgoal_tac "\<forall>n. \<Turnstile>\<^sub>t {\<lambda>z s. P z s \<and> s=n} body {Q}")
apply(simp (no_asm_use) add:tvalid_defs)
apply blast
apply(rule allI)
apply(erule wf_induct)
apply(unfold tvalid_defs)
apply fast
apply fast
done
definition MGT\<^sub>t :: "com \<Rightarrow> state assn \<times> com \<times> state assn" where
[simp]: "MGT\<^sub>t c = (\<lambda>z s. z = s \<and> c\<down>s, c, \<lambda>z t. z -c\<rightarrow> t)"
lemma MGT_implies_complete:
"{} \<turnstile>\<^sub>t MGT\<^sub>t c \<Longrightarrow> {} \<Turnstile>\<^sub>t {P}c{Q} \<Longrightarrow> {} \<turnstile>\<^sub>t {P}c{Q::state assn}"
apply(simp add: MGT\<^sub>t_def)
apply (erule thoare.Conseq)
apply(simp add: tvalid_defs)
apply blast
done
lemma while_termiE: "\<lbrakk> WHILE b DO c \<down> s; b s \<rbrakk> \<Longrightarrow> c \<down> s"
by(erule termi.cases, auto)
lemma while_termiE2:
"\<lbrakk> WHILE b DO c \<down> s; b s; s -c\<rightarrow> t \<rbrakk> \<Longrightarrow> WHILE b DO c \<down> t"
by(erule termi.cases, auto)
lemma MGT_lemma: "C \<turnstile>\<^sub>t MGT\<^sub>t CALL \<Longrightarrow> C \<turnstile>\<^sub>t MGT\<^sub>t c"
apply (simp)
apply(induct_tac c)
apply (rule strengthen_pre[OF _ thoare.Do])
apply blast
apply(rename_tac com1 com2)
apply(rule_tac Q = "\<lambda>z s. z -com1\<rightarrow>s & com2\<down>s" in thoare.Semi)
apply(erule thoare.Conseq)
apply fast
apply(erule thoare.Conseq)
apply fast
apply(rule thoare.If)
apply(erule thoare.Conseq)
apply simp
apply(erule thoare.Conseq)
apply simp
defer
apply simp
apply(fast intro:thoare.Local elim!: thoare.Conseq)
apply(rename_tac b c)
apply(rule_tac P' = "\<lambda>z s. (z,s) \<in> ({(s,t). b s \<and> s -c\<rightarrow> t})^* \<and>
WHILE b DO c \<down> s" in thoare.Conseq)
apply(rule_tac thoare.While[OF wf_termi])
apply(rule allI)
apply(erule thoare.Conseq)
apply(fastforce intro:rtrancl_into_rtrancl dest:while_termiE while_termiE2)
apply(rule conjI)
apply clarsimp
apply(erule_tac x = s in allE)
apply clarsimp
apply(erule converse_rtrancl_induct)
apply simp
apply(fast elim:exec.WhileTrue)
apply(fast intro: rtrancl_refl)
done
inductive_set
exec1 :: "((com list \<times> state) \<times> (com list \<times> state))set"
and exec1' :: "(com list \<times> state) \<Rightarrow> (com list \<times> state) \<Rightarrow> bool" ("_ \<rightarrow> _" [81,81] 100)
where
"cs0 \<rightarrow> cs1 \<equiv> (cs0,cs1) : exec1"
| Do[iff]: "t \<in> f s \<Longrightarrow> ((Do f)#cs,s) \<rightarrow> (cs,t)"
| Semi[iff]: "((c1;c2)#cs,s) \<rightarrow> (c1#c2#cs,s)"
| IfTrue: "b s \<Longrightarrow> ((IF b THEN c1 ELSE c2)#cs,s) \<rightarrow> (c1#cs,s)"
| IfFalse: "\<not>b s \<Longrightarrow> ((IF b THEN c1 ELSE c2)#cs,s) \<rightarrow> (c2#cs,s)"
| WhileFalse: "\<not>b s \<Longrightarrow> ((WHILE b DO c)#cs,s) \<rightarrow> (cs,s)"
