Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
(* Title: Inductive definition of Hoare logic for total correctness | |
Author: Tobias Nipkow, 2001/2006 | |
Maintainer: Tobias Nipkow | |
*) | |
theory PHoareTotal imports PHoare PTermi begin | |
subsection\<open>Hoare logic for total correctness\<close> | |
text\<open>Validity is defined as expected:\<close> | |
definition | |
tvalid :: "'a assn \<Rightarrow> com \<Rightarrow> 'a assn \<Rightarrow> bool" ("\<Turnstile>\<^sub>t {(1_)}/ (_)/ {(1_)}" 50) where | |
"\<Turnstile>\<^sub>t {P}c{Q} \<longleftrightarrow> \<Turnstile> {P}c{Q} \<and> (\<forall>z s. P z s \<longrightarrow> c\<down>s)" | |
definition | |
ctvalid :: "'a cntxt \<Rightarrow> 'a assn \<Rightarrow> com \<Rightarrow> 'a assn \<Rightarrow> bool" | |
("(_ /\<Turnstile>\<^sub>t {(1_)}/ (_)/ {(1_))}" 50) where | |
"C \<Turnstile>\<^sub>t {P}c{Q} \<longleftrightarrow> (\<forall>(P',c',Q') \<in> C. \<Turnstile>\<^sub>t {P'}c'{Q'}) \<longrightarrow> \<Turnstile>\<^sub>t {P}c{Q}" | |
inductive | |
thoare :: "'a cntxt \<Rightarrow> 'a assn \<Rightarrow> com \<Rightarrow> 'a assn \<Rightarrow> bool" | |
("(_ \<turnstile>\<^sub>t/ ({(1_)}/ (_)/ {(1_)}))" [50,0,0,0] 50) | |
where | |
Do: "C \<turnstile>\<^sub>t {\<lambda>z s. (\<forall>t \<in> f s . P z t) \<and> f s \<noteq> {}} Do f {P}" | |
| Semi: "\<lbrakk> C \<turnstile>\<^sub>t {P}c1{Q}; C \<turnstile>\<^sub>t {Q}c2{R} \<rbrakk> \<Longrightarrow> C \<turnstile>\<^sub>t {P} c1;c2 {R}" | |
| If: "\<lbrakk> C \<turnstile>\<^sub>t {\<lambda>z s. P z s \<and> b s}c{Q}; C \<turnstile>\<^sub>t {\<lambda>z s. P z s \<and> ~b s}d{Q} \<rbrakk> \<Longrightarrow> | |
C \<turnstile>\<^sub>t {P} IF b THEN c ELSE d {Q}" | |
| While: | |
"\<lbrakk>wf r; \<forall>s'. C \<turnstile>\<^sub>t {\<lambda>z s. P z s \<and> b s \<and> s' = s} c {\<lambda>z s. P z s \<and> (s,s') \<in> r}\<rbrakk> | |
\<Longrightarrow> C \<turnstile>\<^sub>t {P} WHILE b DO c {\<lambda>z s. P z s \<and> \<not>b s}" | |
| Call: | |
"\<lbrakk>wf r; \<forall>s'. {(\<lambda>z s. P z s \<and> (s,s') \<in> r, CALL, Q)} | |
\<turnstile>\<^sub>t {\<lambda>z s. P z s \<and> s = s'} body {Q}\<rbrakk> | |
\<Longrightarrow> {} \<turnstile>\<^sub>t {P} CALL {Q}" | |
| Asm: "{(P,CALL,Q)} \<turnstile>\<^sub>t {P} CALL {Q}" | |
| Conseq: | |
"\<lbrakk> C \<turnstile>\<^sub>t {P'}c{Q'}; | |
(\<forall>s t. (\<forall>z. P' z s \<longrightarrow> Q' z t) \<longrightarrow> (\<forall>z. P z s \<longrightarrow> Q z t)) \<and> | |
(\<forall>s. (\<exists>z. P z s) \<longrightarrow> (\<exists>z. P' z s)) \<rbrakk> | |
\<Longrightarrow> C \<turnstile>\<^sub>t {P}c{Q}" | |
| Local: "\<lbrakk> \<forall>s'. C \<turnstile>\<^sub>t {\<lambda>z s. P z s' \<and> s = f s'} c {\<lambda>z t. Q z (g s' t)} \<rbrakk> \<Longrightarrow> | |
C \<turnstile>\<^sub>t {P} LOCAL f;c;g {Q}" | |
abbreviation hoare1 :: "'a cntxt \<Rightarrow> 'a assn \<times> com \<times> 'a assn \<Rightarrow> bool" ("_ \<turnstile>\<^sub>t _") where | |
"C \<turnstile>\<^sub>t x \<equiv> C \<turnstile>\<^sub>t {fst x}fst (snd x){snd (snd x)}" | |
text\<open>The side condition in our rule of consequence looks quite different | |
from the one by Kleymann, but the two are in fact equivalent:\<close> | |
lemma "((\<forall>s t. (\<forall>z. P' z s \<longrightarrow> Q' z t) \<longrightarrow> (\<forall>z. P z s \<longrightarrow> Q z t)) \<and> | |
(\<forall>s. (\<exists>z. P z s) \<longrightarrow> (\<exists>z. P' z s))) | |
= (\<forall>z s. P z s \<longrightarrow> (\<forall>t.\<exists>z'. P' z' s \<and> (Q' z' t \<longrightarrow> Q z t)))" | |
by blast | |
text\<open>The key difference to the work by Kleymann (and America and de | |
Boer) is that soundness and completeness are shown for arbitrary, | |
