Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
(* Author: Andreas Lochbihler, Digital Asset | |
Author: Ognjen Maric, Digital Asset *) | |
theory Inclusion_Proof_Construction imports | |
ADS_Construction | |
begin | |
primrec blind_blindable :: "('a\<^sub>m \<Rightarrow> 'a\<^sub>h) \<Rightarrow> ('a\<^sub>m, 'a\<^sub>h) blindable\<^sub>m \<Rightarrow> ('a\<^sub>m, 'a\<^sub>h) blindable\<^sub>m" where | |
"blind_blindable h (Blinded x) = Blinded x" | |
| "blind_blindable h (Unblinded x) = Blinded (Content (h x))" | |
lemma hash_blind_blindable [simp]: "hash_blindable h (blind_blindable h x) = hash_blindable h x" | |
by(cases x) simp_all | |
subsection \<open>Inclusion proof construction for rose trees\<close> | |
(************************************************************) | |
subsubsection \<open> Hashing, embedding and blinding source trees \<close> | |
(************************************************************) | |
context fixes h :: "'a \<Rightarrow> 'a\<^sub>h" begin | |
fun hash_source_tree :: "'a rose_tree \<Rightarrow> 'a\<^sub>h rose_tree\<^sub>h" where | |
"hash_source_tree (Tree (data, subtrees)) = Tree\<^sub>h (Content (h data, map hash_source_tree subtrees))" | |
end | |
context fixes e :: "'a \<Rightarrow> 'a\<^sub>m" begin | |
fun embed_source_tree :: "'a rose_tree \<Rightarrow> ('a\<^sub>m, 'a\<^sub>h) rose_tree\<^sub>m" where | |
"embed_source_tree (Tree (data, subtrees)) = | |
Tree\<^sub>m (Unblinded (e data, map embed_source_tree subtrees))" | |
end | |
context fixes h :: "'a \<Rightarrow> 'a\<^sub>h" begin | |
fun blind_source_tree :: "'a rose_tree \<Rightarrow> ('a\<^sub>m, 'a\<^sub>h) rose_tree\<^sub>m" where | |
"blind_source_tree (Tree (data, subtrees)) = Tree\<^sub>m (Blinded (Content (h data, map (hash_source_tree h) subtrees)))" | |
end | |
case_of_simps blind_source_tree_cases: blind_source_tree.simps | |
fun is_blinded :: "('a\<^sub>m, 'a\<^sub>h) rose_tree\<^sub>m \<Rightarrow> bool" where | |
"is_blinded (Tree\<^sub>m (Blinded _)) = True" | |
| "is_blinded _ = False" | |
lemma hash_blinded_simp: "hash_tree h' (blind_source_tree h st) = hash_source_tree h st" | |
by(cases st rule: blind_source_tree.cases)(simp_all add: hash_rt_F\<^sub>m_def) | |
lemma hash_embedded_simp: | |
"hash_tree h (embed_source_tree e st) = hash_source_tree (h \<circ> e) st" | |
by(induction st rule: embed_source_tree.induct)(simp add: hash_rt_F\<^sub>m_def) | |
lemma blinded_embedded_same_hash: | |
"hash_tree h'' (blind_source_tree (h o e) st) = hash_tree h (embed_source_tree e st)" | |
by(simp add: hash_blinded_simp hash_embedded_simp) | |
lemma blinding_blinds [simp]: | |
"is_blinded (blind_source_tree h t)" | |
by(simp add: blind_source_tree_cases split: rose_tree.split) | |
lemma blinded_blinds_embedded: | |
"blinding_of_tree h bo (blind_source_tree (h o e) st) (embed_source_tree e st)" | |
by(cases st rule: blind_source_tree.cases)(simp_all add: hash_embedded_simp) | |
