blob_id
stringlengths
40
40
language
stringclasses
1 value
repo_name
stringlengths
5
133
path
stringlengths
2
333
src_encoding
stringclasses
30 values
length_bytes
int64
18
5.47M
score
float64
2.52
5.81
int_score
int64
3
5
detected_licenses
listlengths
0
67
license_type
stringclasses
2 values
text
stringlengths
12
5.47M
download_success
bool
1 class
b362bf956d6d3dbc9af0d32514ab0c1aaec61faa
Python
Dwyanepeng/leetcode
/qianxu_144.py
UTF-8
1,813
3.515625
4
[]
no_license
#!/usr/bin/env python # -*- coding: utf-8 -*- # @Time : 2019/7/29 18:56 # @Site : # @File : qianxu_144.py # @Software: PyCharm # Definition for a binary tree node. # class TreeNode: # def __init__(self, x): # self.val = x # self.left = None # self.right = None #前序 class Solution(object): def preorderTraversal(self, root): """ :type root: TreeNode :rtype: List[int] """ lst = [] s = [] s.append(root) if not root: return lst while s: temp = s.pop() lst.append(temp.val) if temp.right: s.append(temp.right) if temp.left: s.append(temp.left) return lst class Solution1: def preorderTraversal(self, root): # 0 表示当前遍历到它,1 表示压入栈 # 刚开始是 1 ,不要写成 0 了 stack = [(1,root)] s = [] while stack: command, node = stack.pop() if node is None: # 不能写 return ,这不是递归 continue if command == 0: s.append(node.val) else: # 此时 command == 1 的时候,表示递归遍历到的 # 注意:写的时候倒过来写 #注意和后序顺序不一样,stack需要pop stack.append((1, node.right)) stack.append((1, node.left)) stack.append((0, node)) return s #递归 class Solution1: def inorderTraversal(self, root): res=[] if root: res+=self.inorderTraversal(root.left) res.append(root.val) res+=self.inorderTraversal(root.right) return res
true
b507ae447b683ff3cf3e97c02832297066a5b390
Python
Aasthaengg/IBMdataset
/Python_codes/p03862/s133133737.py
UTF-8
326
3.09375
3
[]
no_license
import sys def LI(): return list(map(int,sys.stdin.readline().rstrip().split())) #空白あり N,x = LI() a = LI() ans = 0 # 左から2番目以降貪欲に if a[0] > x: ans += a[0]-x a[0] = x for i in range(1,N): if a[i]+a[i-1] > x: ans += a[i]+a[i-1]-x a[i] -= a[i]+a[i-1]-x print(ans)
true
f09cbab959e97d4ceae492c80a9c342dacb1221c
Python
alexcamero/name-projects
/Name Clusters/python files/investigation_time_series.py
UTF-8
9,284
3.09375
3
[]
no_license
import matplotlib.pyplot as plt import os, json, csv, requests import numpy as np from bs4 import BeautifulSoup as bs from sklearn.cluster import KMeans def scrape_totals( write_to_directory = '../json files/', url = "https://www.ssa.gov/OACT/babynames/numberUSbirths.html", headers = {'User-Agent': 'Mozilla/5.0 (Macintosh; ' + 'Intel Mac OS X 10_15_7)' + 'AppleWebKit/537.36 (KHTML, like Gecko) ' + 'Chrome/88.0.4324.150 Safari/537.36'}): #initialize the list data = [] # Retrieve the webpage response = requests.get(url, headers = headers) # Check if the request was successful if response.status_code == 200: #start parsing the response text soup = bs(response.text, 'html.parser') # Each row of data is in a <tr> tag data_rows = soup.find_all('tr') data_rows.pop(0) for row in data_rows: # Extract data from <tr> tag cell_list = row.find_all('td') year = int(cell_list[0].get_text()) male = int(cell_list[1].get_text().replace(',','')) female = int(cell_list[2].get_text().replace(',','')) total = int(cell_list[3].get_text().replace(',','')) # Append to data list data.append([year, total, female, male]) # Sort data by year and write to file data.sort(key=lambda x: x[0]) with open(write_to_directory + 'totals.json', 'w') as file: json.dump(data,file) return data else: print(f"There was an issue: Status Code {response.status_code}") raise NameError("AN HTML SITUATION") class NameData: def __init__(self, min_year = 1937, max_year = 2020, directory_year = '../../Name Data/namesbyyear/', helper_files_directory = '../json files/'): self.min_year = min_year self.max_year = max_year self.files = helper_files_directory self.file_ending = '_' + str(min_year) + '_' + str(max_year) + '.json' #make list of relevant years and zero array of correct length self.years = range(self.min_year, self.max_year + 1) self.num_years = len(self.years) self.zero = np.array([0 for _ in self.years]) self.distance_from = {"SoS":{"raw":{}, "prop":{}, "raw normed":{}, "prop normed":{}}} #open/make file of distinct names #format is [Name] try: with open(self.files + 'distinct_names' + self.file_ending, 'r') as file: self.distinct_names = json.load(file) except FileNotFoundError: print("Distinct name file not found. Making one.....") self.distinct_names = set() for Y in self.years: path = os.path.join(directory_year, "yob" + str(Y) + ".txt") with open(path, 'r') as file: csv_reader = csv.reader(file) list_of_rows = list(csv_reader) for row in list_of_rows: self.distinct_names.add(row[0]) self.distinct_names = list(self.distinct_names) self.distinct_names.sort() with open(self.files + 'distinct_names' + self.file_ending, 'w') as file: json.dump(self.distinct_names,file) self.num_names = len(self.distinct_names) self.name_index = {self.distinct_names[i]:i for i in range(self.num_names)} print("List of distinct names ready.") #open/make the file of total births by year #format is [[year, total, female, male]] try: with open(self.files + 'totals.json', 'r') as file: total_data = json.load(file) except FileNotFoundError: print("File with total births data not found. Making one.....") total_data = scrape_totals(write_to_directory = self.files) temp = {row[0]: {'B': row[1], 'F': row[2], 'M': row[3]} for row in total_data} self.totals = np.array([temp[year]['B'] for year in self.years]) self.totals_female = np.array([temp[year]['F'] for year in self.years]) self.totals_male = np.array([temp[year]['M'] for year in self.years]) print("Total births data ready.") #open/make the raw time series data for the names #format is {Name: [Int]} try: with open(self.files + 'time_series_national' + self.file_ending, 'r') as file: tseries = json.load(file) except FileNotFoundError: print("Time series data file not found. Making one.....") #initialize dictionary for time series data tseries = [[0 for _ in range(self.num_years)] for _ in range(self.num_names)] for year in self.years: #open year file path = os.path.join(directory_year, "yob" + str(year) + ".txt") with open(path, 'r') as file: csv_reader = csv.reader(file) list_of_rows = list(csv_reader) #update dictionary for each row for row in list_of_rows: i = self.name_index[row[0]] tseries[i][year - self.min_year] += int(row[2]) #write time series data to file with open(self.files + 'time_series_national' + self.file_ending, 'w') as file: json.dump(tseries, file) #convert to np.array self.tseries_raw = np.array(tseries) print("Time series data ready.") #get the total number