i.e.\ unbounded nondeterminism. This is a significant extension and | |
appears to have been an open problem. The details are found below and | |
are explained in a separate paper~\cite{Nipkow-CSL02}.\<close> | |
lemma strengthen_pre: | |
"\<lbrakk> \<forall>z s. P' z s \<longrightarrow> P z s; C \<turnstile>\<^sub>t {P}c{Q} \<rbrakk> \<Longrightarrow> C \<turnstile>\<^sub>t {P'}c{Q}" | |
by(rule thoare.Conseq, assumption, blast) | |
lemma weaken_post: | |
"\<lbrakk> C \<turnstile>\<^sub>t {P}c{Q}; \<forall>z s. Q z s \<longrightarrow> Q' z s \<rbrakk> \<Longrightarrow> C \<turnstile>\<^sub>t {P}c{Q'}" | |
by(erule thoare.Conseq, blast) | |
lemmas tvalid_defs = tvalid_def ctvalid_def valid_defs | |
lemma [iff]: | |
"(\<Turnstile>\<^sub>t {\<lambda>z s. \<exists>n. P n z s}c{Q}) = (\<forall>n. \<Turnstile>\<^sub>t {P n}c{Q})" | |
apply(unfold tvalid_defs) | |
apply fast | |
done | |
lemma [iff]: | |
"(\<Turnstile>\<^sub>t {\<lambda>z s. P z s \<and> P'}c{Q}) = (P' \<longrightarrow> \<Turnstile>\<^sub>t {P}c{Q})" | |
apply(unfold tvalid_defs) | |
apply fast | |
done | |
lemma [iff]: "(\<Turnstile>\<^sub>t {P}CALL{Q}) = (\<Turnstile>\<^sub>t {P}body{Q})" | |
apply(unfold tvalid_defs) | |
apply fast | |
done | |
theorem "C \<turnstile>\<^sub>t {P}c{Q} \<Longrightarrow> C \<Turnstile>\<^sub>t {P}c{Q}" | |
apply(erule thoare.induct) | |
apply(simp only:tvalid_defs) | |
apply fast | |
apply(simp only:tvalid_defs) | |
apply fast | |
apply(simp only:tvalid_defs) | |
apply clarsimp | |
prefer 3 | |
apply(simp add:tvalid_defs) | |
prefer 3 | |
apply(simp only:tvalid_defs) | |
apply blast | |
apply(simp only:tvalid_defs) | |
apply(rule impI, rule conjI) | |
apply(rule allI) | |
apply(erule wf_induct) | |
apply clarify | |
apply(drule unfold_while[THEN iffD1]) | |
apply (simp split: if_split_asm) | |
apply fast | |
apply(rule allI, rule allI) | |
apply(erule wf_induct) | |
apply clarify | |
apply(case_tac "b x") | |
prefer 2 | |
apply (erule termi.WhileFalse) | |
apply(rule termi.WhileTrue, assumption) | |
apply fast | |
apply (subgoal_tac "(t,x):r") | |
apply fast | |
apply blast | |
apply(simp (no_asm_use) add:ctvalid_def) | |
apply(subgoal_tac "\<forall>n. \<Turnstile>\<^sub>t {\<lambda>z s. P z s \<and> s=n} body {Q}") | |
apply(simp (no_asm_use) add:tvalid_defs) | |
apply blast | |
apply(rule allI) | |
apply(erule wf_induct) | |
apply(unfold tvalid_defs) | |
apply fast | |
apply fast | |
done | |
definition MGT\<^sub>t :: "com \<Rightarrow> state assn \<times> com \<times> state assn" where | |
[simp]: "MGT\<^sub>t c = (\<lambda>z s. z = s \<and> c\<down>s, c, \<lambda>z t. z -c\<rightarrow> t)" | |
lemma MGT_implies_complete: | |
"{} \<turnstile>\<^sub>t MGT\<^sub>t c \<Longrightarrow> {} \<Turnstile>\<^sub>t {P}c{Q} \<Longrightarrow> {} \<turnstile>\<^sub>t {P}c{Q::state assn}" | |
apply(simp add: MGT\<^sub>t_def) | |
apply (erule thoare.Conseq) | |
apply(simp add: tvalid_defs) | |
apply blast | |
done | |
lemma while_termiE: "\<lbrakk> WHILE b DO c \<down> s; b s \<rbrakk> \<Longrightarrow> c \<down> s" | |
by(erule termi.cases, auto) | |
lemma while_termiE2: | |
"\<lbrakk> WHILE b DO c \<down> s; b s; s -c\<rightarrow> t \<rbrakk> \<Longrightarrow> WHILE b DO c \<down> t" | |
by(erule termi.cases, auto) | |
lemma MGT_lemma: "C \<turnstile>\<^sub>t MGT\<^sub>t CALL \<Longrightarrow> C \<turnstile>\<^sub>t MGT\<^sub>t c" | |
apply (simp) | |
apply(induct_tac c) | |
apply (rule strengthen_pre[OF _ thoare.Do]) | |
apply blast | |
apply(rename_tac com1 com2) | |
apply(rule_tac Q = "\<lambda>z s. z -com1\<rightarrow>s & com2\<down>s" in thoare.Semi) | |
apply(erule thoare.Conseq) | |
apply fast | |
apply(erule thoare.Conseq) | |
apply fast | |