fun embed_hash_tree :: "'ha rose_tree\<^sub>h \<Rightarrow> ('a, 'ha) rose_tree\<^sub>m" where | |
"embed_hash_tree (Tree\<^sub>h h) = Tree\<^sub>m (Blinded h)" | |
(************************************************************) | |
subsubsection \<open>Auxiliary definitions: selectors and list splits\<close> | |
(************************************************************) | |
fun children :: "'a rose_tree \<Rightarrow> 'a rose_tree list" where | |
"children (Tree (data, subtrees)) = subtrees" | |
fun children\<^sub>m :: "('a, 'a\<^sub>h) rose_tree\<^sub>m \<Rightarrow> ('a, 'a\<^sub>h) rose_tree\<^sub>m list" where | |
"children\<^sub>m (Tree\<^sub>m (Unblinded (data, subtrees))) = subtrees" | |
| "children\<^sub>m _ = undefined" | |
fun splits :: "'a list \<Rightarrow> ('a list \<times> 'a \<times> 'a list) list" where | |
"splits [] = []" | |
| "splits (x#xs) = ([], x, xs) # map (\<lambda>(l, y, r). (x # l, y, r)) (splits xs)" | |
lemma splits_iff: "(l, a, r) \<in> set (splits ll) = (ll = l @ a # r)" | |
by(induction ll arbitrary: l a r)(auto simp add: Cons_eq_append_conv) | |
(************************************************************) | |
subsubsection \<open> Zippers \<close> | |
(************************************************************) | |
text \<open> Zippers provide a neat representation of tree-like ADSs when they have only a single | |
unblinded subtree. The zipper path provides the "inclusion proof" that the unblinded subtree is | |
included in a larger structure. \<close> | |
type_synonym 'a path_elem = "'a \<times> 'a rose_tree list \<times> 'a rose_tree list" | |
type_synonym 'a path = "'a path_elem list" | |
type_synonym 'a zipper = "'a path \<times> 'a rose_tree" | |
definition zipper_of_tree :: "'a rose_tree \<Rightarrow> 'a zipper" where | |
"zipper_of_tree t \<equiv> ([], t)" | |
fun tree_of_zipper :: "'a zipper \<Rightarrow> 'a rose_tree" where | |
"tree_of_zipper ([], t) = t" | |
| "tree_of_zipper ((a, l, r) # z, t) = tree_of_zipper (z, (Tree (a, (l @ t # r))))" | |
case_of_simps tree_of_zipper_cases: tree_of_zipper.simps | |
lemma tree_of_zipper_id[iff]: "tree_of_zipper (zipper_of_tree t) = t" | |
by(simp add: zipper_of_tree_def) | |
fun zipper_children :: "'a zipper \<Rightarrow> 'a zipper list" where | |
"zipper_children (p, Tree (a, ts)) = map (\<lambda>(l, t, r). ((a, l, r) # p, t)) (splits ts)" | |
lemma zipper_children_same_tree: | |
assumes "z' \<in> set (zipper_children z)" | |
shows "tree_of_zipper z' = tree_of_zipper z" | |
proof- | |
obtain p a ts where z: "z = (p, Tree (a, ts))" | |
using assms | |
by(cases z rule: zipper_children.cases) (simp_all) | |
then obtain l t r where ltr: "z' = ((a, l, r) # p, t)" and "(l, t, r) \<in> set (splits ts)" | |
using assms | |
by(auto) | |
with z show ?thesis | |
by(simp add: splits_iff) | |
qed | |
type_synonym ('a\<^sub>m, 'a\<^sub>h) path_elem\<^sub>m = "'a\<^sub>m \<times> ('a\<^sub>m, 'a\<^sub>h) rose_tree\<^sub>m list \<times> ('a\<^sub>m, 'a\<^sub>h) rose_tree\<^sub>m list" | |