of named people by year self.total_named = sum(self.tseries_raw) self.others = self.totals - self.total_named self.distinct_named = sum(self.tseries_raw > 0) self.lower_distinct = self.distinct_named + np.ceil(self.others/4) self.upper_distinct = self.distinct_named + self.others def get_matrix(self, series_type = "prop normed"): if series_type == "prop normed": return self.make_normed(self.tseries_raw/self.totals) elif series_type == "raw normed": return self.make_normed(self.tseries) elif series_type == "prop": return self.tseries_raw/self.totals elif series_type == "raw": return self.tseries_raw def make_normed(self, series): return np.transpose(np.transpose(series)/np.amax(series, axis = 1)) def closest_neighbors_SoS(self, name, series_type = "prop normed"): matrix = self.get_matrix(series_type) if name in self.distinct_names: Nvector = matrix[self.name_index[name]] else: Nvector = self.zero result = np.sum(((matrix - Nvector)**2), axis=1)/self.num_years neighbors = [(self.distinct_names[i],result[i]) for i in range(self.num_names)] neighbors.sort(key = lambda x: x[1]) self.distance_from["SoS"][series_type][name] = neighbors def raw(self, name): if name in self.distinct_names: return self.tseries_raw[self.name_index[name]] elif name == "OTHER NAMES": return self.others elif name == "ALL NAMED": return self.total_named else: return self.zero def proportion(self, name): return self.raw(name)/self.totals def raw_normed(self, name): series = self.raw(name) M = max(series) if M == 0: M = 1 return series/M def prop_normed(self, name): series = self.proportion(name) M = max(series) if M == 0: M = 1 return series/M def compare_shape(self, name1, name2): figure, axes = plt.subplots(nrows=2,ncols=1) axes[0].plot(self.years, self.raw(name1)) axes[1].plot(self.years, self.raw(name2),'r-') axes[0].set_title(name1) axes[1].set_title(name2) figure.tight_layout() def run_kmeans(self, series_type = "prop normed", most_clusters = 20, iterations = 10): X = self.get_matrix(series_type) self.km = {} num_clusters = range(2,most_clusters+1) for k in num_clusters: self.km[k] = KMeans(n_clusters = k, n_init = iterations).fit(X) SSE = [self.km[k].inertia_ for k in num_clusters] plt.plot(num_clusters, SSE)
true
820fb4dd8bb20294d9970fa244dd3e801c7f416f
Python
liamgak/graduating_proj
/parse_dataset_file.py
UTF-8
4,112
2.90625
3
[]
no_license
class ParseDatasetFile(): file_name="" #file_path file_name_csv="" __file_one_hop_friend="GowallaAmerica_LvOneFri.csv" __file_two_hop_friend="GowallaAmerica_LvTwoFri.csv" exac_two_hop_friends_list=dict() one_hop_friends_list=dict() def __init__(self, file_one_hop_friend="BrightkiteEurope_LvOneFri.csv", file_two_hop_friend="BrightkiteEurope_LvTwoFri.csv"): #self.file_name=file_name self.__file_one_hop_friend = file_one_hop_friend self.__file_two_hop_friend = file_two_hop_friend self.one_hop_friends_list = self.upload_friends_file(self.__file_one_hop_friend) self.exac_two_hop_friends_list = self.upload_friends_file(self.__file_two_hop_friend) def get_one_hop_filename(self): return self.__file_one_hop_friend def get_two_hop_filename(self): return self.__file_two_hop_friend def get_num_user(self): return len(self.one_hop_friends_list) def txt_to_csv(self, file_name): ### 수정이 필요한 함수 with open(file_name, 'r') as dataset_txt: S=dataset_txt.read() S=S.replace(' ', ',') D=file_name.split('.')[0] #filename without extension file_name_csv=D # CAUTION: if csv file is opend by excel, you will see float has the smaller precision. with open(D+'.csv','w') as dataset_csv: dataset_csv.write(S) def upload_friends_file(self, file_name): """ dict() which has the entire information about friends, storting <user_id: user_friend_list> """ result_dict = dict() with open(file_name, 'r') as frineds_file: S=frineds_file.read() print(S.split('\n')[0]) S=S.split('\n')[1:] # remove header for row in S: # traversing each row in csv if row is '': # ignoring the last \n, if that is exist continue str_to_list=row.split(',') user_id = str_to_list[0] # parsing userid freind_list_size= str_to_list[1] # size of list user_friend_list = str_to_list[2:] # parsing friends list of specific userid user_friend_list = list(map(int, user_friend_list)) # converting str to int result_dict[int(user_id)]=user_friend_list # storting <user_id: user_friend_list> return result_dict def one_parse_row_friends(self, userID): """input is the specific UserID :return: List of user's friends (List(int) built-in python) """ return self.one_hop_friends_list[userID] def two_parse_row_friends(self, userID): return self.exac_two_hop_friends_list[userID] #CODE FOR TEST # _pfs=ParseDatasetFile() # _pfs.file_name="BrightkiteEurope_LvTwoFri.txt" # # _pfs.txt_to_csv("Barabasi_200K_LvOneFri.txt") # # _pfs.txt_to_csv("Barabasi_70K_LvOneFri.txt") # # _pfs.txt_to_csv("Barabasi_80K_SpatioTemporal.txt") # # _pfs.txt_to_csv("Barabasi_90K_SpatioTemporal.txt") # _pfs.txt_to_csv("Barabasi_200K_SpatioTemporal.txt") # _pfs.txt_to_csv("Barabasi_300K_SpatioTemporal.txt") # _pfs.txt_to_csv("Barabasi_600K_LvOneFri.txt") # _pfs.txt_to_csv("Barabasi_900K_LvOneFri.txt") # # _pfs.txt_to_csv("Barabasi_60K_LvTwoFri.txt") # _pfs.txt_to_csv("Barabasi_70K_LvTwoFri.txt") # _pfs.txt_to_csv("Barabasi_80K_LvTwoFri.txt") # _pfs.txt_to_csv("Barabasi_90K_LvTwoFri.txt") # _pfs.txt_to_csv("Barabasi_100K_LvTwoFri.txt") # _pfs.txt_to_csv("Barabasi_300K_LvTwoFri.txt") # _pfs.txt_to_csv("Barabasi_600K_LvTwoFri.txt") # _pfs.txt_to_csv("Barabasi_900K_LvTwoFri.txt") #다 하면 INDEX OBJ로 가서 전부다 객체 생성 해버리기. >> index파일 만들어진다. # start_time = time.time() #print(_pfs.two_parse_row_friends(30)) # print("A--- %s seconds ---" % (time.time() - start_time)) #parse_friend_data_obj = ParseDatasetFile() #_pws=ParseDatasetFile('GowallaAmerica_LvTwoFri.txt') #_p.txt_to_csv() #_pfs.txt_to_csv() #_pws.txt_to_csv()
true
3d8e16a1295d35f04a4867cb9bf8a003bfe4a64e
Python
linhx13/leetcode-code
/code/794-valid-tic-tac-toe-state.py
UTF-8
1,985
3.375
3
[]
no_license
from typing import List class Solution: def validTicTacToe(self, board: List[str]) -> bool: cnt1, cnt2 = 0, 0 rows = [0, 0, 0] cols = [0, 0, 0] xrow, xcol, xdia = 0, 0, 0 orow, ocol, odia = 0, 0, 0 for x, row in enumerate(board): for y, c in enumerate(row): if c == "X": cnt1 += 1 rows[x] += 1 cols[y] += 1 elif c == "O": cnt2 += 1 rows[x] -= 1 cols[y] -= 1 if rows[x] == 3: xrow += 1 if cols[y] == 3: xcol += 1 if rows[x] == -3: orow += 1 if cols[y] == -3: ocol += 1 if not (0 <= cnt1 - cnt2 <= 1): return False if board[0][0] == board[1][1] and board[1][1] == board[2][2]: if board[0][0] == "X": xdia += 1 elif board[0][0] == "O": odia += 1 if board[0][2] == board[1][1] and board[1][1] == board[2][0]: if board[0][2] == "X": xdia += 1 elif board[0][2] == "O": odia += 1 if xrow > 1 or xcol > 1: return False if orow > 1 or ocol > 1: return False if (xrow > 0 and orow > 0) or (xcol > 0 and ocol > 0): return False if (xrow > 0 or xcol > 0 or xdia > 0) and cnt2 == cnt1: return False if (orow > 0 or ocol > 0 or odia > 0) and cnt1 > cnt2: return False return True if __name__ == "__main__": # board = ["XXX", " ", "OOO"] # board = ["XOX", " X ", " "] # board = ["XOX", "OXO", "XOX"] # board = ["XXX", "XOO", "OO "] # board = ["OXX", "XOX", "OXO"] board = ["X ", " ", " O"] sol = Solution() print(sol.validTicTacToe(board))