apply(rule thoare.If) | |
apply(erule thoare.Conseq) | |
apply simp | |
apply(erule thoare.Conseq) | |
apply simp | |
defer | |
apply simp | |
apply(fast intro:thoare.Local elim!: thoare.Conseq) | |
apply(rename_tac b c) | |
apply(rule_tac P' = "\<lambda>z s. (z,s) \<in> ({(s,t). b s \<and> s -c\<rightarrow> t})^* \<and> | |
WHILE b DO c \<down> s" in thoare.Conseq) | |
apply(rule_tac thoare.While[OF wf_termi]) | |
apply(rule allI) | |
apply(erule thoare.Conseq) | |
apply(fastforce intro:rtrancl_into_rtrancl dest:while_termiE while_termiE2) | |
apply(rule conjI) | |
apply clarsimp | |
apply(erule_tac x = s in allE) | |
apply clarsimp | |
apply(erule converse_rtrancl_induct) | |
apply simp | |
apply(fast elim:exec.WhileTrue) | |
apply(fast intro: rtrancl_refl) | |
done | |
inductive_set | |
exec1 :: "((com list \<times> state) \<times> (com list \<times> state))set" | |
and exec1' :: "(com list \<times> state) \<Rightarrow> (com list \<times> state) \<Rightarrow> bool" ("_ \<rightarrow> _" [81,81] 100) | |
where | |
"cs0 \<rightarrow> cs1 \<equiv> (cs0,cs1) : exec1" | |
| Do[iff]: "t \<in> f s \<Longrightarrow> ((Do f)#cs,s) \<rightarrow> (cs,t)" | |
| Semi[iff]: "((c1;c2)#cs,s) \<rightarrow> (c1#c2#cs,s)" | |
| IfTrue: "b s \<Longrightarrow> ((IF b THEN c1 ELSE c2)#cs,s) \<rightarrow> (c1#cs,s)" | |
| IfFalse: "\<not>b s \<Longrightarrow> ((IF b THEN c1 ELSE c2)#cs,s) \<rightarrow> (c2#cs,s)" | |
| WhileFalse: "\<not>b s \<Longrightarrow> ((WHILE b DO c)#cs,s) \<rightarrow> (cs,s)" | |
| WhileTrue: "b s \<Longrightarrow> ((WHILE b DO c)#cs,s) \<rightarrow> (c#(WHILE b DO c)#cs,s)" | |
| Call[iff]: "(CALL#cs,s) \<rightarrow> (body#cs,s)" | |
| Local[iff]: "((LOCAL f;c;g)#cs,s) \<rightarrow> (c # Do(\<lambda>t. {g s t})#cs, f s)" | |
abbreviation | |
exectr :: "(com list \<times> state) \<Rightarrow> (com list \<times> state) \<Rightarrow> bool" ("_ \<rightarrow>\<^sup>* _" [81,81] 100) | |
where "cs0 \<rightarrow>\<^sup>* cs1 \<equiv> (cs0,cs1) : exec1^*" | |
inductive_cases exec1E[elim!]: | |
"([],s) \<rightarrow> (cs',s')" | |
"(Do f#cs,s) \<rightarrow> (cs',s')" | |
"((c1;c2)#cs,s) \<rightarrow> (cs',s')" | |
"((IF b THEN c1 ELSE c2)#cs,s) \<rightarrow> (cs',s')" | |
"((WHILE b DO c)#cs,s) \<rightarrow> (cs',s')" | |
"(CALL#cs,s) \<rightarrow> (cs',s')" | |
"((LOCAL f;c;g)#cs,s) \<rightarrow> (cs',s')" | |
lemma [iff]: "\<not> ([],s) \<rightarrow> u" | |
by (induct u) blast | |
lemma app_exec: "(cs,s) \<rightarrow> (cs',s') \<Longrightarrow> (cs@cs2,s) \<rightarrow> (cs'@cs2,s')" | |
apply(erule exec1.induct) | |
apply(simp_all del:fun_upd_apply) | |
apply(blast intro:exec1.intros)+ | |
done | |
lemma app_execs: "(cs,s) \<rightarrow>\<^sup>* (cs',s') \<Longrightarrow> (cs@cs2,s) \<rightarrow>\<^sup>* (cs'@cs2,s')" | |
apply(erule rtrancl_induct2) | |
apply blast | |
apply(blast intro:app_exec rtrancl_trans) | |
done | |
lemma exec_impl_execs[rule_format]: | |
"s -c\<rightarrow> s' \<Longrightarrow> \<forall>cs. (c#cs,s) \<rightarrow>\<^sup>* (cs,s')" | |
apply(erule exec.induct) | |
apply blast | |
apply(blast intro:rtrancl_trans) | |
apply(blast intro:exec1.IfTrue rtrancl_trans) | |
apply(blast intro:exec1.IfFalse rtrancl_trans) | |
apply(blast intro:exec1.WhileFalse rtrancl_trans) | |
apply(blast intro:exec1.WhileTrue rtrancl_trans) | |
apply(blast intro: rtrancl_trans) | |
apply(blast intro: rtrancl_trans) | |
done | |
inductive | |
execs :: "state \<Rightarrow> com list \<Rightarrow> state \<Rightarrow> bool" ("_/ =_\<Rightarrow>/ _" [50,0,50] 50) | |
where | |
"s =[]\<Rightarrow> s" | |
| "s -c\<rightarrow> t \<Longrightarrow> t =cs\<Rightarrow> u \<Longrightarrow> s =c#cs\<Rightarrow> u" | |
inductive_cases [elim!]: | |