type_synonym ('a\<^sub>m, 'a\<^sub>h) path\<^sub>m = "('a\<^sub>m, 'a\<^sub>h) path_elem\<^sub>m list" | |
type_synonym ('a\<^sub>m, 'a\<^sub>h) zipper\<^sub>m = "('a\<^sub>m, 'a\<^sub>h) path\<^sub>m \<times> ('a\<^sub>m, 'a\<^sub>h) rose_tree\<^sub>m" | |
definition zipper_of_tree\<^sub>m :: "('a\<^sub>m, 'a\<^sub>h) rose_tree\<^sub>m \<Rightarrow> ('a\<^sub>m, 'a\<^sub>h) zipper\<^sub>m" where | |
"zipper_of_tree\<^sub>m t \<equiv> ([], t)" | |
fun tree_of_zipper\<^sub>m :: "('a\<^sub>m, 'a\<^sub>h) zipper\<^sub>m \<Rightarrow> ('a\<^sub>m, 'a\<^sub>h) rose_tree\<^sub>m" where | |
"tree_of_zipper\<^sub>m ([], t) = t" | |
| "tree_of_zipper\<^sub>m ((m, l, r) # z, t) = tree_of_zipper\<^sub>m (z, Tree\<^sub>m (Unblinded (m, l @ t # r)))" | |
lemma tree_of_zipper\<^sub>m_append: | |
"tree_of_zipper\<^sub>m (p @ p', t) = tree_of_zipper\<^sub>m (p', tree_of_zipper\<^sub>m (p, t))" | |
by(induction p arbitrary: p' t) auto | |
fun zipper_children\<^sub>m :: "('a\<^sub>m, 'a\<^sub>h) zipper\<^sub>m \<Rightarrow> ('a\<^sub>m, 'a\<^sub>h) zipper\<^sub>m list" where | |
"zipper_children\<^sub>m (p, Tree\<^sub>m (Unblinded (a, ts))) = map (\<lambda>(l, t, r). ((a, l, r) # p, t)) (splits ts) " | |
| "zipper_children\<^sub>m _ = []" | |
lemma zipper_children_same_tree\<^sub>m: | |
assumes "z' \<in> set (zipper_children\<^sub>m z)" | |
shows "tree_of_zipper\<^sub>m z' = tree_of_zipper\<^sub>m z" | |
proof- | |
obtain p a ts where z: "z = (p, Tree\<^sub>m (Unblinded (a, ts)))" | |
using assms | |
by(cases z rule: zipper_children\<^sub>m.cases) (simp_all) | |
then obtain l t r where ltr: "z' = ((a, l, r) # p, t)" and "(l, t, r) \<in> set (splits ts)" | |
using assms | |
by(auto) | |
with z show ?thesis | |
by(simp add: splits_iff) | |
qed | |
fun blind_path_elem :: "('a \<Rightarrow> 'a\<^sub>m) \<Rightarrow> ('a\<^sub>m \<Rightarrow> 'a\<^sub>h) \<Rightarrow> 'a path_elem \<Rightarrow> ('a\<^sub>m, 'a\<^sub>h) path_elem\<^sub>m" where | |
"blind_path_elem e h (x, l, r) = (e x, map (blind_source_tree (h \<circ> e)) l, map (blind_source_tree (h \<circ> e)) r)" | |
case_of_simps blind_path_elem_cases: blind_path_elem.simps | |
definition blind_path :: "('a \<Rightarrow> 'a\<^sub>m) \<Rightarrow> ('a\<^sub>m \<Rightarrow> 'a\<^sub>h) \<Rightarrow> 'a path \<Rightarrow> ('a\<^sub>m, 'a\<^sub>h) path\<^sub>m" where | |
"blind_path e h \<equiv> map (blind_path_elem e h)" | |
fun embed_path_elem :: "('a \<Rightarrow> 'a\<^sub>m) \<Rightarrow> 'a path_elem \<Rightarrow> ('a\<^sub>m, 'a\<^sub>h) path_elem\<^sub>m" where | |
"embed_path_elem e (d, l, r) = (e d, map (embed_source_tree e) l, map (embed_source_tree e) r)" | |
definition embed_path :: "('a \<Rightarrow> 'a\<^sub>m) \<Rightarrow> 'a path \<Rightarrow> ('a\<^sub>m, 'a\<^sub>h) path\<^sub>m" where | |
"embed_path embed_elem \<equiv> map (embed_path_elem embed_elem)" | |
lemma hash_tree_of_zipper_same_path: | |