true
48699e8e37181eedbee42f40070d8f6c148a6059
Python
manishbalyan/python
/User_Input.py
UTF-8
86
2.984375
3
[]
no_license
response = raw_input("Hey,How are you") response = response.lower() print response
true
d65e03047b363091f1285ecfc179f62a877ff034
Python
zNIKK/Exercicios-Python
/Python_3/DEF/MÓDULOS/Moedas/programa -- Exercitando módulos em Python.py
UTF-8
217
3.078125
3
[ "MIT" ]
permissive
import calculo as cal pre=float(input('Digite um preço: R$')) print(f'A metade de R${pre} é {cal.metade(p):.2f}') print(f'O dobro de R${pre} é {cal.dob(p):.2f}') print(f'Aumentando 10%, temos {cal.porc(p,10):.2f}')
true
876c045623d9fcbf7949806698a2fdafe46cb444
Python
glue-viz/glue
/glue/core/tests/test_data_retrieval.py
UTF-8
1,091
2.671875
3
[ "BSD-3-Clause" ]
permissive
# pylint: disable=I0011,W0613,W0201,W0212,E1101,E1103 import numpy as np from ..data import Data, Component class TestDataRetrieval(object): def setup_method(self, method): data1 = Data() comp1 = Component(np.arange(5)) id1 = data1.add_component(comp1, 'comp_1') comp2 = Component(np.arange(5) * 2) id2 = data1.add_component(comp2, 'comp_2') data2 = Data() comp3 = Component(np.arange(5) * 3) id3 = data2.add_component(comp3, 'comp_3') comp4 = Component(np.arange(5) * 4) id4 = data2.add_component(comp4, 'comp_4') self.data = [data1, data2] self.components = [comp1, comp2, comp3, comp4] self.component_ids = [id1, id2, id3, id4] def test_direct_get(self): assert self.data[0][self.component_ids[0]] is self.components[0].data assert self.data[0][self.component_ids[1]] is self.components[1].data assert self.data[1][self.component_ids[2]] is self.components[2].data assert self.data[1][self.component_ids[3]] is self.components[3].data
true
a904662a56477598ec104e04f497ab27c05dbdac
Python
tberhanu/RevisionS
/revision/3.py
UTF-8
680
3.96875
4
[]
no_license
""" 3. Get n largest/smallest elts of the array of dicts """ import heapq arr_dicts = [{"name": "John", "age": 23, "city": "Oakland", "state": "CA"}, {"name": "Mary", "age": 33, "city": "San Jose", "state": "CA"}, {"name": "Henock", "age": 27, "city": "Las Vegas", "state": "NV"}, {"name": "James", "age": 19, "city": "Seattle", "state": "WA"}] # print(arr_dicts) largests = heapq.nlargest(2, arr_dicts, lambda dict: dict['age']) print(largests) smallests = heapq.nsmallest(2, arr_dicts, lambda dict: dict['age']) print(smallests) states = heapq.nsmallest(2, arr_dicts, lambda d: d['state']) print(states) states = heapq.nlargest(2, arr_dicts, lambda d: d['state']) print(states)
true
68491f157665365d1d2026b4368aff2241746357
Python
iefuzzer/vnpy_crypto
/vnpy/data/huobi/huobi_data.py
UTF-8
7,824
2.625
3
[ "MIT" ]
permissive
# encoding: UTF-8 # 从huobi载数据 from datetime import datetime, timezone import sys import requests import execjs import traceback from vnpy.trader.app.ctaStrategy.ctaBase import CtaBarData, CtaTickData from vnpy.trader.vtFunction import systemSymbolToVnSymbol period_list = ['1min','3min','5min','15min','30min','1day','1week','60min'] symbol_list = ['ltc_btc','eth_btc','etc_btc','bch_btc','btc_usdt','eth_usdt','ltc_usdt','etc_usdt','bch_usdt', 'etc_eth','bt1_btc','bt2_btc','btg_btc','qtum_btc','hsr_btc','neo_btc','gas_btc', 'qtum_usdt','hsr_usdt','neo_usdt','gas_usdt','eos_usdt','ada_usdt','xmr_usdt','zrx_usdt','ht_usdt'] class HuobiData(object): # ---------------------------------------------------------------------- def __init__(self, strategy=None): """ 构造函数 :param strategy: 上层策略,主要用与使用strategy.writeCtaLog() """ self.strategy = strategy # 设置HTTP请求的尝试次数,建立连接session requests.adapters.DEFAULT_RETRIES = 5 self.session = requests.session() self.session.keep_alive = False def writeLog(self,content): if self.strategy: self.strategy.writeCtaLog(content) else: print(content) def writeError(self,content): if self.strategy: self.strategy.writeCtaError(content) else: print(content,file=sys.stderr) def get_bars(self, symbol, period, callback, bar_is_completed=False,bar_freq=1, start_dt=None): """ 返回k线数据 symbol:合约 period: 周期: 1min,3min,5min,15min,30min,1day,3day,1hour,2hour,4hour,6hour,12hour """ ret_bars = [] symbol_pair = systemSymbolToVnSymbol(symbol) if symbol_pair not in symbol_list: msg = u'{} {}不在下载清单中'.format(datetime.now(), symbol_pair) if self.strategy: self.strategy.writeCtaError(msg) else: print(msg) return False,ret_bars symbol = symbol_pair.replace('_', '') if period == '1hour': period = '60min' if period not in period_list: self.writeError(u'{}不在下载时间周期范围:{} 内'.format(period, period_list)) return False,ret_bars url = u'https://api.huobipro.com/market/history/kline?symbol={}&period={}& size=2000&AccessKeyId=fff-xxx-ssss-kkk'.format( symbol, period) self.writeLog('{}开始下载:{} {}数据.URL:{}'.format(datetime.now(), symbol_pair, period, url)) content = None try: content = self.session.get(url).content.decode('gbk') except Exception as ex: self.writeError('exception in get:{},{},{}'.format(url, str(ex), traceback.format_exc())) return False,ret_bars ret_dict = execjs.eval(content) bars = ret_dict.get('data', None) if not isinstance(bars, list): self.writeError('返回数据不是list:{}'.format(content)) return False,ret_bars bars.reverse() for i, bar in enumerate(bars): add_bar = CtaBarData() try: add_bar.vtSymbol = symbol add_bar.symbol = symbol add_bar.datetime = datetime.fromtimestamp(bar[0] / 1000) add_bar.date = add_bar.datetime.strftime('%Y-%m-%d') add_bar.time = add_bar.datetime.strftime('%H:%M:%S') add_bar.tradingDay = add_bar.date add_bar.open = float(bar[1]) add_bar.high = float(bar[2]) add_bar.low = float(bar[3]) add_bar.close = float(bar[4]) add_bar.volume = float(bar[5]) except Exception as ex: self.strategy.writeCtaError('error when convert bar:{},ex:{},t:{}'.format(bar, str(ex), traceback.format_exc())) return False,ret_bars if start_dt is not None and bar.datetime < start_dt: continue if callback is not None: callback(add_bar, bar_is_completed, bar_freq) return True,ret_bars def download_bars(self, symbol, period, size_=None, start_dt=None): """ 返回k线数据 symbol:合约 