| WhileTrue: "b s \<Longrightarrow> ((WHILE b DO c)#cs,s) \<rightarrow> (c#(WHILE b DO c)#cs,s)"
| Call[iff]: "(CALL#cs,s) \<rightarrow> (body#cs,s)"
| Local[iff]: "((LOCAL f;c;g)#cs,s) \<rightarrow> (c # Do(\<lambda>t. {g s t})#cs, f s)"
abbreviation
exectr :: "(com list \<times> state) \<Rightarrow> (com list \<times> state) \<Rightarrow> bool" ("_ \<rightarrow>\<^sup>* _" [81,81] 100)
where "cs0 \<rightarrow>\<^sup>* cs1 \<equiv> (cs0,cs1) : exec1^*"
inductive_cases exec1E[elim!]:
"([],s) \<rightarrow> (cs',s')"
"(Do f#cs,s) \<rightarrow> (cs',s')"
"((c1;c2)#cs,s) \<rightarrow> (cs',s')"
"((IF b THEN c1 ELSE c2)#cs,s) \<rightarrow> (cs',s')"
"((WHILE b DO c)#cs,s) \<rightarrow> (cs',s')"
"(CALL#cs,s) \<rightarrow> (cs',s')"
"((LOCAL f;c;g)#cs,s) \<rightarrow> (cs',s')"
lemma [iff]: "\<not> ([],s) \<rightarrow> u"
by (induct u) blast
lemma app_exec: "(cs,s) \<rightarrow> (cs',s') \<Longrightarrow> (cs@cs2,s) \<rightarrow> (cs'@cs2,s')"
apply(erule exec1.induct)
apply(simp_all del:fun_upd_apply)
apply(blast intro:exec1.intros)+
done
lemma app_execs: "(cs,s) \<rightarrow>\<^sup>* (cs',s') \<Longrightarrow> (cs@cs2,s) \<rightarrow>\<^sup>* (cs'@cs2,s')"
apply(erule rtrancl_induct2)
apply blast
apply(blast intro:app_exec rtrancl_trans)
done
lemma exec_impl_execs[rule_format]:
"s -c\<rightarrow> s' \<Longrightarrow> \<forall>cs. (c#cs,s) \<rightarrow>\<^sup>* (cs,s')"
apply(erule exec.induct)
apply blast
apply(blast intro:rtrancl_trans)
apply(blast intro:exec1.IfTrue rtrancl_trans)
apply(blast intro:exec1.IfFalse rtrancl_trans)
apply(blast intro:exec1.WhileFalse rtrancl_trans)
apply(blast intro:exec1.WhileTrue rtrancl_trans)
apply(blast intro: rtrancl_trans)
apply(blast intro: rtrancl_trans)
done
inductive
execs :: "state \<Rightarrow> com list \<Rightarrow> state \<Rightarrow> bool" ("_/ =_\<Rightarrow>/ _" [50,0,50] 50)
where
"s =[]\<Rightarrow> s"
| "s -c\<rightarrow> t \<Longrightarrow> t =cs\<Rightarrow> u \<Longrightarrow> s =c#cs\<Rightarrow> u"
inductive_cases [elim!]:
"s =[]\<Rightarrow> t"
"s =c#cs\<Rightarrow> t"
theorem exec1s_impl_execs: "(cs,s) \<rightarrow>\<^sup>* ([],t) \<Longrightarrow> s =cs\<Rightarrow> t"
apply(erule converse_rtrancl_induct2)
apply(rule execs.intros)
apply(erule exec1.cases)
apply(blast intro:execs.intros)
apply(blast intro:execs.intros)
apply(fastforce intro:execs.intros)
apply(fastforce intro:execs.intros)
apply(blast intro:execs.intros exec.intros)
apply(blast intro:execs.intros exec.intros)
apply(blast intro:execs.intros exec.intros)
apply(blast intro:execs.intros exec.intros)
done
theorem exec1s_impl_exec: "([c],s) \<rightarrow>\<^sup>* ([],t) \<Longrightarrow> s -c\<rightarrow> t"
by(blast dest: exec1s_impl_execs)
primrec termis :: "com list \<Rightarrow> state \<Rightarrow> bool" (infixl "\<Down>" 60) where
