Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
Zhangir Azerbayev
squashed?
4365a98
raw
history blame
8.62 kB
theory SASP_Semantics
imports Main
begin
section \<open>Semantics of Fast-Downward's Multi-Valued Planning Tasks Language\<close>
subsection \<open>Syntax\<close>
type_synonym name = string
type_synonym ast_variable = "name \<times> nat option \<times> name list" (* var name, axiom layer, atom names *)
type_synonym ast_variable_section = "ast_variable list"
type_synonym ast_initial_state = "nat list"
type_synonym ast_goal = "(nat \<times> nat) list"
type_synonym ast_precond = "(nat \<times> nat)"
type_synonym ast_effect = "ast_precond list \<times> nat \<times> nat option \<times> nat"
type_synonym ast_operator = "name \<times> ast_precond list \<times> ast_effect list \<times> nat"
type_synonym ast_operator_section = "ast_operator list"
type_synonym ast_problem =
"ast_variable_section \<times> ast_initial_state \<times> ast_goal \<times> ast_operator_section"
type_synonym plan = "name list"
subsubsection \<open>Well-Formedness\<close>
locale ast_problem =
fixes problem :: ast_problem
begin
definition astDom :: ast_variable_section (* TODO: Dom \<rightarrow> Vars, D \<rightarrow> X*)
where "astDom \<equiv> case problem of (D,I,G,\<delta>) \<Rightarrow> D"
definition astI :: ast_initial_state
where "astI \<equiv> case problem of (D,I,G,\<delta>) \<Rightarrow> I"
definition astG :: ast_goal
where "astG \<equiv> case problem of (D,I,G,\<delta>) \<Rightarrow> G"
definition ast\<delta> :: ast_operator_section
where "ast\<delta> \<equiv> case problem of (D,I,G,\<delta>) \<Rightarrow> \<delta>"
definition "numVars \<equiv> length astDom"
definition "numVals x \<equiv> length (snd (snd (astDom!x)))"
definition "wf_partial_state ps \<equiv>
distinct (map fst ps)
\<and> (\<forall>(x,v) \<in> set ps. x < numVars \<and> v < numVals x)"
definition wf_operator :: "ast_operator \<Rightarrow> bool"
where "wf_operator \<equiv> \<lambda>(name, pres, effs, cost).
wf_partial_state pres
\<and> distinct (map (\<lambda>(_, v, _, _). v) effs) \<comment> \<open>This may be too restrictive\<close>
\<and> (\<forall>(epres,x,vp,v)\<in>set effs.
wf_partial_state epres
\<and> x < numVars \<and> v < numVals x
\<and> (case vp of None \<Rightarrow> True | Some v \<Rightarrow> v<numVals x)
)
"
definition "well_formed \<equiv>
\<comment> \<open>Initial state\<close>
length astI = numVars
\<and> (\<forall>x<numVars. astI!x < numVals x)
\<comment> \<open>Goal\<close>
\<and> wf_partial_state astG
\<comment> \<open>Operators\<close>
\<and> (distinct (map fst ast\<delta>))
\<and> (\<forall>\<pi>\<in>set ast\<delta>. wf_operator \<pi>)
"
end
locale wf_ast_problem = ast_problem +
assumes wf: well_formed
begin
lemma wf_initial:
"length astI = numVars"
"\<forall>x<numVars. astI!x < numVals x"
using wf unfolding well_formed_def by auto
lemma wf_goal: "wf_partial_state astG"
using wf unfolding well_formed_def by auto
lemma wf_operators:
"distinct (map fst ast\<delta>)"
"\<forall>\<pi>\<in>set ast\<delta>. wf_operator \<pi>"
using wf unfolding well_formed_def by auto
end
subsection \<open>Semantics as Transition System\<close>
type_synonym state = "nat \<rightharpoonup> nat"
type_synonym pstate = "nat \<rightharpoonup> nat"
context ast_problem
begin
definition Dom :: "nat set" where "Dom = {0..<numVars}"
definition range_of_var where "range_of_var x \<equiv> {0..<numVals x}"
definition valid_states :: "state set" where "valid_states \<equiv> {
s. dom s = Dom \<and> (\<forall>x\<in>Dom. the (s x) \<in> range_of_var x)
}"
definition I :: state
where "I v \<equiv> if v<length astI then Some (astI!v) else None"
definition subsuming_states :: "pstate \<Rightarrow> state set"
where "subsuming_states partial \<equiv> { s\<in>valid_states. partial \<subseteq>\<^sub>m s }"