period: 周期: 1min, 5min, 15min, 30min, 60min, 1day, 1mon, 1week, 1year """ ret_bars = [] symbol_pair = systemSymbolToVnSymbol(symbol) if symbol_pair not in symbol_list: msg = u'{} {}不在下载清单中'.format(datetime.now(), symbol_pair) if self.strategy: self.strategy.writeCtaError(msg) else: print(msg) return ret_bars symbol = symbol_pair.replace('_','') if period =='1hour': period = '60min' if period not in period_list: self.writeError(u'{}不在下载时间周期范围:{} 内'.format(period,period_list)) return ret_bars url = u'https://api.huobipro.com/market/history/kline?symbol={}&period={}&AccessKeyId=fff-xxx-ssss-kkk'.format(symbol, period) if not isinstance(size_,int): size_=2000 url = url + u'&size={}'.format(size_) self.writeLog('{}开始下载:{} {}数据.URL:{}'.format(datetime.now(), symbol_pair, period,url)) content = None try: content = self.session.get(url).content.decode('gbk') except Exception as ex: self.writeError('exception in get:{},{},{}'.format(url,str(ex), traceback.format_exc())) return ret_bars ret_dict = execjs.eval(content) bars = ret_dict.get('data',None) if not isinstance(bars,list): self.writeError('返回数据不是list:{}'.format(content)) return ret_bars bars.reverse() for i, bar in enumerate(bars): add_bar = {} try: bar_datetime= datetime.fromtimestamp(bar.get('id')) add_bar['datetime'] = bar_datetime.strftime('%Y-%m-%d %H:%M:%S') add_bar['date'] = bar_datetime.strftime('%Y-%m-%d') add_bar['time'] = bar_datetime.strftime('%H:%M:%S') add_bar['open'] = float(bar.get('open',0.0)) add_bar['high'] = float(bar.get('high',0.0)) add_bar['low'] = float(bar.get('low',0.0)) add_bar['close'] = float(bar.get('close',0.0)) add_bar['volume'] = float(bar.get('vol',0.0)) except Exception as ex: self.writeError('error when convert bar:{},ex:{},t:{}'.format(bar, str(ex), traceback.format_exc())) ret_bars.append(add_bar) return ret_bars class TestStrategy(object): def __init__(self): self.minDiff = 1 self.shortSymbol = 'btc' self.vtSymbol = 'btc' self.TMinuteInterval = 1 def addBar(self,bar,bar_is_completed, bar_freq): print(u'tradingDay:{},dt:{},{} o:{},h:{},l:{},c:{},v:{}'.format(bar.tradingDay, bar.datetime,bar.vtSymbol, bar.open, bar.high, bar.low, bar.close, bar.volume)) def onBar(self, bar): print(u'tradingDay:{},dt:{},{} o:{},h:{},l:{},c:{},v:{}'.format(bar.tradingDay,bar.datetime,bar.vtSymbol, bar.open, bar.high, bar.low, bar.close, bar.volume)) def writeCtaLog(self, content): print(content) def writeCtaError(self, content): print(content) if __name__ == '__main__': t = TestStrategy() hb_data = HuobiData(t) bars = hb_data.download_bars(symbol='htusdt', period='1day') for bar in bars: print(bar['datetime'])
true
e014a1d05993482f9689fca32cfd7984098c4054
Python
JayJayDee/python-lecture-examples
/002/dictionary_basics.py
UTF-8
161
3.21875
3
[]
no_license
product = { 'name': '딸기', 'price': 8000 } product_name = product['name'] print(product_name) product_price = product['price'] print(product_price)
true
0281d241a38682c5d2347f2f841500804ccd9588
Python
noureddined/AdventOfCode2016
/day-6/day6-1.py
UTF-8
1,414
3.234375
3
[]
no_license
#!/usr/bin/python3 import re import string import pprint from collections import Counter file = open("input.txt", 'r') lines = file.readlines() file.close() totaal = '' for line in lines: s = line s = " ".join(s) s= s.replace('\n','') totaal = totaal +'\n'+ s totaal = "\n".join(totaal.split("\n")[1:]) file = open("test.txt", "w") file.write(totaal) file.close() file = open("test.txt", 'r') lines = file.readlines() file.close() column1 = [] column2 = [] column3 = [] column4 = [] column5 = [] column6 = [] column7 = [] column8 = [] for line in lines: parts = line.split() # split line into parts column1.append(parts[0]) column2.append(parts[1]) column3.append(parts[2]) column4.append(parts[3]) column5.append(parts[4]) column6.append(parts[5]) column7.append(parts[6]) column8.append(parts[7]) c1 = Counter(elem[0] for elem in column1).most_common(1)[0][0] c2 = Counter(elem[0] for elem in column2).most_common(1)[0][0] c3 = Counter(elem[0] for elem in column3).most_common(1)[0][0] c4 = Counter(elem[0] for elem in column4).most_common(1)[0][0] c5 = Counter(elem[0] for elem in column5).most_common(1)[0][0] c6 = Counter(elem[0] for elem in column6).most_common(1)[0][0] c7 = Counter(elem[0] for elem in column7).most_common(1)[0][0] c8 = Counter(elem[0] for elem in column8).most_common(1)[0][0] print (c1 + c2 + c3 + c4 + c5 + c6 + c7 + c8)
true
0c221f171e3efbbd5579f0c8518678dff9d68640
Python
4179e1/misc
/python/pygame/ch4/allcolor.py
UTF-8
403
2.984375
3
[]
no_license
import pygame pygame.init() screen = pygame.display.set_mode ((640,480)) all_colors = pygame.Surface((4096, 4096), depth=24) for r in xrange(256): print r+1, "out of 256" # x = (r&15) * 256 x = (r % 16) * 256 y = (r>>4) * 256 print x, y for g in xrange(256): for b in xrange(256): all_colors.set_at ((x+g, y+b), (r, g, b)) pygame.image.save (all_colors, "allcolors.bmp")
true
e8ffe13881fc463d25a3271dd230a74dede894d5
Python
YannChye/web-scraping-challenge
/Missions_to_Mars/scrape_mars.py
UTF-8
3,163
2.84375
3
[]
no_license
# setup and import dependencies from splinter import Browser from bs4 import BeautifulSoup as bs import pandas as pd from time import sleep from webdriver_manager.chrome import ChromeDriverManager def init_browser(): executable_path={"executable_path":ChromeDriverManager().install()} return Browser("chrome",**executable_path,headless=False) def scrape_info(): browser=init_browser() # NASA Mars News # connect to url url="https://mars.nasa.gov/news/" browser.visit(url) sleep(1) # use BeautifulSoup to get latest news title and paragraph text html=browser.html soup=bs(html,"html.parser") result=soup.find("li",class_="slide") for r in result: news_title=r.find("div",class_="content_title").text.strip() news_p=r.find("div",class_="rollover_description_inner").text.strip() # JPL Mars Space Images # connect to url url="https://www.jpl.nasa.gov/spaceimages/?search=&category=Mars" browser.visit(url) sleep(1) # use BeautifulSoup to get featured image html=browser.html soup=bs(html,"html.parser") base_url=soup.find("a",id="jpl_logo")["href"] img_url=soup.find("a",id="full_image")["data-fancybox-href"] featured_image_url="https:"+base_url+img_url[1:] # Mars Facts # set url url="https://space-facts.com/mars/" # get table tables=pd.read_html(url) table=tables[0] table.columns=['Description','Mars'] table.set_index('Description',inplace=True) # convert pandas dataframe to html table + remove pandas dataframe class in html table html_table=table.to_html() html_table=html_table.replace('<table border="1" class="dataframe">','<table class="table