"[]\<Down>s = True"
| "c#cs \<Down> s = (c\<down>s \<and> (\<forall>t. s -c\<rightarrow> t \<longrightarrow> cs\<Down>t))"
lemma exec1_pres_termis: "(cs,s) \<rightarrow> (cs',s') \<Longrightarrow> cs\<Down>s \<longrightarrow> cs'\<Down>s'"
apply(erule exec1.induct)
apply(simp_all)
apply blast
apply(blast intro:while_termiE while_termiE2 exec.WhileTrue)
apply blast
done
lemma execs_pres_termis: "(cs,s) \<rightarrow>\<^sup>* (cs',s') \<Longrightarrow> cs\<Down>s \<longrightarrow> cs'\<Down>s'"
apply(erule rtrancl_induct2)
apply blast
apply(blast dest:exec1_pres_termis)
done
lemma execs_pres_termi: "\<lbrakk> ([c],s) \<rightarrow>\<^sup>* (c'#cs',s'); c\<down>s \<rbrakk> \<Longrightarrow> c'\<down>s'"
apply(insert execs_pres_termis[of "[c]" _ "c'#cs'",simplified])
apply blast
done
definition
termi_call_steps :: "(state \<times> state)set" where
"termi_call_steps = {(t,s). body\<down>s \<and> (\<exists>cs. ([body], s) \<rightarrow>\<^sup>* (CALL # cs, t))}"
lemma lem:
"\<forall>y. (a,y)\<in>r\<^sup>+ \<longrightarrow> P a \<longrightarrow> P y \<Longrightarrow> ((b,a) \<in> {(y,x). P x \<and> (x,y):r}\<^sup>+) = ((b,a) \<in> {(y,x). P x \<and> (x,y)\<in>r\<^sup>+})"
apply(rule iffI)
apply clarify
apply(erule trancl_induct)
apply blast
apply(blast intro:trancl_trans)
apply clarify
apply(erule trancl_induct)
apply blast
apply(blast intro:trancl_trans)
done
lemma renumber_aux:
"\<lbrakk>\<forall>i. (a,f i) : r^* \<and> (f i,f(Suc i)) : r; (a,b) : r^* \<rbrakk> \<Longrightarrow> b = f 0 \<longrightarrow> (\<exists>f. f 0 = a & (\<forall>i. (f i, f(Suc i)) : r))"
apply(erule converse_rtrancl_induct)
apply blast
apply(clarsimp)
apply(rule_tac x="\<lambda>i. case i of 0 \<Rightarrow> y | Suc i \<Rightarrow> fa i" in exI)
apply simp
apply clarify
apply(case_tac i)
apply simp_all
done
lemma renumber:
"\<forall>i. (a,f i) : r^* \<and> (f i,f(Suc i)) : r \<Longrightarrow> \<exists>f. f 0 = a & (\<forall>i. (f i, f(Suc i)) : r)"
by(blast dest:renumber_aux)
definition inf :: "com list \<Rightarrow> state \<Rightarrow> bool" where
"inf cs s \<longleftrightarrow> (\<exists>f. f 0 = (cs,s) \<and> (\<forall>i. f i \<rightarrow> f(Suc i)))"
lemma [iff]: "\<not> inf [] s"
apply(unfold inf_def)
apply clarify
apply(erule_tac x = 0 in allE)
apply simp
done
lemma [iff]: "\<not> inf [Do f] s"
apply(unfold inf_def)
apply clarify
apply(frule_tac x = 0 in spec)
apply(erule_tac x = 1 in allE)
apply(case_tac "fa (Suc 0)")
apply clarsimp
done
lemma [iff]: "inf ((c1;c2)#cs) s = inf (c1#c2#cs) s"
apply(unfold inf_def)
apply(rule iffI)
apply clarify
apply(rule_tac x = "\<lambda>i. f(Suc i)" in exI)
apply(frule_tac x = 0 in spec)
apply(case_tac "f (Suc 0)")
apply clarsimp
apply clarify