"s =[]\<Rightarrow> t" | |
"s =c#cs\<Rightarrow> t" | |
theorem exec1s_impl_execs: "(cs,s) \<rightarrow>\<^sup>* ([],t) \<Longrightarrow> s =cs\<Rightarrow> t" | |
apply(erule converse_rtrancl_induct2) | |
apply(rule execs.intros) | |
apply(erule exec1.cases) | |
apply(blast intro:execs.intros) | |
apply(blast intro:execs.intros) | |
apply(fastforce intro:execs.intros) | |
apply(fastforce intro:execs.intros) | |
apply(blast intro:execs.intros exec.intros) | |
apply(blast intro:execs.intros exec.intros) | |
apply(blast intro:execs.intros exec.intros) | |
apply(blast intro:execs.intros exec.intros) | |
done | |
theorem exec1s_impl_exec: "([c],s) \<rightarrow>\<^sup>* ([],t) \<Longrightarrow> s -c\<rightarrow> t" | |
by(blast dest: exec1s_impl_execs) | |
primrec termis :: "com list \<Rightarrow> state \<Rightarrow> bool" (infixl "\<Down>" 60) where | |
"[]\<Down>s = True" | |
| "c#cs \<Down> s = (c\<down>s \<and> (\<forall>t. s -c\<rightarrow> t \<longrightarrow> cs\<Down>t))" | |
lemma exec1_pres_termis: "(cs,s) \<rightarrow> (cs',s') \<Longrightarrow> cs\<Down>s \<longrightarrow> cs'\<Down>s'" | |
apply(erule exec1.induct) | |
apply(simp_all) | |
apply blast | |
apply(blast intro:while_termiE while_termiE2 exec.WhileTrue) | |
apply blast | |
done | |
lemma execs_pres_termis: "(cs,s) \<rightarrow>\<^sup>* (cs',s') \<Longrightarrow> cs\<Down>s \<longrightarrow> cs'\<Down>s'" | |
apply(erule rtrancl_induct2) | |
apply blast | |
apply(blast dest:exec1_pres_termis) | |
done | |
lemma execs_pres_termi: "\<lbrakk> ([c],s) \<rightarrow>\<^sup>* (c'#cs',s'); c\<down>s \<rbrakk> \<Longrightarrow> c'\<down>s'" | |
apply(insert execs_pres_termis[of "[c]" _ "c'#cs'",simplified]) | |
apply blast | |
done | |
definition | |
termi_call_steps :: "(state \<times> state)set" where | |
"termi_call_steps = {(t,s). body\<down>s \<and> (\<exists>cs. ([body], s) \<rightarrow>\<^sup>* (CALL # cs, t))}" | |
lemma lem: | |
"\<forall>y. (a,y)\<in>r\<^sup>+ \<longrightarrow> P a \<longrightarrow> P y \<Longrightarrow> ((b,a) \<in> {(y,x). P x \<and> (x,y):r}\<^sup>+) = ((b,a) \<in> {(y,x). P x \<and> (x,y)\<in>r\<^sup>+})" | |
apply(rule iffI) | |
apply clarify | |
apply(erule trancl_induct) | |
apply blast | |
apply(blast intro:trancl_trans) | |
apply clarify | |
apply(erule trancl_induct) | |
apply blast | |
apply(blast intro:trancl_trans) | |
done | |
lemma renumber_aux: | |
"\<lbrakk>\<forall>i. (a,f i) : r^* \<and> (f i,f(Suc i)) : r; (a,b) : r^* \<rbrakk> \<Longrightarrow> b = f 0 \<longrightarrow> (\<exists>f. f 0 = a & (\<forall>i. (f i, f(Suc i)) : r))" | |
apply(erule converse_rtrancl_induct) | |
apply blast | |
apply(clarsimp) | |
apply(rule_tac x="\<lambda>i. case i of 0 \<Rightarrow> y | Suc i \<Rightarrow> fa i" in exI) | |
apply simp | |
apply clarify | |
apply(case_tac i) | |
apply simp_all | |
done | |
lemma renumber: | |
"\<forall>i. (a,f i) : r^* \<and> (f i,f(Suc i)) : r \<Longrightarrow> \<exists>f. f 0 = a & (\<forall>i. (f i, f(Suc i)) : r)" | |
by(blast dest:renumber_aux) | |
definition inf :: "com list \<Rightarrow> state \<Rightarrow> bool" where | |
"inf cs s \<longleftrightarrow> (\<exists>f. f 0 = (cs,s) \<and> (\<forall>i. f i \<rightarrow> f(Suc i)))" | |
lemma [iff]: "\<not> inf [] s" | |
apply(unfold inf_def) | |
apply clarify | |
apply(erule_tac x = 0 in allE) | |
apply simp | |
done | |
lemma [iff]: "\<not> inf [Do f] s" | |
apply(unfold inf_def) | |
apply clarify | |
apply(frule_tac x = 0 in spec) | |
apply(erule_tac x = 1 in allE) | |
apply(case_tac "fa (Suc 0)") | |
apply clarsimp | |
done | |
lemma [iff]: "inf ((c1;c2)#cs) s = inf (c1#c2#cs) s" | |
apply(unfold inf_def) | |
apply(rule iffI) | |
apply clarify | |