table-striped">') html_table=html_table.replace('text-align: right','text-align: left') # Mars Hemisphere # connect to url url="https://astrogeology.usgs.gov/search/results?q=hemisphere+enhanced&k1=target&v1=Mars" browser.visit(url) sleep(1) # get hemisphere title and link to each hemisphere title=[] hemi_url=[] html=browser.html soup = bs(html,"html.parser") hemi=soup.find_all("div",class_="description") for h in hemi: title.append(h.a.h3.text) hemi_url.append("https://astrogeology.usgs.gov"+h.a["href"]) # visit hemisphere url to obtaine image url img_url=[] for url in hemi_url: browser.visit(url) html=browser.html soup = bs(html,'html.parser') for link in soup.find_all("a"): if link.text=="Sample": img_url.append(link["href"]) # create a list containing dictionary for each hemisphere hemisphere_image_urls=[] for i in range(4): title_short=title[i].replace(" Enhanced","") # clean up title hemisphere_image_urls.append({"title":title_short,"img_url":img_url[i]}) # quit browser browser.quit() # return results mars_data={ "mars_news_title":news_title, "mars_news_p":news_p, "mars_feature_image":featured_image_url, "mars_facts_table":html_table, "mars_hemi_url":hemisphere_image_urls } return mars_data
true
6db427a72d40e1ad982db2bd6f95155adc35167e
Python
DennisGordic/Chapter_6
/Challenge_6_3.py
UTF-8
1,423
4.375
4
[ "Unlicense" ]
permissive
#Challenge_6_3 #11/24/2014 #Dennis Gordick def main(): # Guess My Number # # The computer picks a random number between 1 and 100 # The player tries to guess it and the computer lets # the player know if the guess is too high, too low # or right on the money import random def ask_number(question, low, high, step): response = None while response not in range(low, high): response = int(input(question)) return response tries += step #Opening Remarks print("Welcome to 'Guess My Number'!") print("I'm thinking of a number between 1 and 100.") print("Try to guess it in as few attempts as possible.") # set the initial values the_number = random.randint(1, 100) # Create the priming read here tries = 0 guess= 0 while int(guess) != int(the_number): guess = ask_number("Enter your guess:", 1, 100, 1) if int(guess) == int(the_number): print("Your right on the money!") elif int(guess) > int(the_number): print("To high!") elif int(guess) < int(the_number): print("To low!") tries += 1 #Didnt know how to make it reloop to the start... print("You guessed it! The number was", the_number) print("And it only took you", tries, "tries!") #Program Closing input("Press the enter key to exit.") main()
true
f2ccc57b0cf46cdf754c2b536cfcb3fd5d26ca05
Python
casiarobot/motionPlanning
/scripts/beats_plot.py
UTF-8
740
2.578125
3
[]
no_license
import pandas as pd import seaborn as sns import matplotlib.pyplot as plt df = pd.read_json('data-latest.json') print(df.columns) # df = df.loc[:, ['Planner', 'time', 'EnvironmentMesh']] print(df.Planner.unique()) df['instance'] = df.Domain + '_' + df.Seed.astype(str) + '_' + \ df.AgentMesh + '_' + df.EnvironmentMesh + '_' + \ df.EnvironmentBounds + '_' + df.Start + '_' + df.Goal df.instance = df.instance.str.replace(' ', '#') sns.boxplot(x='EnvironmentMesh', y='time', hue='Planner', data=df) plt.show() # plt.savefig('test.svg') df.pivot(index='instance', columns='Planner')['time'].plot.scatter('BEAST', 'BEATS') plt.savefig('test.svg') plt.show() if __name__ == '__main__': print('done')
true
af795a0d5e48f4be87788dd1d9cc889232c0587b
Python
gissellemm/girlswhocodeprojects
/dict_attack.py
UTF-8
420
3.78125
4
[]
no_license
f = open("dictionary.txt","r") print("Can your password survive a dictionary attack?") dict_word = "" #NOTE - You will have to use .strip() to strip whitespace and newlines from the file and passwords test_password = input("Type in a trial password: ") for word in f: if word.strip() == test_password.strip(): print("Your password is too weak.") else: print("Your password is okay.")
true
58fd6d6ba59410109f673c87663936753c7c43f7
Python
DaniaMartiuk/Ursina
/core.py
UTF-8
3,368
2.671875
3
[]
no_license
from ursina import * from ursina.prefabs.first_person_controller import FirstPersonController app = Ursina() # загрузка текстур grass_block = load_texture('assets/grass_block.png') dirt_block = load_texture('assets/dirt_block.png') stone_block = load_texture('assets/stone_block.png') brick_block= load_texture('assets/brick_block.png') sky_t = load_texture('assets/skybox.png') block = grass_block def update(): global block if held_keys['1']: block = grass_block if held_keys['2']: block = dirt_block if held_keys['3']: block = stone_block if held_keys['4']: block = brick_block # /////////////////////////////////////// # class Test_Qube(Entity): # def __init__(self): # super().__init__( # model = 'cube', # color = color.white, # texture = 'white_cube', # rotation = Vec3(45,45,45) # ) # # app = Ursina() # # def update(): # # передвижение по координате X # # sq.x += 0.1 # # # Время между кадрами # # print("Time DT: ", time.dt) # # # если кнопка нажата held_keys['любая кнопка'] то передвигаемся # # if held_keys['a']: # # sq.x -= 0.5 # # if held_keys['d']: # # sq.x += 0.5 # # if held_keys['s']: # # sq.y -= 0.5 # # if held_keys['w']: # # sq.y += 0.5 # # #Прокрутка куба на месте # if held_keys['a']: # sq.rotation_y -= 0.5 # if held_keys['d']: # sq.rotation_y += 0.5 # if held_keys['s']: # sq.rotation_x -= 0.5 # if held_keys['w']: # sq.rotation_x += 0.5 # # # //////////////////////////////////////////// # # Название окна с игрой # window.title = 'Test Game' # # # Белая линия для закрития приложения # window.borderless = False # # #Полний екран # window.fullscreen = False # # # Доп кнопка для закрития окна # window.exit_button.visible = False # # # Видимость ФПС # window.fps_counter.enable = True # # //////////////////////////////////////////// # # Создание квадрата # sq = Test_Qube() # # app.run() # ////////////////////////////////////////////////////////////////// class Sky(Entity): def __init__(self): super().__init__( parent=scene, model='sphere', texture=sky_t, scale=300, double_sided=True ) class Cube(Button): def __init__(self, position = (0,0,0),block_t = grass_block): super().__init__( parent = scene, position = position, model = 'assets/block', origin_y = 0.5, texture = block_t, scale = 0.5, color = color.white, highlight_color = color.white ) def input(self, key): # если нажали любую кнопку if self.hovered: if key == 'right mouse down': cube = Cube(self.position + mouse.normal,block) if key == 'left mouse down': destroy(self) for z in range(16): for x in range(16): cube = Cube((x,0,z)) player = FirstPersonController() sky = Sky() app.run()
true
9c149ee1752f26ad179c2eec9bc21292b786541c