apply(rule_tac x = "\<lambda>i. case i of 0 \<Rightarrow> ((c1;c2)#cs,s) | Suc i \<Rightarrow> f i" in exI)
apply(simp split:nat.split)
done
lemma [iff]: "inf ((IF b THEN c1 ELSE c2)#cs) s =
inf ((if b s then c1 else c2)#cs) s"
apply(unfold inf_def)
apply(rule iffI)
apply clarsimp
apply(frule_tac x = 0 in spec)
apply (case_tac "f (Suc 0)")
apply(rule conjI)
apply clarsimp
apply(rule_tac x = "\<lambda>i. f(Suc i)" in exI)
apply clarsimp
apply clarsimp
apply(rule_tac x = "\<lambda>i. f(Suc i)" in exI)
apply clarsimp
apply clarsimp
apply(rule_tac x = "\<lambda>i. case i of 0 \<Rightarrow> ((IF b THEN c1 ELSE c2)#cs,s) | Suc i \<Rightarrow> f i" in exI)
apply(simp add: exec1.intros split:nat.split)
done
lemma [simp]:
"inf ((WHILE b DO c)#cs) s =
(if b s then inf (c#(WHILE b DO c)#cs) s else inf cs s)"
apply(unfold inf_def)
apply(rule iffI)
apply clarsimp
apply(frule_tac x = 0 in spec)
apply (case_tac "f (Suc 0)")
apply(rule conjI)
apply clarsimp
apply(rule_tac x = "\<lambda>i. f(Suc i)" in exI)
apply clarsimp
apply clarsimp
apply(rule_tac x = "\<lambda>i. f(Suc i)" in exI)
apply clarsimp
apply (clarsimp split:if_splits)
apply(rule_tac x = "\<lambda>i. case i of 0 \<Rightarrow> ((WHILE b DO c)#cs,s) | Suc i \<Rightarrow> f i" in exI)
apply(simp add: exec1.intros split:nat.split)
apply(rule_tac x = "\<lambda>i. case i of 0 \<Rightarrow> ((WHILE b DO c)#cs,s) | Suc i \<Rightarrow> f i" in exI)
apply(simp add: exec1.intros split:nat.split)
done
lemma [iff]: "inf (CALL#cs) s = inf (body#cs) s"
apply(unfold inf_def)
apply(rule iffI)
apply clarsimp
apply(frule_tac x = 0 in spec)
apply (case_tac "f (Suc 0)")
apply clarsimp
apply(rule_tac x = "\<lambda>i. f(Suc i)" in exI)
apply clarsimp
apply clarsimp
apply(rule_tac x = "\<lambda>i. case i of 0 \<Rightarrow> (CALL#cs,s) | Suc i \<Rightarrow> f i" in exI)
apply(simp add: exec1.intros split:nat.split)
done
lemma [iff]: "inf ((LOCAL f;c;g)#cs) s =
inf (c#Do(\<lambda>t. {g s t})#cs) (f s)"
apply(unfold inf_def)
apply(rule iffI)
apply clarsimp
apply(rename_tac F)
apply(frule_tac x = 0 in spec)
apply (case_tac "F (Suc 0)")
apply clarsimp
apply(rule_tac x = "\<lambda>i. F(Suc i)" in exI)
apply clarsimp
apply (clarsimp)
apply(rename_tac F)
apply(rule_tac x = "\<lambda>i. case i of 0 \<Rightarrow> ((LOCAL f;c;g)#cs,s) | Suc i \<Rightarrow> F i" in exI)
apply(simp add: exec1.intros split:nat.split)
done
lemma exec1_only1_aux: "(ccs,s) \<rightarrow> (cs',t) \<Longrightarrow>
\<forall>c cs. ccs = c#cs \<longrightarrow> (\<exists>cs1. cs' = cs1 @ cs)"
apply(erule exec1.induct)
apply blast
apply force+
done
lemma exec1_only1: "(c#cs,s) \<rightarrow> (cs',t) \<Longrightarrow> \<exists>cs1. cs' = cs1 @ cs"
by(blast dest:exec1_only1_aux)
lemma exec1_drop_suffix_aux:
"(cs12,s) \<rightarrow> (cs1'2,s') \<Longrightarrow> \<forall>cs1 cs2 cs1'.