"hash_tree h (tree_of_zipper\<^sub>m (p, v)) = hash_tree h (tree_of_zipper\<^sub>m (p, v')) | |
\<longleftrightarrow> hash_tree h v = hash_tree h v'" | |
by(induction p arbitrary: v v')(auto simp add: hash_rt_F\<^sub>m_def) | |
fun hash_path_elem :: "('a\<^sub>m \<Rightarrow> 'a\<^sub>h) \<Rightarrow> ('a\<^sub>m, 'a\<^sub>h) path_elem\<^sub>m \<Rightarrow> ('a\<^sub>h \<times> 'a\<^sub>h rose_tree\<^sub>h list \<times> 'a\<^sub>h rose_tree\<^sub>h list)" where | |
"hash_path_elem h (e, l, r) = (h e, map (hash_tree h) l, map (hash_tree h) r)" | |
lemma hash_view_zipper_eqI: | |
"\<lbrakk> hash_list (hash_path_elem h) p = hash_list (hash_path_elem h') p'; | |
hash_tree h v = hash_tree h' v' \<rbrakk> \<Longrightarrow> | |
hash_tree h (tree_of_zipper\<^sub>m (p, v)) = hash_tree h' (tree_of_zipper\<^sub>m (p', v'))" | |
by(induction p arbitrary: p' v v')(auto simp add: hash_rt_F\<^sub>m_def) | |
lemma blind_embed_path_same_hash: | |
"hash_tree h (tree_of_zipper\<^sub>m (blind_path e h p, t)) = hash_tree h (tree_of_zipper\<^sub>m (embed_path e p, t))" | |
proof - | |
have "hash_path_elem h \<circ> blind_path_elem e h = hash_path_elem h \<circ> embed_path_elem e" | |
by(clarsimp simp add: hash_blinded_simp hash_embedded_simp fun_eq_iff intro!: arg_cong2[where f=hash_source_tree, OF _ refl]) | |
then show ?thesis | |
by(intro hash_view_zipper_eqI)(simp_all add: embed_path_def blind_path_def list.map_comp) | |
qed | |
lemma tree_of_embed_commute: | |
"tree_of_zipper\<^sub>m (embed_path e p, embed_source_tree e t) = embed_source_tree e (tree_of_zipper (p, t))" | |
by(induction "(p, t)" arbitrary: p t rule: tree_of_zipper.induct)(simp_all add: embed_path_def) | |
lemma childz_same_tree: | |
"(l, t, r) \<in> set (splits ts) \<Longrightarrow> | |
tree_of_zipper\<^sub>m (embed_path e p, embed_source_tree e (Tree (d, ts))) | |
= tree_of_zipper\<^sub>m (embed_path e ((d, l, r) # p), embed_source_tree e t)" | |
by(simp add: tree_of_embed_commute splits_iff del: embed_source_tree.simps) | |
lemma blinding_of_same_path: | |
assumes bo: "blinding_of_on UNIV h bo" | |
shows | |
"blinding_of_tree h bo (tree_of_zipper\<^sub>m (p, t)) (tree_of_zipper\<^sub>m (p, t')) | |
\<longleftrightarrow> blinding_of_tree h bo t t'" | |
proof - | |
interpret a: blinding_of_on UNIV h bo by fact | |
interpret tree: blinding_of_on UNIV "hash_tree h" "blinding_of_tree h bo" .. | |
show ?thesis | |
by(induction p arbitrary: t t')(auto simp add: list_all2_append list.rel_refl a.refl tree.refl) | |
qed | |
lemma zipper_children_size_change [termination_simp]: "(a, b) \<in> set (zipper_children (p, v)) \<Longrightarrow> size b < size v" | |
by(cases v)(clarsimp simp add: splits_iff Set.image_iff) | |
subsection \<open>All zippers of a rose tree\<close> | |
context fixes e :: "'a \<Rightarrow> 'a\<^sub>m" and h :: "'a\<^sub>m \<Rightarrow> 'a\<^sub>h" begin | |
fun zippers_rose_tree :: "'a zipper \<Rightarrow> ('a\<^sub>m, 'a\<^sub>h) zipper\<^sub>m list" where | |