apply(rule_tac x = "\<lambda>i. f(Suc i)" in exI) | |
apply(frule_tac x = 0 in spec) | |
apply(case_tac "f (Suc 0)") | |
apply clarsimp | |
apply clarify | |
apply(rule_tac x = "\<lambda>i. case i of 0 \<Rightarrow> ((c1;c2)#cs,s) | Suc i \<Rightarrow> f i" in exI) | |
apply(simp split:nat.split) | |
done | |
lemma [iff]: "inf ((IF b THEN c1 ELSE c2)#cs) s = | |
inf ((if b s then c1 else c2)#cs) s" | |
apply(unfold inf_def) | |
apply(rule iffI) | |
apply clarsimp | |
apply(frule_tac x = 0 in spec) | |
apply (case_tac "f (Suc 0)") | |
apply(rule conjI) | |
apply clarsimp | |
apply(rule_tac x = "\<lambda>i. f(Suc i)" in exI) | |
apply clarsimp | |
apply clarsimp | |
apply(rule_tac x = "\<lambda>i. f(Suc i)" in exI) | |
apply clarsimp | |
apply clarsimp | |
apply(rule_tac x = "\<lambda>i. case i of 0 \<Rightarrow> ((IF b THEN c1 ELSE c2)#cs,s) | Suc i \<Rightarrow> f i" in exI) | |
apply(simp add: exec1.intros split:nat.split) | |
done | |
lemma [simp]: | |
"inf ((WHILE b DO c)#cs) s = | |
(if b s then inf (c#(WHILE b DO c)#cs) s else inf cs s)" | |
apply(unfold inf_def) | |
apply(rule iffI) | |
apply clarsimp | |
apply(frule_tac x = 0 in spec) | |
apply (case_tac "f (Suc 0)") | |
apply(rule conjI) | |
apply clarsimp | |
apply(rule_tac x = "\<lambda>i. f(Suc i)" in exI) | |
apply clarsimp | |
apply clarsimp | |
apply(rule_tac x = "\<lambda>i. f(Suc i)" in exI) | |
apply clarsimp | |
apply (clarsimp split:if_splits) | |
apply(rule_tac x = "\<lambda>i. case i of 0 \<Rightarrow> ((WHILE b DO c)#cs,s) | Suc i \<Rightarrow> f i" in exI) | |
apply(simp add: exec1.intros split:nat.split) | |
apply(rule_tac x = "\<lambda>i. case i of 0 \<Rightarrow> ((WHILE b DO c)#cs,s) | Suc i \<Rightarrow> f i" in exI) | |
apply(simp add: exec1.intros split:nat.split) | |
done | |
lemma [iff]: "inf (CALL#cs) s = inf (body#cs) s" | |
apply(unfold inf_def) | |
apply(rule iffI) | |
apply clarsimp | |
apply(frule_tac x = 0 in spec) | |
apply (case_tac "f (Suc 0)") | |
apply clarsimp | |
apply(rule_tac x = "\<lambda>i. f(Suc i)" in exI) | |
apply clarsimp | |
apply clarsimp | |
apply(rule_tac x = "\<lambda>i. case i of 0 \<Rightarrow> (CALL#cs,s) | Suc i \<Rightarrow> f i" in exI) | |
apply(simp add: exec1.intros split:nat.split) | |
done | |
lemma [iff]: "inf ((LOCAL f;c;g)#cs) s = | |
inf (c#Do(\<lambda>t. {g s t})#cs) (f s)" | |
apply(unfold inf_def) | |
apply(rule iffI) | |
apply clarsimp | |
apply(rename_tac F) | |
apply(frule_tac x = 0 in spec) | |
apply (case_tac "F (Suc 0)") | |
apply clarsimp | |
apply(rule_tac x = "\<lambda>i. F(Suc i)" in exI) | |
apply clarsimp | |
apply (clarsimp) | |
apply(rename_tac F) | |
apply(rule_tac x = "\<lambda>i. case i of 0 \<Rightarrow> ((LOCAL f;c;g)#cs,s) | Suc i \<Rightarrow> F i" in exI) | |
apply(simp add: exec1.intros split:nat.split) | |
done | |
lemma exec1_only1_aux: "(ccs,s) \<rightarrow> (cs',t) \<Longrightarrow> | |
\<forall>c cs. ccs = c#cs \<longrightarrow> (\<exists>cs1. cs' = cs1 @ cs)" | |
apply(erule exec1.induct) | |
apply blast | |
apply force+ | |
done | |
lemma exec1_only1: "(c#cs,s) \<rightarrow> (cs',t) \<Longrightarrow> \<exists>cs1. cs' = cs1 @ cs" | |
by(blast dest:exec1_only1_aux) | |
lemma exec1_drop_suffix_aux: | |
"(cs12,s) \<rightarrow> (cs1'2,s') \<Longrightarrow> \<forall>cs1 cs2 cs1'. | |
cs12 = cs1@cs2 & cs1'2 = cs1'@cs2 & cs1 \<noteq> [] \<longrightarrow> (cs1,s) \<rightarrow> (cs1',s')" | |
apply(erule exec1.induct) | |
apply (force intro:exec1.intros simp add: neq_Nil_conv)+ | |
done | |
lemma exec1_drop_suffix: | |
"(cs1@cs2,s) \<rightarrow> (cs1'@cs2,s') \<Longrightarrow> cs1 \<noteq> [] \<Longrightarrow> (cs1,s) \<rightarrow> (cs1',s')" | |
by(blast dest:exec1_drop_suffix_aux) | |
lemma execs_drop_suffix[rule_format(no_asm)]: | |