cs12 = cs1@cs2 & cs1'2 = cs1'@cs2 & cs1 \<noteq> [] \<longrightarrow> (cs1,s) \<rightarrow> (cs1',s')"
apply(erule exec1.induct)
apply (force intro:exec1.intros simp add: neq_Nil_conv)+
done
lemma exec1_drop_suffix:
"(cs1@cs2,s) \<rightarrow> (cs1'@cs2,s') \<Longrightarrow> cs1 \<noteq> [] \<Longrightarrow> (cs1,s) \<rightarrow> (cs1',s')"
by(blast dest:exec1_drop_suffix_aux)
lemma execs_drop_suffix[rule_format(no_asm)]:
"\<lbrakk> f 0 = (c#cs,s);\<forall>i. f(i) \<rightarrow> f(Suc i) \<rbrakk> \<Longrightarrow>
(\<forall>i<k. p i \<noteq> [] & fst(f i) = p i@cs) \<longrightarrow> fst(f k) = p k@cs
\<longrightarrow> ([c],s) \<rightarrow>\<^sup>* (p k,snd(f k))"
apply(induct_tac k)
apply simp
apply (clarsimp)
apply(erule rtrancl_into_rtrancl)
apply(erule_tac x = n in allE)
apply(erule_tac x = n in allE)
apply(case_tac "f n")
apply(case_tac "f(Suc n)")
apply simp
apply(blast dest:exec1_drop_suffix)
done
lemma execs_drop_suffix0:
"\<lbrakk> f 0 = (c#cs,s);\<forall>i. f(i) \<rightarrow> f(Suc i); \<forall>i<k. p i \<noteq> [] & fst(f i) = p i@cs;
fst(f k) = cs; p k = [] \<rbrakk> \<Longrightarrow> ([c],s) \<rightarrow>\<^sup>* ([],snd(f k))"
apply(drule execs_drop_suffix,assumption,assumption)
apply simp
apply simp
done
lemma skolemize1: "\<forall>x. P x \<longrightarrow> (\<exists>y. Q x y) \<Longrightarrow> \<exists>f.\<forall>x. P x \<longrightarrow> Q x (f x)"
apply(rule_tac x = "\<lambda>x. SOME y. Q x y" in exI)
apply(fast intro:someI2)
done
lemma least_aux: "\<lbrakk>f 0 = (c # cs, s); \<forall>i. f i \<rightarrow> f (Suc i);
fst(f k) = cs; \<forall>i<k. fst(f i) \<noteq> cs\<rbrakk>
\<Longrightarrow> \<forall>i \<le> k. (\<exists>p. (p \<noteq> []) = (i < k) & fst(f i) = p @ cs)"
apply(rule allI)
apply(induct_tac i)
apply simp
apply (rule ccontr)
apply simp
apply clarsimp
apply(drule order_le_imp_less_or_eq)
apply(erule disjE)
prefer 2
apply simp
apply simp
apply(erule_tac x = n in allE)
apply(erule_tac x = "Suc n" in allE)
apply(case_tac "f n")
apply(case_tac "f(Suc n)")
apply simp
apply(rename_tac sn csn1 sn1)
apply (clarsimp simp add: neq_Nil_conv)
apply(drule exec1_only1)
apply (clarsimp simp add: neq_Nil_conv)
apply(erule disjE)
apply clarsimp
apply clarsimp
apply(case_tac cs1)
apply simp
apply simp
done
lemma least_lem: "\<lbrakk>f 0 = (c#cs,s); \<forall>i. f i \<rightarrow> f(Suc i); \<exists>i. fst(f i) = cs \<rbrakk>
\<Longrightarrow> \<exists>k. fst(f k) = cs & ([c],s) \<rightarrow>\<^sup>* ([],snd(f k))"
apply(rule_tac x="LEAST i. fst(f i) = cs" in exI)
apply(rule conjI)
apply(fast intro: LeastI)
apply(subgoal_tac
