Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
theory SASP_Semantics | |
imports Main | |
begin | |
section \<open>Semantics of Fast-Downward's Multi-Valued Planning Tasks Language\<close> | |
subsection \<open>Syntax\<close> | |
type_synonym name = string | |
type_synonym ast_variable = "name \<times> nat option \<times> name list" (* var name, axiom layer, atom names *) | |
type_synonym ast_variable_section = "ast_variable list" | |
type_synonym ast_initial_state = "nat list" | |
type_synonym ast_goal = "(nat \<times> nat) list" | |
type_synonym ast_precond = "(nat \<times> nat)" | |
type_synonym ast_effect = "ast_precond list \<times> nat \<times> nat option \<times> nat" | |
type_synonym ast_operator = "name \<times> ast_precond list \<times> ast_effect list \<times> nat" | |
type_synonym ast_operator_section = "ast_operator list" | |
type_synonym ast_problem = | |
"ast_variable_section \<times> ast_initial_state \<times> ast_goal \<times> ast_operator_section" | |
type_synonym plan = "name list" | |
subsubsection \<open>Well-Formedness\<close> | |
locale ast_problem = | |
fixes problem :: ast_problem | |
begin | |
definition astDom :: ast_variable_section (* TODO: Dom \<rightarrow> Vars, D \<rightarrow> X*) | |
where "astDom \<equiv> case problem of (D,I,G,\<delta>) \<Rightarrow> D" | |
definition astI :: ast_initial_state | |
where "astI \<equiv> case problem of (D,I,G,\<delta>) \<Rightarrow> I" | |
definition astG :: ast_goal | |
where "astG \<equiv> case problem of (D,I,G,\<delta>) \<Rightarrow> G" | |
definition ast\<delta> :: ast_operator_section | |
where "ast\<delta> \<equiv> case problem of (D,I,G,\<delta>) \<Rightarrow> \<delta>" | |
definition "numVars \<equiv> length astDom" | |
definition "numVals x \<equiv> length (snd (snd (astDom!x)))" | |
definition "wf_partial_state ps \<equiv> | |
distinct (map fst ps) | |
\<and> (\<forall>(x,v) \<in> set ps. x < numVars \<and> v < numVals x)" | |
definition wf_operator :: "ast_operator \<Rightarrow> bool" | |
where "wf_operator \<equiv> \<lambda>(name, pres, effs, cost). | |
wf_partial_state pres | |
\<and> distinct (map (\<lambda>(_, v, _, _). v) effs) \<comment> \<open>This may be too restrictive\<close> | |
\<and> (\<forall>(epres,x,vp,v)\<in>set effs. | |
wf_partial_state epres | |
\<and> x < numVars \<and> v < numVals x | |
\<and> (case vp of None \<Rightarrow> True | Some v \<Rightarrow> v<numVals x) | |
) | |
" | |
definition "well_formed \<equiv> | |
\<comment> \<open>Initial state\<close> | |
length astI = numVars | |
\<and> (\<forall>x<numVars. astI!x < numVals x) | |
\<comment> \<open>Goal\<close> | |
\<and> wf_partial_state astG | |
\<comment> \<open>Operators\<close> | |
\<and> (distinct (map fst ast\<delta>)) | |
\<and> (\<forall>\<pi>\<in>set ast\<delta>. wf_operator \<pi>) | |
" | |
end | |
locale wf_ast_problem = ast_problem + | |
assumes wf: well_formed | |
begin | |
lemma wf_initial: | |
"length astI = numVars" | |
"\<forall>x<numVars. astI!x < numVals x" | |
using wf unfolding well_formed_def by auto | |
lemma wf_goal: "wf_partial_state astG" | |
using wf unfolding well_formed_def by auto | |
lemma wf_operators: | |
"distinct (map fst ast\<delta>)" | |
"\<forall>\<pi>\<in>set ast\<delta>. wf_operator \<pi>" | |
using wf unfolding well_formed_def by auto | |
end | |
subsection \<open>Semantics as Transition System\<close> | |
type_synonym state = "nat \<rightharpoonup> nat" | |
type_synonym pstate = "nat \<rightharpoonup> nat" | |
context ast_problem | |
begin | |
definition Dom :: "nat set" where "Dom = {0..<numVars}" | |
definition range_of_var where "range_of_var x \<equiv> {0..<numVals x}" | |
definition valid_states :: "state set" where "valid_states \<equiv> { | |
s. dom s = Dom \<and> (\<forall>x\<in>Dom. the (s x) \<in> range_of_var x) | |
}" | |
definition I :: state | |
where "I v \<equiv> if v<length astI then Some (astI!v) else None" | |
definition subsuming_states :: "pstate \<Rightarrow> state set" | |
where "subsuming_states partial \<equiv> { s\<in>valid_states. partial \<subseteq>\<^sub>m s }" | |