"zippers_rose_tree (p, t) = (blind_path e h p, embed_source_tree e t) # | |
concat (map zippers_rose_tree (zipper_children (p, t)))" | |
end | |
lemmas [simp del] = zippers_rose_tree.simps zipper_children.simps | |
lemma zippers_rose_tree_same_hash': | |
assumes "z \<in> set (zippers_rose_tree e h (p, t))" | |
shows "hash_tree h (tree_of_zipper\<^sub>m z) = | |
hash_tree h (tree_of_zipper\<^sub>m (embed_path e p, embed_source_tree e t))" | |
using assms(1) | |
proof(induction "(p, t)" arbitrary: p t rule: zippers_rose_tree.induct) | |
case (1 p t) | |
from "1.prems"[unfolded zippers_rose_tree.simps] | |
consider (find) "z = (blind_path e h p, embed_source_tree e t)" | |
| (rec) x ts l t' r where "t = Tree (x, ts)" "(l, t', r) \<in> set (splits ts)" "z \<in> set (zippers_rose_tree e h ((x, l, r) # p, t'))" | |
by(cases t)(auto simp add: zipper_children.simps) | |
then show ?case | |
proof cases | |
case rec | |
then show ?thesis | |
apply(subst "1.hyps"[of "(x, l, r) # p" "t'"]) | |
apply(simp_all add: rev_image_eqI zipper_children.simps) | |
by (metis (no_types) childz_same_tree comp_apply embed_source_tree.simps rec(2)) | |
qed(simp add: blind_embed_path_same_hash) | |
qed | |
lemma zippers_rose_tree_blinding_of: | |
assumes "blinding_of_on UNIV h bo" | |
and z: "z \<in> set (zippers_rose_tree e h (p, t))" | |
shows "blinding_of_tree h bo (tree_of_zipper\<^sub>m z) (tree_of_zipper\<^sub>m (blind_path e h p, embed_source_tree e t))" | |
using z | |
proof(induction "(p, t)" arbitrary: p t rule: zippers_rose_tree.induct) | |
case (1 p t) | |
interpret a: blinding_of_on UNIV h bo by fact | |
interpret rt: blinding_of_on UNIV "hash_tree h" "blinding_of_tree h bo" .. | |
from "1.prems"[unfolded zippers_rose_tree.simps] | |
consider (find) "z = (blind_path e h p, embed_source_tree e t)" | |
| (rec) x ts l t' r where "t = Tree (x, ts)" "(l, t', r) \<in> set (splits ts)" "z \<in> set (zippers_rose_tree e h ((x, l, r) # p, t'))" | |
by(cases t)(auto simp add: zipper_children.simps) | |
then show ?case | |
proof cases | |
case find | |
then show ?thesis by(simp add: rt.refl) | |
next | |
case rec | |
then have "blinding_of_tree h bo | |
(tree_of_zipper\<^sub>m z) | |
(tree_of_zipper\<^sub>m (blind_path e h ((x, l, r) # p), embed_source_tree e t'))" | |
by(intro 1)(simp add: rev_image_eqI zipper_children.simps) | |
also have "blinding_of_tree h bo | |
(tree_of_zipper\<^sub>m (blind_path e h ((x, l, r) # p), embed_source_tree e t')) | |
(tree_of_zipper\<^sub>m (blind_path e h p, embed_source_tree e (Tree (x, ts))))" | |
using rec | |
by(simp add: blind_path_def splits_iff blinding_of_same_path[OF assms(1)] a.refl list_all2_append list_all2_same list.rel_map blinded_blinds_embedded rt.refl) | |
finally (rt.trans) show ?thesis using rec by simp | |
qed | |
qed | |
lemma zippers_rose_tree_neq_Nil: "zippers_rose_tree e h (p, t) \<noteq> []" | |
by(simp add: zippers_rose_tree.simps) | |
lemma (in comp_fun_idem) fold_set_union: | |