"\<forall>i\<le>LEAST i. fst (f i) = cs. \<exists>p. ((p \<noteq> []) = (i<(LEAST i. fst (f i) = cs))) & fst(f i) = p@cs")
apply(drule skolemize1)
apply clarify
apply(rename_tac p)
apply(erule_tac p=p in execs_drop_suffix0, assumption)
apply (blast dest:order_less_imp_le)
apply(fast intro: LeastI)
apply(erule thin_rl)
apply(erule_tac x = "LEAST j. fst (f j) = fst (f i)" in allE)
apply blast
apply(erule least_aux,assumption)
apply(fast intro: LeastI)
apply clarify
apply(drule not_less_Least)
apply blast
done
lemma skolemize2: "\<forall>x.\<exists>y. P x y \<Longrightarrow> \<exists>f.\<forall>x. P x (f x)"
apply(rule_tac x = "\<lambda>x. SOME y. P x y" in exI)
apply(fast intro:someI2)
done
lemma inf_cases: "inf (c#cs) s \<Longrightarrow> inf [c] s \<or> (\<exists>t. s -c\<rightarrow> t \<and> inf cs t)"
apply(unfold inf_def)
apply (clarsimp del: disjCI)
apply(case_tac "\<exists>i. fst(f i) = cs")
apply(rule disjI2)
apply(drule least_lem, assumption, assumption)
apply clarify
apply(drule exec1s_impl_exec)
apply(case_tac "f k")
apply simp
apply (rule exI, rule conjI, assumption)
apply(rule_tac x="\<lambda>i. f(i+k)" in exI)
apply (clarsimp)
apply(rule disjI1)
apply simp
apply(subgoal_tac "\<forall>i. \<exists>p. p \<noteq> [] \<and> fst(f i) = p@cs")
apply(drule skolemize2)
apply clarify
apply(rename_tac p)
apply(rule_tac x = "\<lambda>i. (p i, snd(f i))" in exI)
apply(rule conjI)
apply(erule_tac x = 0 in allE, erule conjE)
apply simp
apply clarify
apply(erule_tac x = i in allE)
apply(erule_tac x = i in allE)
apply(frule_tac x = i in spec)
apply(erule_tac x = "Suc i" in allE)
apply(case_tac "f i")
apply(case_tac "f(Suc i)")
apply clarsimp
apply(blast intro:exec1_drop_suffix)
apply(clarify)
apply(induct_tac i)
apply force
apply clarsimp
apply(case_tac p)
apply blast
apply(erule_tac x=n in allE)
apply(erule_tac x="Suc n" in allE)
apply(case_tac "f n")
apply(case_tac "f(Suc n)")
apply clarsimp
apply(drule exec1_only1)
apply clarsimp
done
lemma termi_impl_not_inf: "c \<down> s \<Longrightarrow> \<not> inf [c] s"
apply(erule termi.induct)
(*Do*)
apply clarify
(*Semi*)
apply(blast dest:inf_cases)
(* Cond *)
apply clarsimp
apply clarsimp
(*While*)
apply clarsimp
apply(fastforce dest:inf_cases)
(*Call*)
apply blast
(*Local*)
apply(blast dest:inf_cases)
done
lemma termi_impl_no_inf_chain:
"c\<down>s \<Longrightarrow> \<not>(\<exists>f. f 0 = ([c],s) \<and> (\<forall>i::nat. (f i, f(i+1)) : exec1^+))"
apply(subgoal_tac "wf({(y,x). ([c],s) \<rightarrow>\<^sup>* x & x \<rightarrow> y}^+)")
apply(simp only:wf_iff_no_infinite_down_chain)
apply(erule contrapos_nn)
