Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
(* Author: Tobias Nipkow *) | |
section "Abstract State with Computable Ordering" | |
theory Abs_State | |
imports Abs_Int0 | |
"HOL-Library.Char_ord" "HOL-Library.List_Lexorder" | |
(* Library import merely to allow string lists to be sorted for output *) | |
begin | |
text\<open>A concrete type of state with computable \<open>\<sqsubseteq>\<close>:\<close> | |
datatype 'a st = FunDom "vname \<Rightarrow> 'a" "vname list" | |
fun "fun" where "fun (FunDom f xs) = f" | |
fun dom where "dom (FunDom f xs) = xs" | |
definition [simp]: "inter_list xs ys = [x\<leftarrow>xs. x \<in> set ys]" | |
definition "show_st S = [(x,fun S x). x \<leftarrow> sort(dom S)]" | |
definition "show_acom = map_acom (map_option show_st)" | |
definition "show_acom_opt = map_option show_acom" | |
definition "lookup F x = (if x : set(dom F) then fun F x else \<top>)" | |
definition "update F x y = | |
FunDom ((fun F)(x:=y)) (if x \<in> set(dom F) then dom F else x # dom F)" | |
lemma lookup_update: "lookup (update S x y) = (lookup S)(x:=y)" | |
by(rule ext)(auto simp: lookup_def update_def) | |
definition "\<gamma>_st \<gamma> F = {f. \<forall>x. f x \<in> \<gamma>(lookup F x)}" | |
instantiation st :: (SL_top) SL_top | |
begin | |
definition "le_st F G = (\<forall>x \<in> set(dom G). lookup F x \<sqsubseteq> fun G x)" | |
definition | |
"join_st F G = | |
FunDom (\<lambda>x. fun F x \<squnion> fun G x) (inter_list (dom F) (dom G))" | |
definition "\<top> = FunDom (\<lambda>x. \<top>) []" | |
instance | |
proof (standard, goal_cases) | |
case 2 thus ?case | |
apply(auto simp: le_st_def) | |
by (metis lookup_def preord_class.le_trans top) | |
qed (auto simp: le_st_def lookup_def join_st_def Top_st_def) | |
end | |
lemma mono_lookup: "F \<sqsubseteq> F' \<Longrightarrow> lookup F x \<sqsubseteq> lookup F' x" | |
by(auto simp add: lookup_def le_st_def) | |
lemma mono_update: "a \<sqsubseteq> a' \<Longrightarrow> S \<sqsubseteq> S' \<Longrightarrow> update S x a \<sqsubseteq> update S' x a'" | |
by(auto simp add: le_st_def lookup_def update_def) | |
locale Gamma = Val_abs where \<gamma>=\<gamma> for \<gamma> :: "'av::SL_top \<Rightarrow> val set" | |
begin | |
abbreviation \<gamma>\<^sub>f :: "'av st \<Rightarrow> state set" | |
where "\<gamma>\<^sub>f == \<gamma>_st \<gamma>" | |
abbreviation \<gamma>\<^sub>o :: "'av st option \<Rightarrow> state set" | |
where "\<gamma>\<^sub>o == \<gamma>_option \<gamma>\<^sub>f" | |
abbreviation \<gamma>\<^sub>c :: "'av st option acom \<Rightarrow> state set acom" | |
where "\<gamma>\<^sub>c == map_acom \<gamma>\<^sub>o" | |
lemma gamma_f_Top[simp]: "\<gamma>\<^sub>f Top = UNIV" | |
by(auto simp: Top_st_def \<gamma>_st_def lookup_def) | |
lemma gamma_o_Top[simp]: "\<gamma>\<^sub>o Top = UNIV" | |
by (simp add: Top_option_def) | |
(* FIXME (maybe also le \<rightarrow> sqle?) *) | |
lemma mono_gamma_f: "f \<sqsubseteq> g \<Longrightarrow> \<gamma>\<^sub>f f \<subseteq> \<gamma>\<^sub>f g" | |
apply(simp add:\<gamma>_st_def subset_iff lookup_def le_st_def split: if_splits) | |
by (metis UNIV_I mono_gamma gamma_Top subsetD) | |
lemma mono_gamma_o: | |
"sa \<sqsubseteq> sa' \<Longrightarrow> \<gamma>\<^sub>o sa \<subseteq> \<gamma>\<^sub>o sa'" | |
by(induction sa sa' rule: le_option.induct)(simp_all add: mono_gamma_f) | |
lemma mono_gamma_c: "ca \<sqsubseteq> ca' \<Longrightarrow> \<gamma>\<^sub>c ca \<le> \<gamma>\<^sub>c ca'" | |
by (induction ca ca' rule: le_acom.induct) (simp_all add:mono_gamma_o) | |
lemma in_gamma_option_iff: | |
"x : \<gamma>_option r u \<longleftrightarrow> (\<exists>u'. u = Some u' \<and> x : r u')" | |
by (cases u) auto | |
end | |
end | |