Python
rabe-gitops/rabectl
/src/rabectl/status.py
UTF-8
2,926
2.71875
3
[ "Apache-2.0" ]
permissive
import os import sys import yaml import click import boto3 from PyInquirer import prompt, style_from_dict from botocore.exceptions import ProfileNotFound from PyInquirer import Token, Separator, Validator, ValidationError class AWSProfileValidator(Validator): def validate(self, profile_doc): try: boto3.Session(profile_name=profile_doc.text) except ProfileNotFound: raise ValidationError( message=('Profile not found! Enter a valid profile name, or create it: ' '"aws configure --profile <PROFILE_NAME>"'), cursor_position=len(profile_doc.text) ) class Resources: style = style_from_dict({ Token.Separator: '#cc5454', Token.QuestionMark: '#673ab7 bold', Token.Selected: '#cc5454', Token.Pointer: '#673ab7 bold', Token.Instruction: '', Token.Answer: '#f44336 bold', Token.Question: '', }) questions = [ { 'type': 'input', 'message': 'Insert a project name (UpperCamelCaseRecommended)', 'name': 'project' }, { 'type': 'list', 'message': 'Select your cloud provider', 'name': 'cloud', 'choices': [ { 'name': 'AWS' } ] }, { 'when': lambda answers: answers['cloud'] == 'AWS', 'type': 'input', 'message': 'Insert a valid AWS CLI profile name', 'name': 'aws.profile', 'validate': AWSProfileValidator }, { 'when': lambda answers: answers['cloud'] == 'AWS', 'type': 'input', 'message': 'Insert a valid AWS region name', 'name': 'aws.region' }, { 'type': 'input', 'message': 'Insert a valid GitHub organization name', 'name': 'github.owner' }, { 'type': 'input', 'message': 'Insert a valid name for your new IaC repository', 'name': 'github.repo' }, { 'type': 'password', 'message': 'Insert a valid GitHub token with admin permissions', 'name': 'github.token' }, { 'type': 'confirm', 'message': 'Are you sure you want to deploy your pipeline?', 'name': 'continue', 'default': True } ] answers = {} def ask(self): self.answers = prompt(self.questions, style=self.style) return self.answers def load(self, path): with open(path, 'r') as f: self.answers = yaml.load(f, Loader=yaml.FullLoader) return self.answers def store(self, path): with open(path, 'w') as f: yaml.dump(self.answers, f, default_flow_style=False)
true
3728aa22af829f4907dc47c608bc011abe39a8e0
Python
khyathipurushotham/python_programs
/list1.py
UTF-8
81
2.671875
3
[]
no_license
names=['khyathi','purushotham','sarada','sai'] print(names) print(len(names))
true
4fa76e3320ca06fd92d2b5c7684f1b028e6b4c6f
Python
jimmcgaw/CodeEval
/python/timediff/timediff.py
UTF-8
1,161
2.90625
3
[]
no_license
#!/usr/bin/python import sys import datetime # check that a filename argument was provided, otherwise if len(sys.argv) < 2: raise Exception("Filename must be first argument provided") filename = sys.argv[1] lines = [] # open file in read mode, assuming file is in same directory as script try: file = open(filename, 'r') # read Fibbonacci indexes from file into list lines = file.readlines() file.close() except IOError: print "File '%s' was not found in current directory" % filename lines = [line.replace('\n', '') for line in lines] try: lines.remove("") except: pass def chunkify(sequence, k): for i in xrange(0, len(sequence), k): yield sequence[i:i+k] for line in lines: start_time, end_time = line.split(' ') # print start_time # print end_time start_time = datetime.datetime.strptime(start_time, '%H:%M:%S') end_time = datetime.datetime.strptime(end_time, '%H:%M:%S') if end_time < start_time: start_time, end_time = end_time, start_time diff = end_time - start_time hours = diff.seconds minutes = 0 seconds = 0 print '%02d:%02d:%02d' % (hours, minutes, seconds)
true
c6239c9f326bd4680b62118338ed76c43340a8ae
Python
yinon4/YCOIN
/blockchain.py
UTF-8
3,623
3.078125
3
[]
no_license
from hashlib import sha256 from datetime import date def hash(string): return None if (string == None) else sha256(string.encode("ascii")).hexdigest() class Transaction: def __init__(self, private_from_address, public_to_address, amount): self.private_from_address = private_from_address self.public_to_address = public_to_address self.amount = amount def __str__(self): return f"\t{str(self.private_from_address)} -> ${str(self.amount)} -> {str(self.public_to_address)}" def __repr__(self): return str(self) class Block: def __init__(self, transactions, previous_hash): self.transactions = transactions self.previous_hash = previous_hash self.nonce = 0; self.date = date.today() self.hash = "" def hash_recalc(self): header = str(self.nonce) + str(self.transactions) + str(self.previous_hash) return hash(header) def mineBlock(self, difficulty): while not self.hash.startswith("0" * difficulty): self.nonce += 1 self.hash = self.hash_recalc() if self.nonce % 10000 == 0: print(self.nonce, end = '\r') print("nonce = " + str(self.nonce)) def __str__(self): self.string = "" for i in self.transactions: self.string += str(i) + "\n" return self.string class Blockchain: def __init__(self, difficulty, mining_reward): self.chain = [self.gen_block()] self.difficulty = difficulty self.pending_transactions = [] self.mining_reward = mining_reward def gen_block(self): return Block([Transaction(None, None, 0)], 0) def latest_block(self): return self.chain[-1] def minePendingTransactions(self, public_to_address): newBlock = Block(self.pending_transactions, self.latest_block().hash) newBlock.mineBlock(self.difficulty) self.chain.append(newBlock) self.pending_transactions = [Transaction(None, public_to_address, self.mining_reward)] def balance_of_address(self, private_address): balance = 0 public_address = hash(private_address) #add pending block to balance so to make sure no negative balance pending_chain = self.chain + [Block(self.pending_transactions, self.latest_block().hash)] for block in pending_chain: for trans in block.transactions: if(trans.private_from_address == private_address): balance -= trans.amount if(trans.public_to_address == public_address): balance += trans.amount return balance def addTransaction(self, transaction): if ((transaction.private_from_address != None) and (self.balance_of_address(transaction.private_from_address) < transaction.amount)): print(str(transaction) + "\nNot enough funds on address") else: self.pending_transactions.append(transaction) def chain_validity(self): for i in range(1, len(self.chain)): current_block = self.chain[i] previous_block = self.chain[i-1] if(current_block.previous_hash != previous_block.hash): return False if(current_block.hash != current_block.hash_recalc()): return False return True def __str__(self): self.print = "" for i in self.chain: self.print += str(i) + "\n" return self.print
true