"\<lbrakk> f 0 = (c#cs,s);\<forall>i. f(i) \<rightarrow> f(Suc i) \<rbrakk> \<Longrightarrow> | |
(\<forall>i<k. p i \<noteq> [] & fst(f i) = p i@cs) \<longrightarrow> fst(f k) = p k@cs | |
\<longrightarrow> ([c],s) \<rightarrow>\<^sup>* (p k,snd(f k))" | |
apply(induct_tac k) | |
apply simp | |
apply (clarsimp) | |
apply(erule rtrancl_into_rtrancl) | |
apply(erule_tac x = n in allE) | |
apply(erule_tac x = n in allE) | |
apply(case_tac "f n") | |
apply(case_tac "f(Suc n)") | |
apply simp | |
apply(blast dest:exec1_drop_suffix) | |
done | |
lemma execs_drop_suffix0: | |
"\<lbrakk> f 0 = (c#cs,s);\<forall>i. f(i) \<rightarrow> f(Suc i); \<forall>i<k. p i \<noteq> [] & fst(f i) = p i@cs; | |
fst(f k) = cs; p k = [] \<rbrakk> \<Longrightarrow> ([c],s) \<rightarrow>\<^sup>* ([],snd(f k))" | |
apply(drule execs_drop_suffix,assumption,assumption) | |
apply simp | |
apply simp | |
done | |
lemma skolemize1: "\<forall>x. P x \<longrightarrow> (\<exists>y. Q x y) \<Longrightarrow> \<exists>f.\<forall>x. P x \<longrightarrow> Q x (f x)" | |
apply(rule_tac x = "\<lambda>x. SOME y. Q x y" in exI) | |
apply(fast intro:someI2) | |
done | |
lemma least_aux: "\<lbrakk>f 0 = (c # cs, s); \<forall>i. f i \<rightarrow> f (Suc i); | |
fst(f k) = cs; \<forall>i<k. fst(f i) \<noteq> cs\<rbrakk> | |
\<Longrightarrow> \<forall>i \<le> k. (\<exists>p. (p \<noteq> []) = (i < k) & fst(f i) = p @ cs)" | |
apply(rule allI) | |
apply(induct_tac i) | |
apply simp | |
apply (rule ccontr) | |
apply simp | |
apply clarsimp | |
apply(drule order_le_imp_less_or_eq) | |
apply(erule disjE) | |
prefer 2 | |
apply simp | |
apply simp | |
apply(erule_tac x = n in allE) | |
apply(erule_tac x = "Suc n" in allE) | |
apply(case_tac "f n") | |
apply(case_tac "f(Suc n)") | |
apply simp | |
apply(rename_tac sn csn1 sn1) | |
apply (clarsimp simp add: neq_Nil_conv) | |
apply(drule exec1_only1) | |
apply (clarsimp simp add: neq_Nil_conv) | |
apply(erule disjE) | |
apply clarsimp | |
apply clarsimp | |
apply(case_tac cs1) | |
apply simp | |
apply simp | |
done | |
lemma least_lem: "\<lbrakk>f 0 = (c#cs,s); \<forall>i. f i \<rightarrow> f(Suc i); \<exists>i. fst(f i) = cs \<rbrakk> | |
\<Longrightarrow> \<exists>k. fst(f k) = cs & ([c],s) \<rightarrow>\<^sup>* ([],snd(f k))" | |
apply(rule_tac x="LEAST i. fst(f i) = cs" in exI) | |
apply(rule conjI) | |
apply(fast intro: LeastI) | |
apply(subgoal_tac | |
"\<forall>i\<le>LEAST i. fst (f i) = cs. \<exists>p. ((p \<noteq> []) = (i<(LEAST i. fst (f i) = cs))) & fst(f i) = p@cs") | |
apply(drule skolemize1) | |
apply clarify | |
apply(rename_tac p) | |
apply(erule_tac p=p in execs_drop_suffix0, assumption) | |
apply (blast dest:order_less_imp_le) | |
apply(fast intro: LeastI) | |
apply(erule thin_rl) | |
apply(erule_tac x = "LEAST j. fst (f j) = fst (f i)" in allE) | |
apply blast | |
apply(erule least_aux,assumption) | |
apply(fast intro: LeastI) | |
apply clarify | |
apply(drule not_less_Least) | |
apply blast | |
done | |
lemma skolemize2: "\<forall>x.\<exists>y. P x y \<Longrightarrow> \<exists>f.\<forall>x. P x (f x)" | |
apply(rule_tac x = "\<lambda>x. SOME y. P x y" in exI) | |
apply(fast intro:someI2) | |
done | |
lemma inf_cases: "inf (c#cs) s \<Longrightarrow> inf [c] s \<or> (\<exists>t. s -c\<rightarrow> t \<and> inf cs t)" | |
apply(unfold inf_def) | |
apply (clarsimp del: disjCI) | |
apply(case_tac "\<exists>i. fst(f i) = cs") | |
apply(rule disjI2) | |
apply(drule least_lem, assumption, assumption) | |
apply clarify | |
apply(drule exec1s_impl_exec) | |
apply(case_tac "f k") | |
apply simp | |
apply (rule exI, rule conjI, assumption) | |
apply(rule_tac x="\<lambda>i. f(i+k)" in exI) | |
apply (clarsimp) | |