definition G :: "state set"
where "G \<equiv> subsuming_states (map_of astG)"
end
definition implicit_pres :: "ast_effect list \<Rightarrow> ast_precond list" where
"implicit_pres effs \<equiv>
map (\<lambda>(_,v,vpre,_). (v,the vpre))
(filter (\<lambda>(_,_,vpre,_). vpre\<noteq>None) effs)"
context ast_problem
begin
definition lookup_operator :: "name \<Rightarrow> ast_operator option" where
"lookup_operator name \<equiv> find (\<lambda>(n,_,_,_). n=name) ast\<delta>"
definition enabled :: "name \<Rightarrow> state \<Rightarrow> bool"
where "enabled name s \<equiv>
case lookup_operator name of
Some (_,pres,effs,_) \<Rightarrow>
s\<in>subsuming_states (map_of pres)
\<and> s\<in>subsuming_states (map_of (implicit_pres effs))
| None \<Rightarrow> False"
definition eff_enabled :: "state \<Rightarrow> ast_effect \<Rightarrow> bool" where
"eff_enabled s \<equiv> \<lambda>(pres,_,_,_). s\<in>subsuming_states (map_of pres)"
definition execute :: "name \<Rightarrow> state \<Rightarrow> state" where
"execute name s \<equiv>
case lookup_operator name of
Some (_,_,effs,_) \<Rightarrow>
s ++ map_of (map (\<lambda>(_,x,_,v). (x,v)) (filter (eff_enabled s) effs))
| None \<Rightarrow> undefined
"
fun path_to where
"path_to s [] s' \<longleftrightarrow> s'=s"
| "path_to s (\<pi>#\<pi>s) s' \<longleftrightarrow> enabled \<pi> s \<and> path_to (execute \<pi> s) \<pi>s s'"
definition valid_plan :: "plan \<Rightarrow> bool"
where "valid_plan \<pi>s \<equiv> \<exists>s'\<in>G. path_to I \<pi>s s'"
end
(*
Next steps:
* well-formed stuff
* Executable SAS+ validator (well_formed and execute function)
*)
subsubsection \<open>Preservation of well-formedness\<close>
context wf_ast_problem
begin
lemma I_valid: "I \<in> valid_states"
using wf_initial
unfolding valid_states_def Dom_def I_def range_of_var_def
by (auto split:if_splits)
lemma lookup_operator_wf:
assumes "lookup_operator name = Some \<pi>"
shows "wf_operator \<pi>" "fst \<pi> = name"
proof -
obtain name' pres effs cost where [simp]: "\<pi>=(name',pres,effs,cost)" by (cases \<pi>)
hence [simp]: "name'=name" and IN_AST: "(name,pres,effs,cost) \<in> set ast\<delta>"
using assms
unfolding lookup_operator_def
apply -
apply (metis (mono_tags, lifting) case_prodD find_Some_iff)
by (metis (mono_tags, lifting) case_prodD find_Some_iff nth_mem)
from IN_AST show WF: "wf_operator \<pi>" "fst \<pi> = name"
unfolding enabled_def using wf_operators by auto
qed
lemma execute_preserves_valid:
assumes "s\<in>valid_states"
assumes "enabled name s"
shows "execute name s \<in> valid_states"
proof -
from \<open>enabled name s\<close> obtain name' pres effs cost where
[simp]: "lookup_operator name = Some (name',pres,effs,cost)"
unfolding enabled_def by (auto split: option.splits)
from lookup_operator_wf[OF this] have WF: "wf_operator (name,pres,effs,cost)" by simp
have X1: "s ++ m \<in> valid_states" if "\<forall>x v. m x = Some v \<longrightarrow> x<numVars \<and> v<numVals x" for m
using that \<open>s\<in>valid_states\<close>
by (auto
simp: valid_states_def Dom_def range_of_var_def map_add_def dom_def
split: option.splits)
have X2: "x<numVars" "v<numVals x"
if "map_of (map (\<lambda>(_, x, _, y). (x, y)) (filter (eff_enabled s) effs)) x = Some v"
for x v
proof -
from that obtain epres vp where "(epres,x,vp,v) \<in> set effs"
by (auto dest!: map_of_SomeD)
with WF show "x<numVars" "v<numVals x"
unfolding wf_operator_def by auto
qed
show ?thesis
using assms
unfolding enabled_def execute_def
by (auto intro!: X1 X2)
qed
lemma path_to_pres_valid:
assumes "s\<in>valid_states"
assumes "path_to s \<pi>s s'"
shows "s'\<in>valid_states"
using assms
by (induction s \<pi>s s' rule: path_to.induct) (auto simp: execute_preserves_valid)
end
end