apply clarify
apply(subgoal_tac "\<forall>i. ([c], s) \<rightarrow>\<^sup>* f i")
prefer 2
apply(rule allI)
apply(induct_tac i)
apply simp
apply simp
apply(blast intro: trancl_into_rtrancl rtrancl_trans)
apply(rule_tac x=f in exI)
apply clarify
apply(drule_tac x=i in spec)
apply(subst lem)
apply(blast intro: trancl_into_rtrancl rtrancl_trans)
apply clarsimp
apply(rule wf_trancl)
apply(simp only:wf_iff_no_infinite_down_chain)
apply(clarify)
apply simp
apply(drule renumber)
apply(fold inf_def)
apply(simp add: termi_impl_not_inf)
done
primrec cseq :: "(nat \<Rightarrow> state) \<Rightarrow> nat \<Rightarrow> com list" where
"cseq S 0 = []"
| "cseq S (Suc i) = (SOME cs. ([body], S i) \<rightarrow>\<^sup>* (CALL # cs, S(i+1))) @ cseq S i"
lemma wf_termi_call_steps: "wf termi_call_steps"
apply(unfold termi_call_steps_def)
apply(simp only:wf_iff_no_infinite_down_chain)
apply(clarify)
apply(rename_tac S)
apply simp
apply(subgoal_tac "\<exists>Cs. Cs 0 = [] & (\<forall>i. (body # Cs i,S i) \<rightarrow>\<^sup>* (CALL # Cs(i+1), S(i+1)))")
prefer 2
apply(rule_tac x = "cseq S" in exI)
apply clarsimp
apply(erule_tac x=i in allE)
apply(clarify)
apply(erule_tac P = "\<lambda>cs.([body],S i) \<rightarrow>\<^sup>* (CALL # cs, S(Suc i))" in someI2)
apply(fastforce dest:app_execs)
apply clarify
apply(subgoal_tac "\<forall>i. ((body # Cs i,S i), (body # Cs(i+1), S(i+1))) : exec1^+")
prefer 2
apply(blast intro:rtrancl_into_trancl1)
apply(subgoal_tac "\<exists>f. f 0 = ([body],S 0) \<and> (\<forall>i. (f i, f(i+1)) : exec1^+)")
prefer 2
apply(rule_tac x = "\<lambda>i.(body#Cs i,S i)" in exI)
apply blast
apply(blast dest:termi_impl_no_inf_chain)
done
lemma CALL_lemma:
"{(\<lambda>z s. (z=s \<and> body\<down>s) \<and> (s,t) \<in> termi_call_steps, CALL, \<lambda>z s. z -body\<rightarrow> s)} \<turnstile>\<^sub>t
{\<lambda>z s. (z=s \<and> body\<down>t) \<and> (\<exists>cs. ([body],t) \<rightarrow>\<^sup>* (c#cs,s))} c {\<lambda>z s. z -c\<rightarrow> s}"
apply(induct_tac c)
(*Do*)
apply (rule strengthen_pre[OF _ thoare.Do])
apply(blast dest: execs_pres_termi)
(*Semi*)
apply(rename_tac c1 c2)
apply(rule_tac Q = "\<lambda>z s. body\<down>t & (\<exists>cs. ([body], t) \<rightarrow>\<^sup>* (c2#cs,s)) & z -c1\<rightarrow>s & c2\<down>s" in thoare.Semi)
apply(erule thoare.Conseq)
apply(rule conjI)
apply clarsimp
apply(subgoal_tac "s -c1\<rightarrow> ta")
prefer 2
apply(blast intro: exec1.Semi exec_impl_execs rtrancl_trans)
apply(subgoal_tac "([body], t) \<rightarrow>\<^sup>* (c2 # cs, ta)")
prefer 2
apply(blast intro:exec1.Semi[THEN r_into_rtrancl] exec_impl_execs rtrancl_trans)