apply(rule disjI1) | |
apply simp | |
apply(subgoal_tac "\<forall>i. \<exists>p. p \<noteq> [] \<and> fst(f i) = p@cs") | |
apply(drule skolemize2) | |
apply clarify | |
apply(rename_tac p) | |
apply(rule_tac x = "\<lambda>i. (p i, snd(f i))" in exI) | |
apply(rule conjI) | |
apply(erule_tac x = 0 in allE, erule conjE) | |
apply simp | |
apply clarify | |
apply(erule_tac x = i in allE) | |
apply(erule_tac x = i in allE) | |
apply(frule_tac x = i in spec) | |
apply(erule_tac x = "Suc i" in allE) | |
apply(case_tac "f i") | |
apply(case_tac "f(Suc i)") | |
apply clarsimp | |
apply(blast intro:exec1_drop_suffix) | |
apply(clarify) | |
apply(induct_tac i) | |
apply force | |
apply clarsimp | |
apply(case_tac p) | |
apply blast | |
apply(erule_tac x=n in allE) | |
apply(erule_tac x="Suc n" in allE) | |
apply(case_tac "f n") | |
apply(case_tac "f(Suc n)") | |
apply clarsimp | |
apply(drule exec1_only1) | |
apply clarsimp | |
done | |
lemma termi_impl_not_inf: "c \<down> s \<Longrightarrow> \<not> inf [c] s" | |
apply(erule termi.induct) | |
(*Do*) | |
apply clarify | |
(*Semi*) | |
apply(blast dest:inf_cases) | |
(* Cond *) | |
apply clarsimp | |
apply clarsimp | |
(*While*) | |
apply clarsimp | |
apply(fastforce dest:inf_cases) | |
(*Call*) | |
apply blast | |
(*Local*) | |
apply(blast dest:inf_cases) | |
done | |
lemma termi_impl_no_inf_chain: | |
"c\<down>s \<Longrightarrow> \<not>(\<exists>f. f 0 = ([c],s) \<and> (\<forall>i::nat. (f i, f(i+1)) : exec1^+))" | |
apply(subgoal_tac "wf({(y,x). ([c],s) \<rightarrow>\<^sup>* x & x \<rightarrow> y}^+)") | |
apply(simp only:wf_iff_no_infinite_down_chain) | |
apply(erule contrapos_nn) | |
apply clarify | |
apply(subgoal_tac "\<forall>i. ([c], s) \<rightarrow>\<^sup>* f i") | |
prefer 2 | |
apply(rule allI) | |
apply(induct_tac i) | |
apply simp | |
apply simp | |
apply(blast intro: trancl_into_rtrancl rtrancl_trans) | |
apply(rule_tac x=f in exI) | |
apply clarify | |
apply(drule_tac x=i in spec) | |
apply(subst lem) | |
apply(blast intro: trancl_into_rtrancl rtrancl_trans) | |
apply clarsimp | |
apply(rule wf_trancl) | |
apply(simp only:wf_iff_no_infinite_down_chain) | |
apply(clarify) | |
apply simp | |
apply(drule renumber) | |
apply(fold inf_def) | |
apply(simp add: termi_impl_not_inf) | |
done | |
primrec cseq :: "(nat \<Rightarrow> state) \<Rightarrow> nat \<Rightarrow> com list" where | |
"cseq S 0 = []" | |
| "cseq S (Suc i) = (SOME cs. ([body], S i) \<rightarrow>\<^sup>* (CALL # cs, S(i+1))) @ cseq S i" | |
lemma wf_termi_call_steps: "wf termi_call_steps" | |
apply(unfold termi_call_steps_def) | |
apply(simp only:wf_iff_no_infinite_down_chain) | |
apply(clarify) | |
apply(rename_tac S) | |
apply simp | |
apply(subgoal_tac "\<exists>Cs. Cs 0 = [] & (\<forall>i. (body # Cs i,S i) \<rightarrow>\<^sup>* (CALL # Cs(i+1), S(i+1)))") | |
prefer 2 | |
apply(rule_tac x = "cseq S" in exI) | |
apply clarsimp | |
apply(erule_tac x=i in allE) | |
apply(clarify) | |
apply(erule_tac P = "\<lambda>cs.([body],S i) \<rightarrow>\<^sup>* (CALL # cs, S(Suc i))" in someI2) | |
apply(fastforce dest:app_execs) | |
apply clarify | |
apply(subgoal_tac "\<forall>i. ((body # Cs i,S i), (body # Cs(i+1), S(i+1))) : exec1^+") | |
prefer 2 | |
apply(blast intro:rtrancl_into_trancl1) | |
apply(subgoal_tac "\<exists>f. f 0 = ([body],S 0) \<and> (\<forall>i. (f i, f(i+1)) : exec1^+)") | |
prefer 2 | |
apply(rule_tac x = "\<lambda>i.(body#Cs i,S i)" in exI) | |
apply blast | |
apply(blast dest:termi_impl_no_inf_chain) | |
done | |
lemma CALL_lemma: | |
"{(\<lambda>z s. (z=s \<and> body\<down>s) \<and> (s,t) \<in> termi_call_steps, CALL, \<lambda>z s. z -body\<rightarrow> s)} \<turnstile>\<^sub>t | |