definition G :: "state set" | |
where "G \<equiv> subsuming_states (map_of astG)" | |
end | |
definition implicit_pres :: "ast_effect list \<Rightarrow> ast_precond list" where | |
"implicit_pres effs \<equiv> | |
map (\<lambda>(_,v,vpre,_). (v,the vpre)) | |
(filter (\<lambda>(_,_,vpre,_). vpre\<noteq>None) effs)" | |
context ast_problem | |
begin | |
definition lookup_operator :: "name \<Rightarrow> ast_operator option" where | |
"lookup_operator name \<equiv> find (\<lambda>(n,_,_,_). n=name) ast\<delta>" | |
definition enabled :: "name \<Rightarrow> state \<Rightarrow> bool" | |
where "enabled name s \<equiv> | |
case lookup_operator name of | |
Some (_,pres,effs,_) \<Rightarrow> | |
s\<in>subsuming_states (map_of pres) | |
\<and> s\<in>subsuming_states (map_of (implicit_pres effs)) | |
| None \<Rightarrow> False" | |
definition eff_enabled :: "state \<Rightarrow> ast_effect \<Rightarrow> bool" where | |
"eff_enabled s \<equiv> \<lambda>(pres,_,_,_). s\<in>subsuming_states (map_of pres)" | |
definition execute :: "name \<Rightarrow> state \<Rightarrow> state" where | |
"execute name s \<equiv> | |
case lookup_operator name of | |
Some (_,_,effs,_) \<Rightarrow> | |
s ++ map_of (map (\<lambda>(_,x,_,v). (x,v)) (filter (eff_enabled s) effs)) | |
| None \<Rightarrow> undefined | |
" | |
fun path_to where | |
"path_to s [] s' \<longleftrightarrow> s'=s" | |
| "path_to s (\<pi>#\<pi>s) s' \<longleftrightarrow> enabled \<pi> s \<and> path_to (execute \<pi> s) \<pi>s s'" | |
definition valid_plan :: "plan \<Rightarrow> bool" | |
where "valid_plan \<pi>s \<equiv> \<exists>s'\<in>G. path_to I \<pi>s s'" | |
end | |
(* | |
Next steps: | |
* well-formed stuff | |
* Executable SAS+ validator (well_formed and execute function) | |
*) | |
subsubsection \<open>Preservation of well-formedness\<close> | |
context wf_ast_problem | |
begin | |
lemma I_valid: "I \<in> valid_states" | |
using wf_initial | |
unfolding valid_states_def Dom_def I_def range_of_var_def | |
by (auto split:if_splits) | |
lemma lookup_operator_wf: | |
assumes "lookup_operator name = Some \<pi>" | |
shows "wf_operator \<pi>" "fst \<pi> = name" | |
proof - | |
obtain name' pres effs cost where [simp]: "\<pi>=(name',pres,effs,cost)" by (cases \<pi>) | |
hence [simp]: "name'=name" and IN_AST: "(name,pres,effs,cost) \<in> set ast\<delta>" | |
using assms | |
unfolding lookup_operator_def | |
apply - | |
apply (metis (mono_tags, lifting) case_prodD find_Some_iff) | |
by (metis (mono_tags, lifting) case_prodD find_Some_iff nth_mem) | |
from IN_AST show WF: "wf_operator \<pi>" "fst \<pi> = name" | |
unfolding enabled_def using wf_operators by auto | |
qed | |
lemma execute_preserves_valid: | |
assumes "s\<in>valid_states" | |
assumes "enabled name s" | |
shows "execute name s \<in> valid_states" | |
proof - | |
from \<open>enabled name s\<close> obtain name' pres effs cost where | |
[simp]: "lookup_operator name = Some (name',pres,effs,cost)" | |
unfolding enabled_def by (auto split: option.splits) | |
from lookup_operator_wf[OF this] have WF: "wf_operator (name,pres,effs,cost)" by simp | |
have X1: "s ++ m \<in> valid_states" if "\<forall>x v. m x = Some v \<longrightarrow> x<numVars \<and> v<numVals x" for m | |
using that \<open>s\<in>valid_states\<close> | |
by (auto | |
simp: valid_states_def Dom_def range_of_var_def map_add_def dom_def | |
split: option.splits) | |
have X2: "x<numVars" "v<numVals x" | |
if "map_of (map (\<lambda>(_, x, _, y). (x, y)) (filter (eff_enabled s) effs)) x = Some v" | |
for x v | |
proof - | |
from that obtain epres vp where "(epres,x,vp,v) \<in> set effs" | |
by (auto dest!: map_of_SomeD) | |
with WF show "x<numVars" "v<numVals x" | |
unfolding wf_operator_def by auto | |
qed | |
show ?thesis | |
using assms | |
unfolding enabled_def execute_def | |
by (auto intro!: X1 X2) | |
qed | |
lemma path_to_pres_valid: | |
assumes "s\<in>valid_states" | |
assumes "path_to s \<pi>s s'" | |
shows "s'\<in>valid_states" | |
using assms | |
by (induction s \<pi>s s' rule: path_to.induct) (auto simp: execute_preserves_valid) | |
end | |
end | |