apply(subgoal_tac "([body], t) \<rightarrow>\<^sup>* (c2 # cs, ta)")
prefer 2
apply(blast intro: exec_impl_execs rtrancl_trans)
apply(blast intro:exec_impl_execs rtrancl_trans execs_pres_termi)
apply(fast intro: exec1.Semi rtrancl_trans)
apply(erule thoare.Conseq)
apply blast
(*Call*)
prefer 3
apply(simp only:termi_call_steps_def)
apply(rule thoare.Conseq[OF thoare.Asm])
apply(blast dest: execs_pres_termi)
(*If*)
apply(rule thoare.If)
apply(erule thoare.Conseq)
apply simp
apply(blast intro: exec1.IfTrue rtrancl_trans)
apply(erule thoare.Conseq)
apply simp
apply(blast intro: exec1.IfFalse rtrancl_trans)
(*Var*)
defer
apply simp
apply(rule thoare.Local)
apply(rule allI)
apply(erule thoare.Conseq)
apply (clarsimp)
apply(rule conjI)
apply (clarsimp)
apply(drule rtrancl_trans[OF _ r_into_rtrancl[OF exec1.Local]])
apply(fast)
apply (clarsimp)
apply(drule rtrancl_trans[OF _ r_into_rtrancl[OF exec1.Local]])
apply blast
apply(rename_tac b c)
apply(rule_tac P' = "\<lambda>z s. (z,s) \<in> ({(s,t). b s \<and> s -c\<rightarrow> t})^* \<and> body \<down> t \<and>
(\<exists>cs. ([body], t) \<rightarrow>\<^sup>* ((WHILE b DO c) # cs, s))" in thoare.Conseq)
apply(rule_tac thoare.While[OF wf_termi])
apply(rule allI)
apply(erule thoare.Conseq)
apply clarsimp
apply(rule conjI)
apply clarsimp
apply(rule conjI)
apply(blast intro: rtrancl_trans exec1.WhileTrue)
apply(rule conjI)
apply(rule exI, rule rtrancl_trans, assumption)
apply(blast intro: exec1.WhileTrue exec_impl_execs rtrancl_trans)
apply(rule conjI)
apply(blast intro:execs_pres_termi)
apply(blast intro: exec1.WhileTrue exec_impl_execs rtrancl_trans)
apply(blast intro: exec1.WhileTrue exec_impl_execs rtrancl_trans)
apply(rule conjI)
apply clarsimp
apply(erule_tac x = s in allE)
apply clarsimp
apply(erule impE)
apply blast
apply clarify
apply(erule_tac a=s in converse_rtrancl_induct)
apply simp
apply(fast elim:exec.WhileTrue)
apply(fast intro: rtrancl_refl)
done
lemma CALL_cor:
"{(\<lambda>z s. (z=s \<and> body\<down>s) \<and> (s,t) \<in> termi_call_steps, CALL, \<lambda>z s. z -body\<rightarrow> s)} \<turnstile>\<^sub>t
{\<lambda>z s. (z=s \<and> body\<down>s) \<and> s = t} body {\<lambda>z s. z -body\<rightarrow> s}"
apply(rule strengthen_pre[OF _ CALL_lemma])
apply blast
done
lemma MGT_CALL: "{} \<turnstile>\<^sub>t MGT\<^sub>t CALL"
apply(simp add: MGT\<^sub>t_def)
apply(blast intro:thoare.Call wf_termi_call_steps CALL_cor)
done
theorem "{} \<Turnstile>\<^sub>t {P}c{Q} \<Longrightarrow> {} \<turnstile>\<^sub>t {P}c{Q::state assn}"
apply(erule MGT_implies_complete[OF MGT_lemma[OF MGT_CALL]])
done
end