Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
(* Author: Tobias Nipkow *) | |
theory Abs_Int1_parity | |
imports Abs_Int1 | |
begin | |
subsection "Parity Analysis" | |
datatype parity = Even | Odd | Either | |
text\<open>Instantiation of class @{class preord} with type @{typ parity}:\<close> | |
instantiation parity :: preord | |
begin | |
text\<open>First the definition of the interface function \<open>\<sqsubseteq>\<close>. Note that | |
the header of the definition must refer to the ascii name @{const le} of the | |
constants as \<open>le_parity\<close> and the definition is named \<open>le_parity_def\<close>. Inside the definition the symbolic names can be used.\<close> | |
definition le_parity where | |
"x \<sqsubseteq> y = (y = Either \<or> x=y)" | |
text\<open>Now the instance proof, i.e.\ the proof that the definition fulfills | |
the axioms (assumptions) of the class. The initial proof-step generates the | |
necessary proof obligations.\<close> | |
instance | |
proof | |
fix x::parity show "x \<sqsubseteq> x" by(auto simp: le_parity_def) | |
next | |
fix x y z :: parity assume "x \<sqsubseteq> y" "y \<sqsubseteq> z" thus "x \<sqsubseteq> z" | |
by(auto simp: le_parity_def) | |
qed | |
end | |
text\<open>Instantiation of class @{class SL_top} with type @{typ parity}:\<close> | |
instantiation parity :: SL_top | |
begin | |
definition join_parity where | |
"x \<squnion> y = (if x \<sqsubseteq> y then y else if y \<sqsubseteq> x then x else Either)" | |
definition Top_parity where | |
"\<top> = Either" | |
text\<open>Now the instance proof. This time we take a lazy shortcut: we do not | |
write out the proof obligations but use the \<open>goali\<close> primitive to refer | |
to the assumptions of subgoal i and \<open>case?\<close> to refer to the | |
conclusion of subgoal i. The class axioms are presented in the same order as | |
in the class definition.\<close> | |
instance | |
proof (standard, goal_cases) | |
case 1 (*join1*) show ?case by(auto simp: le_parity_def join_parity_def) | |
next | |
case 2 (*join2*) show ?case by(auto simp: le_parity_def join_parity_def) | |
next | |
case 3 (*join least*) thus ?case by(auto simp: le_parity_def join_parity_def) | |
next | |
case 4 (*Top*) show ?case by(auto simp: le_parity_def Top_parity_def) | |
qed | |
end | |
text\<open>Now we define the functions used for instantiating the abstract | |
interpretation locales. Note that the Isabelle terminology is | |
\emph{interpretation}, not \emph{instantiation} of locales, but we use | |
instantiation to avoid confusion with abstract interpretation.\<close> | |
fun \<gamma>_parity :: "parity \<Rightarrow> val set" where | |
"\<gamma>_parity Even = {i. i mod 2 = 0}" | | |
"\<gamma>_parity Odd = {i. i mod 2 = 1}" | | |
"\<gamma>_parity Either = UNIV" | |
fun num_parity :: "val \<Rightarrow> parity" where | |
"num_parity i = (if i mod 2 = 0 then Even else Odd)" | |
fun plus_parity :: "parity \<Rightarrow> parity \<Rightarrow> parity" where | |
"plus_parity Even Even = Even" | | |
"plus_parity Odd Odd = Even" | | |
"plus_parity Even Odd = Odd" | | |
"plus_parity Odd Even = Odd" | | |
"plus_parity Either y = Either" | | |
"plus_parity x Either = Either" | |
text\<open>First we instantiate the abstract value interface and prove that the | |
functions on type @{typ parity} have all the necessary properties:\<close> | |
interpretation Val_abs | |
where \<gamma> = \<gamma>_parity and num' = num_parity and plus' = plus_parity | |
proof (standard, goal_cases) txt\<open>of the locale axioms\<close> | |
fix a b :: parity | |
assume "a \<sqsubseteq> b" thus "\<gamma>_parity a \<subseteq> \<gamma>_parity b" | |
by(auto simp: le_parity_def) | |
next txt\<open>The rest in the lazy, implicit way\<close> | |
case 2 show ?case by(auto simp: Top_parity_def) | |
next | |
case 3 show ?case by auto | |
next | |
case (4 _ a1 _ a2) thus ?case | |
proof(cases a1 a2 rule: parity.exhaust[case_product parity.exhaust]) | |
qed (auto, presburger) | |
qed | |
text\<open>Instantiating the abstract interpretation locale requires no more | |
proofs (they happened in the instatiation above) but delivers the | |
instantiated abstract interpreter which we call AI:\<close> | |
global_interpretation Abs_Int | |
where \<gamma> = \<gamma>_parity and num' = num_parity and plus' = plus_parity | |
defines aval_parity = aval' and step_parity = step' and AI_parity = AI | |
.. | |
subsubsection "Tests" | |
definition "test1_parity = | |
''x'' ::= N 1;; | |
WHILE Less (V ''x'') (N 100) DO ''x'' ::= Plus (V ''x'') (N 2)" | |
value "show_acom_opt (AI_parity test1_parity)" | |
definition "test2_parity = | |
''x'' ::= N 1;; | |
WHILE Less (V ''x'') (N 100) DO ''x'' ::= Plus (V ''x'') (N 3)" | |
value "show_acom ((step_parity \<top> ^^1) (anno None test2_parity))" | |
value "show_acom ((step_parity \<top> ^^2) (anno None test2_parity))" | |
value "show_acom ((step_parity \<top> ^^3) (anno None test2_parity))" | |
value "show_acom ((step_parity \<top> ^^4) (anno None test2_parity))" | |
value "show_acom ((step_parity \<top> ^^5) (anno None test2_parity))" | |
value "show_acom_opt (AI_parity test2_parity)" | |
subsubsection "Termination" | |
global_interpretation Abs_Int_mono | |
where \<gamma> = \<gamma>_parity and num' = num_parity and plus' = plus_parity | |
proof (standard, goal_cases) | |
case (1 a1 a2 b1 b2) thus ?case | |
proof(cases a1 a2 b1 b2 | |
rule: parity.exhaust[case_product parity.exhaust[case_product parity.exhaust[case_product parity.exhaust]]]) (* FIXME - UGLY! *) | |
qed (auto simp add:le_parity_def) | |
qed | |
definition m_parity :: "parity \<Rightarrow> nat" where | |
"m_parity x = (if x=Either then 0 else 1)" | |
lemma measure_parity: | |
"(strict{(x::parity,y). x \<sqsubseteq> y})^-1 \<subseteq> measure m_parity" | |
by(auto simp add: m_parity_def le_parity_def) | |
lemma measure_parity_eq: | |
"\<forall>x y::parity. x \<sqsubseteq> y \<and> y \<sqsubseteq> x \<longrightarrow> m_parity x = m_parity y" | |
by(auto simp add: m_parity_def le_parity_def) | |
lemma AI_parity_Some: "\<exists>c'. AI_parity c = Some c'" | |
by(rule AI_Some_measure[OF measure_parity measure_parity_eq]) | |
end | |