assumes "finite A" "finite B" | |
shows "Finite_Set.fold f z (A \<union> B) = Finite_Set.fold f (Finite_Set.fold f z A) B" | |
using assms(2,1) by induct simp_all | |
context merkle_interface begin | |
lemma comp_fun_idem_merge: "comp_fun_idem (\<lambda>x yo. yo \<bind> m x)" | |
apply(unfold_locales; clarsimp simp add: fun_eq_iff split: bind_split) | |
subgoal by (metis assoc bind.bind_lunit bind.bind_lzero idem option.distinct(1)) | |
subgoal by (simp add: join) | |
done | |
interpretation merge: comp_fun_idem "\<lambda>x yo. yo \<bind> m x" by(rule comp_fun_idem_merge) | |
definition Merge :: "'a\<^sub>m set \<Rightarrow> 'a\<^sub>m option" where | |
"Merge A = (if A = {} \<or> infinite A then None else Finite_Set.fold (\<lambda>x yo. yo \<bind> m x) (Some (SOME x. x \<in> A)) A)" | |
lemma Merge_empty [simp]: "Merge {} = None" | |
by(simp add: Merge_def) | |
lemma Merge_infinite [simp]: "infinite A \<Longrightarrow> Merge A = None" | |
by(simp add: Merge_def) | |
lemma Merge_cong_start: | |
"Finite_Set.fold (\<lambda>x yo. yo \<bind> m x) (Some x) A = Finite_Set.fold (\<lambda>x yo. yo \<bind> m x) (Some y) A" (is "?lhs = ?rhs") | |
if "x \<in> A" "y \<in> A" "finite A" | |
proof - | |
have "?lhs = Finite_Set.fold (\<lambda>x yo. yo \<bind> m x) (Some x) (insert y A)" using that by(simp add: insert_absorb) | |
also have "\<dots> = Finite_Set.fold (\<lambda>x yo. yo \<bind> m x) (m x y) A" using that | |
by(simp only: merge.fold_insert_idem2)(simp add: commute) | |
also have "\<dots> = Finite_Set.fold (\<lambda>x yo. yo \<bind> m x) (Some y) (insert x A)" using that | |
by(simp only: merge.fold_insert_idem2)(simp) | |
also have "\<dots> = ?rhs" using that by(simp add: insert_absorb) | |
finally show ?thesis . | |
qed | |
lemma Merge_insert [simp]: "Merge (insert x A) = (if A = {} then Some x else Merge A \<bind> m x)" (is "?lhs = ?rhs") | |
proof(cases "finite A \<and> A \<noteq> {}") | |
case True | |
then have "?lhs = Finite_Set.fold (\<lambda>x yo. yo \<bind> m x) (Some (SOME x. x \<in> A)) (insert x A)" | |
unfolding Merge_def by(subst Merge_cong_start[where y="SOME x. x \<in> A", OF someI])(auto intro: someI) | |
also have "\<dots> = ?rhs" using True by(simp add: Merge_def) | |
finally show ?thesis . | |
qed(auto simp add: Merge_def idem) | |
lemma Merge_insert_alt: | |
"Merge (insert x A) = Finite_Set.fold (\<lambda>x yo. yo \<bind> m x) (Some x) A" (is "?lhs = ?rhs") if "finite A" | |
proof - | |
have "?lhs = Finite_Set.fold (\<lambda>x yo. yo \<bind> m x) (Some x) (insert x A)" using that | |
unfolding Merge_def by(subst Merge_cong_start[where y=x, OF someI]) auto | |
also have "\<dots> = ?rhs" using that by(simp only: merge.fold_insert_idem2)(simp add: idem) | |
finally show ?thesis . | |
qed | |
lemma Merge_None [simp]: "Finite_Set.fold (\<lambda>x yo. yo \<bind> m x) None A = None" | |
proof(cases "finite A") | |
case True | |
then show ?thesis by(induction) auto | |
qed simp | |
lemma Merge_union: | |