1a7278d3f0d74813846702d08ade55c39482f7b3
Python
atrukhanov/routine_python
/23_nxopen_refactoring/7_check_pmi_objects.py
UTF-8
936
2.84375
3
[]
no_license
import NXOpen class NXJournal: def __init__(self): self.session = NXOpen.Session.GetSession() self.work_part = self.session.Parts.Work self.lw = self.session.ListingWindow self.PMIs = self.work_part.PmiManager.Pmis def find_pmi_objects(self): try: if self.PMIs: pmi_list = [item.JournalIdentifier for item in self.PMIs] out_string = "Модель содержит объекты PMI \n{}".format( "\n".join(map(str, pmi_list)) ) else: out_string = "Модель соответствует требованиям" return out_string except Exception as ex: return("find_pmi_objects failed with {}".format(ex)) def main(): app = NXJournal() app.lw.Open() app.WriteLine(app.find_pmi_objects()) if __name__ == "__main__": main()
true
b6a70ea7f6c7132a8c60f71310f3c5140eafa479
Python
chxzh/stroke_rendering_thesis
/src/stroke_generalize.py
UTF-8
7,734
2.59375
3
[]
no_license
from PIL import Image import random import math def get_stroke(color, radius, length, thickness =7): def draw_head(): r, g, b, a = color head = Image.new("RGBA", (width, head_length), (255, 255, 255, 0)) data = list(head.getdata()) w, h = head.size start, end = head_edge line = [0] * (end-start) copy_hair_bunch_list = hair_bunch_list[start:end] for i in range(end-start): line[i-1] = (copy_hair_bunch_list[i-2]+2*copy_hair_bunch_list[i-1]+copy_hair_bunch_list[i])*0.25 i = start for hair_bunch in line: dist = i - width * 0.5 try: length = max(0, min(h,math.sqrt(radius*radius-dist*dist) * 0.5 + hair_bunch)) except ValueError: print radius, dist, i exit() integer = int(length) decimal = length - integer delta = deltas[i] data[i*h:i*h+integer+1] = [(r + delta, g + delta, b + delta, a)] * (integer) + [(r + delta, g + delta, b + delta, int(255*decimal))] i += 1 data = data[:w*h] head = head.transpose(Image.ROTATE_90) head.putdata(data) head = head.transpose(Image.ROTATE_90) data = list(head.getdata()) data2 = [] for j in range(h): line = data[j*w: j*w + w] new_line = [(255, 255, 255, 0)] * w for i in range(-2, w-2): try: a = line[i-2][3] + line[i-1][3] * 3 + line[i][3] * 6 + line[i+1][3] * 3 + line[i+2][3] except IndexError: print i, len(line), line[i-1] exit() if a != 0: a = a/14 delta = deltas[i] new_line[i] = (r + delta, g + delta, b + delta, a) data2.extend(new_line) head.putdata(data2) im.paste(head, (0, 0)) return def draw_tail(): r, g, b, a = color tail = Image.new("RGBA", (width, tail_length), (255, 255, 255, 0)) data = list(tail.getdata()) w, h = tail.size start, end = tail_edge line = [0] * (end-start) i = start copy_hair_bunch_list = hair_bunch_list[start:end] for hair_bunch in copy_hair_bunch_list: #length = max(0, min(h,math.sqrt(radius*radius-dist*dist) * 0.5 + hair_bunch)) length = max(0, min(h, radius * 0.5 + hair_bunch)) integer = int(length) decimal = length - integer delta = deltas[i] data[i*h: i*h+integer+1] = [(0, 0, 0, 255)]+ [(r + delta, g + delta, b + delta, a)] * (integer - 1) + [(r + delta, g + delta, b + delta, int(255*decimal))] i += 1 data = data[:w*h] tail = tail.transpose(Image.ROTATE_90) tail.putdata(data) tail = tail.transpose(Image.ROTATE_90).transpose(Image.FLIP_TOP_BOTTOM) data = list(tail.getdata()) data2 = [] for j in range(h): line = data[j*w: j*w + w] new_line = [(255, 255, 255, 0)] * w for i in range(-2, w-2): try: a = line[i-2][3] + line[i-1][3] * 3 + line[i][3] * 6 + line[i+1][3] * 3 + line[i+2][3] except IndexError: print i, len(line), line[i-1] exit() if a != 0: a = a/14 delta = deltas[i] new_line[i] = (r + delta, g + delta, b + delta, a) data2.extend(new_line) tail.putdata(data2) im.paste(tail, (0, height-tail_length)) return def draw_wing(): wing = Image.new("RGBA", (wing_width, height - head_length - tail_length), (255, 255, 255, 0)) w, h = wing.size left_wing = list(wing.getdata()) for i in range(h): left_wing[i*w+wing_width/2:i*w+w] = [color] * (w - wing_width / 2) wing.putdata(left_wing) im.paste(wing, (0, head_length)) im.paste(wing.rotate(180), (width-wing_width, head_length)) return head_edge, tail_edge def draw_body(): #color = (127, 127, 127, 255) body = Image.new("RGBA", (width-wing_width*2, height - head_length - tail_length), color) data = list(body.getdata()) w, h = body.size r, g, b, a = color line = [] data2 = [] #band = 16 #data2.extend(line*50) #deltas = [int(round(i)) for i in hair_bunch_list[wing_width/2:wing_width/2+w]] #for i in range(w): #delta = int(round(random.normalvariate(0, band/2))) #deltas[i] = delta #for i in range(w): #delta = deltas[i] #line[i] = (r+delta, g+delta, b+delta, a) #data2.extend(line*50) #for i in range(-1, w-1): #delta = int( 0.6 * deltas[i] + 0.2 * deltas[i-1] + 0.2 * deltas[i+1]) #line[i] = (r+delta, g+delta, b+delta, a) #data2.extend(line*50) for delta in deltas[wing_width:wing_width+w]: #delta = int(round( 0.6 * deltas[i+1] - 0.6 * deltas[i-1]+ 0.2 * deltas[i+2] - 0.2 * deltas[i-2])) line.append((r+delta, g+delta, b+delta, a)) #data2.extend(line*(50)) #data2.extend([color]*w*(h-200)) data2.extend(line*h) #for i in range(h): #for j in range(w): #pos = i * w + j #data[pos] = line[j] body.putdata(data2) im.paste(body, (wing_width, head_length)) return def settle_parameters(thickness): #settle parameters including: # head_edge, tail_edge, head_length, tail_length, wing_width # according to the given parameters including: # thickness, width, # and more importantly, the hair-bunches wing_width = radius / 4 head_length = radius tail_length = radius head_edge = (wing_width / 2, width - wing_width / 2) tail_edge = (wing_width / 2, width - wing_width / 2) sigma = radius * 0.25 * thickness / 8 hair_bunch_list.extend([random.normalvariate(0, sigma) for i in range(width)]) hblist_length = width deltas.extend([0]*hblist_length) for i in range(-2, hblist_length-2): deltas[i] = int(round( 0.6 * hair_bunch_list[i+1] - 0.6 * hair_bunch_list[i-1] + 0.2 * hair_bunch_list[i+2] - 0.2 * hair_bunch_list[i-2])) return wing_width, head_length, head_edge, tail_length, tail_edge if len(color) == 3: r, g, b = color a = 255 color = r, g, b, a elif len(color) == 4: r, g, b, a = color else: #wrong format of the color return null if length <radius * 2: #wrong size return null im = Image.new("RGBA", (radius * 2, length), color) data = im.getdata() width = radius * 2 height = length head_edge = (0, width - 1) tail_edge = (0, width - 1) wing_width = 0 head_length = 0 tail_length = 0 hair_bunch_list = [] deltas = [] wing_width, head_length, head_edge, tail_length, tail_edge = settle_parameters(thickness) draw_body() head_edge, tail_edge = draw_wing() draw_head() draw_tail() return im def main(): color = (0, 192, 128) radius, length = 31, 200 thickness = 7 im = get_stroke(color, radius, length, thickness) im.save("result.png") im.show() if __name__ == "__main__": main()