{\<lambda>z s. (z=s \<and> body\<down>t) \<and> (\<exists>cs. ([body],t) \<rightarrow>\<^sup>* (c#cs,s))} c {\<lambda>z s. z -c\<rightarrow> s}" | |
apply(induct_tac c) | |
(*Do*) | |
apply (rule strengthen_pre[OF _ thoare.Do]) | |
apply(blast dest: execs_pres_termi) | |
(*Semi*) | |
apply(rename_tac c1 c2) | |
apply(rule_tac Q = "\<lambda>z s. body\<down>t & (\<exists>cs. ([body], t) \<rightarrow>\<^sup>* (c2#cs,s)) & z -c1\<rightarrow>s & c2\<down>s" in thoare.Semi) | |
apply(erule thoare.Conseq) | |
apply(rule conjI) | |
apply clarsimp | |
apply(subgoal_tac "s -c1\<rightarrow> ta") | |
prefer 2 | |
apply(blast intro: exec1.Semi exec_impl_execs rtrancl_trans) | |
apply(subgoal_tac "([body], t) \<rightarrow>\<^sup>* (c2 # cs, ta)") | |
prefer 2 | |
apply(blast intro:exec1.Semi[THEN r_into_rtrancl] exec_impl_execs rtrancl_trans) | |
apply(subgoal_tac "([body], t) \<rightarrow>\<^sup>* (c2 # cs, ta)") | |
prefer 2 | |
apply(blast intro: exec_impl_execs rtrancl_trans) | |
apply(blast intro:exec_impl_execs rtrancl_trans execs_pres_termi) | |
apply(fast intro: exec1.Semi rtrancl_trans) | |
apply(erule thoare.Conseq) | |
apply blast | |
(*Call*) | |
prefer 3 | |
apply(simp only:termi_call_steps_def) | |
apply(rule thoare.Conseq[OF thoare.Asm]) | |
apply(blast dest: execs_pres_termi) | |
(*If*) | |
apply(rule thoare.If) | |
apply(erule thoare.Conseq) | |
apply simp | |
apply(blast intro: exec1.IfTrue rtrancl_trans) | |
apply(erule thoare.Conseq) | |
apply simp | |
apply(blast intro: exec1.IfFalse rtrancl_trans) | |
(*Var*) | |
defer | |
apply simp | |
apply(rule thoare.Local) | |
apply(rule allI) | |
apply(erule thoare.Conseq) | |
apply (clarsimp) | |
apply(rule conjI) | |
apply (clarsimp) | |
apply(drule rtrancl_trans[OF _ r_into_rtrancl[OF exec1.Local]]) | |
apply(fast) | |
apply (clarsimp) | |
apply(drule rtrancl_trans[OF _ r_into_rtrancl[OF exec1.Local]]) | |
apply blast | |
apply(rename_tac b c) | |
apply(rule_tac P' = "\<lambda>z s. (z,s) \<in> ({(s,t). b s \<and> s -c\<rightarrow> t})^* \<and> body \<down> t \<and> | |
(\<exists>cs. ([body], t) \<rightarrow>\<^sup>* ((WHILE b DO c) # cs, s))" in thoare.Conseq) | |
apply(rule_tac thoare.While[OF wf_termi]) | |
apply(rule allI) | |
apply(erule thoare.Conseq) | |
apply clarsimp | |
apply(rule conjI) | |
apply clarsimp | |
apply(rule conjI) | |
apply(blast intro: rtrancl_trans exec1.WhileTrue) | |
apply(rule conjI) | |
apply(rule exI, rule rtrancl_trans, assumption) | |
apply(blast intro: exec1.WhileTrue exec_impl_execs rtrancl_trans) | |
apply(rule conjI) | |
apply(blast intro:execs_pres_termi) | |
apply(blast intro: exec1.WhileTrue exec_impl_execs rtrancl_trans) | |
apply(blast intro: exec1.WhileTrue exec_impl_execs rtrancl_trans) | |
apply(rule conjI) | |
apply clarsimp | |
apply(erule_tac x = s in allE) | |
apply clarsimp | |
apply(erule impE) | |
apply blast | |
apply clarify | |
apply(erule_tac a=s in converse_rtrancl_induct) | |
apply simp | |
apply(fast elim:exec.WhileTrue) | |
apply(fast intro: rtrancl_refl) | |
done | |
lemma CALL_cor: | |
"{(\<lambda>z s. (z=s \<and> body\<down>s) \<and> (s,t) \<in> termi_call_steps, CALL, \<lambda>z s. z -body\<rightarrow> s)} \<turnstile>\<^sub>t | |
{\<lambda>z s. (z=s \<and> body\<down>s) \<and> s = t} body {\<lambda>z s. z -body\<rightarrow> s}" | |
apply(rule strengthen_pre[OF _ CALL_lemma]) | |
apply blast | |
done | |
lemma MGT_CALL: "{} \<turnstile>\<^sub>t MGT\<^sub>t CALL" | |
apply(simp add: MGT\<^sub>t_def) | |
apply(blast intro:thoare.Call wf_termi_call_steps CALL_cor) | |
done | |
theorem "{} \<Turnstile>\<^sub>t {P}c{Q} \<Longrightarrow> {} \<turnstile>\<^sub>t {P}c{Q::state assn}" | |
apply(erule MGT_implies_complete[OF MGT_lemma[OF MGT_CALL]]) | |
done | |
end | |