"Merge (A \<union> B) = (if A = {} then Merge B else if B = {} then Merge A else (Merge A \<bind> (\<lambda>a. Merge B \<bind> m a)))" | |
(is "?lhs = ?rhs") | |
proof(cases "finite (A \<union> B) \<and> A \<noteq> {} \<and> B \<noteq> {}") | |
case True | |
then have "?lhs = Finite_Set.fold (\<lambda>x yo. yo \<bind> m x) (Some (SOME x. x \<in> B)) (B \<union> A)" | |
unfolding Merge_def by(subst Merge_cong_start[where y="SOME x. x \<in> B", OF someI])(auto intro: someI simp add: Un_commute) | |
also have "\<dots> = Finite_Set.fold (\<lambda>x yo. yo \<bind> m x) (Merge B) A" using True | |
by(simp add: Merge_def merge.fold_set_union) | |
also have "\<dots> = Merge A \<bind> (\<lambda>a. Merge B \<bind> m a)" | |
proof(cases "Merge B") | |
case (Some b) | |
thus ?thesis using True | |
by simp(subst Merge_insert_alt[symmetric]; simp add: commute; metis commute) | |
qed simp | |
finally show ?thesis using True by simp | |
qed auto | |
lemma Merge_upper: | |
assumes m: "Merge A = Some x" and y: "y \<in> A" | |
shows "bo y x" | |
proof - | |
have "Merge A = Merge (insert y A)" using y by(simp add: insert_absorb) | |
also have "\<dots> = Merge A \<bind> m y" using y by auto | |
finally have "m y x = Some x" using m by simp | |
thus ?thesis by(simp add: bo_def) | |
qed | |
lemma Merge_least: | |
assumes m: "Merge A = Some x" and u[rule_format]: "\<forall>a\<in>A. bo a u" | |
shows "bo x u" | |
proof - | |
define a where "a \<equiv> SOME x. x \<in> A" | |
from m have A: "finite A" "A \<noteq> {}" | |
and *: "Finite_Set.fold (\<lambda>x yo. yo \<bind> m x) (Some a) A = Some x" | |
by(auto simp add: Merge_def a_def split: if_splits) | |
from A have "bo a u" by(auto intro: someI u simp add: a_def) | |
with A * u show ?thesis | |
proof(induction A arbitrary: a) | |
case (insert x A) | |
then show ?case | |
by(cases "m x a"; cases "A = {}"; simp only: merge.fold_insert_idem2; simp)(auto simp add: join) | |
qed simp | |
qed | |
lemma Merge_defined: | |
assumes "finite A" "A \<noteq> {}" "\<forall>a\<in>A. \<forall>b \<in> A. h a = h b" | |
shows "Merge A \<noteq> None" | |
proof | |
define a where "a \<equiv> SOME a. a \<in> A" | |
have a: "a \<in> A" unfolding a_def using assms by(auto intro: someI) | |
hence ha: "\<forall>b \<in> A. h b = h a" using assms by blast | |
assume m: "Merge A = None" | |
hence "Finite_Set.fold (\<lambda>x yo. yo \<bind> m x) (Some a) A = None" | |
using assms by(simp add: Merge_def a_def) | |
with assms(1) show False using ha | |
proof(induction arbitrary: a) | |
case (insert x A) | |
thus ?case | |
apply(cases "m x a"; use nothing in \<open>simp only: merge.fold_insert_idem2\<close>) | |
apply(simp add: merge_respects_hashes) | |
apply(fastforce simp add: join vimage2p_def dest: hash[THEN predicate2D]) | |
done | |
qed simp | |
qed | |
lemma Merge_hash: | |
assumes "Merge A = Some x" "a \<in> A" | |
shows "h a = h x" | |
using Merge_upper[OF assms] hash by(auto simp add: vimage2p_def) | |
end | |
end |