true
b2c7e3942990e0c4b5a24dd62c2e26dbb92af5c3
Python
kimx5227/beginner_python
/Basal_Metabolic_Rate_Redux.py
UTF-8
307
3.609375
4
[]
no_license
def main(): windchill() def windchill(): temperature = input("Enter temperature (F): ") v = input("Enter wind velocity (MPH): ") windchill = 35.74 = 0.6215*temperature - 35.75 * (v ** (.16)) + 0.4275 * temperature * (v ** (0.16)) print(windchill) if __name__=='__main__': main()
true
366eb8e0ec2973383d89cee0bfe9b3931691148e
Python
Kingdomdark/ProjectOP2
/main/classes/databasemanager.py
UTF-8
2,270
3.34375
3
[]
no_license
import psycopg2 class databasemanager: # Use the database def interact_with_database(self, command): # Connect and set up cursor #connection = psycopg2.connect("dbname=game_db user=postgres password=postgres") connection = psycopg2.connect(dbname="game_db", user="postgres", password="postgres") cursor = connection.cursor() # Execute the command cursor.execute(command) connection.commit() # Save results results = None try: results = cursor.fetchall() except psycopg2.ProgrammingError: # Nothing to fetch pass # Close connection cursor.close() connection.close() return results # Uploads a score into the hiscore table def upload_score(self, CQuestions , turns , name): self.interact_with_database("UPDATE highscores SET " " correct_questions = {}, " " turns_taken = {} " " WHERE name = '{}' " .format( CQuestions , turns , name)) # Downloads score data from database def download_scores(self): return self.interact_with_database("SELECT * FROM highscores") # Downloads the top score from database def download_top_score(self): result = self.interact_with_database("SELECT *, h.correct_questions / h.turns_taken as ranked FROM highscores h ORDER by ranked DESC LIMIT 5 ") return result def createTable(self): result = self.interact_with_database( "CREATE TABLE IF NOT EXISTS highscores(correct_questions real ,turns_taken real , name varchar);") def insertplayer(self , CQuestions , turns , name): self.interact_with_database("INSERT INTO highscores (correct_questions , turns_taken , name ) VALUES ( {} , {} , '{}') " .format( CQuestions , turns , name)) db = databasemanager() # create table if not exist # db.createTable() # db.insertplayer( 20 , 20 , "stefan") # db.insertplayer( 5 , 15 , "Jordan") # db.insertplayer( 3 , 7 , "Binh")
true
5613201c8407d0dd2a3c5299da933fc90dcca958
Python
knts0/atcoder
/AtCoder/ABC/103/a.py
UTF-8
103
2.90625
3
[]
no_license
a, b, c = map(int, input().split()) l = sorted([abs(a - b), abs(b - c), abs(c - a)]) print(l[0] + l[1])
true
0c51839ed097e72c0904860dc32c16859f48c0a6
Python
dirac1/SecRouter
/test/execute.py
UTF-8
583
3.015625
3
[]
no_license
import subprocess def execute(cmd): popen = subprocess.Popen(cmd, stdout=subprocess.PIPE, universal_newlines=True) for stdout_line in iter(popen.stdout.readline, ""): yield stdout_line popen.stdout.close() return_code = popen.wait() if return_code: raise subprocess.CalledProcessError(return_code, cmd) # cmd_in and cmd_out are tuples #popen = subprocess.Popen(cmd_in, stdout=subprocess.PIPE) #output = subprocess.check_output(cmd_out, stdin=popen.stdout) #popen.wait() def main(): for path in execute(['ls']): print(path, end="")
true
3a2ea957b6d9c772bbd18f79552e21a2bf9d10c8
Python
marinehero/Capital-construction-project
/Projects/BlogWebSite/框架/Inspect.py
UTF-8
1,573
3.234375
3
[ "MIT" ]
permissive
import inspect def a(a, b=0, *c, d, e=1, **f): pass aa = inspect.signature(a) # 获取函数的表达签名 print("inspect.signature(fn)是:%s" % aa) # bb = aa.parameters # [(获取所有参数)] for name ,parameter in bb.items(): print(name,parameter) # name: a b c d e f parameter 具体映射 a b=0 *c d e=1 **f print("signature.paramerters属性是:%s" % bb) print("ignature.paramerters属性的类型是%s" % type(bb)) # mappingproxy 映射代理 print("\n") for cc, dd in bb.items(): # 映射代理 print("mappingproxy.items()返回的两个值分别是:%s和%s" % (cc, dd)) # a 和 a b和b=0 c 和 *c print("mappingproxy.items()返回的两个值的类型分别是:%s和%s" % (type(cc), type(dd))) # 'str' inspect.Parameter' print("\n") ee = dd.kind # 参数所属种类 a b 位置参数 c可变位置参数 后面 是制定关键字参数 最后**f是 可变关键字参数 print("Parameter.kind属性是:%s" % ee) # POSITIONAL_OR_KEYWORD (a,b=0) VAR_POSITIONAL(*c) KEYWORD_ONLY(d 在*c后 指定关键字参数 e) VAR_KEYWORD(**f) print("Parameter.kind属性的类型是:%s" % type(ee))# enum '_ParameterKind' print("\n") gg = dd.default# 参数的默认值 分别是 0 1 inspect._empty inspect._empty 1 inspect._empty print("Parameter.default的值是: %s" % gg) print("Parameter.default的属性是: %s" % type(gg)) print("\n") ff = inspect.Parameter.KEYWORD_ONLY print("inspect.Parameter.KEYWORD_ONLY的值是:%s" % ff) print("inspect.Parameter.KEYWORD_ONLY的类型是:%s" % type(ff))
true
a534d2a6c20c0511fff2864458514d81cacc0486
Python
Code-Institute-Submissions/richard-ui-b_fitness_store_SepResub
/products/templatetags/product_tags.py
UTF-8
846
2.75
3
[]
no_license
from django import template from reviews_list.models import Reviews_list from django.utils.safestring import mark_safe register = template.Library() @register.simple_tag def calculate_rating(current_product): reviews = Reviews_list.objects.filter(product=current_product) review_avg = 0 # if product has greater reviews than 0... if len(reviews) > 0: for review in reviews: review_avg += review.review_rating review_avg = review_avg / len(reviews) review = '<small class="text-muted">' \ '<i class="fas fa-star mr-1"></i>%d / 5</small>' \ % review_avg else: review = '<small class="text-muted">No Rating</small>' # mark a string as safe for (HTML) output purposes. return mark_safe(review)
true
a5d80594ca73804687c11eb548c70428345d9080
Python
ChitturiPadma/ComputerVision
/10.Bitwise_Operations.py
UTF-8
1,301
3.21875
3
[]
no_license
# coding: utf-8 # In[1]: #Extract non-rectangular regions of interest (ROI) import cv2 import numpy as np import imutils # In[2]: #Draw a rectangle canvas1 = np.zeros((300,300), dtype='uint8') rectangle = cv2.rectangle(canvas1, (25, 25),(275, 275),255,-1) cv2.imshow('Rectangle', rectangle) #Binary imagei cv2.waitKey(0) # In[3]: canvas2 = np.zeros((300,300), dtype='uint8') circle = cv2.circle(canvas2, (150,150), 150,255,-1) cv2.imshow('Circle', circle) #Binary Image cv2.waitKey(0) # In[4]: #Bitwise AND - examine both pixels and if both > 0 then the pixel is turned ON and set to 255 bitwiseAnd = cv2.bitwise_and(rectangle, circle) cv2.imshow('AND', bitwiseAnd) cv2.waitKey(0) # In[5]: #Bitwise OR - extract if either of the pixels is > 0 and output pixel is set to 255 bitWiseOR = cv2.bitwise_or(rectangle, circle) cv2.imshow('OR', bitWiseOR) cv2.waitKey(0) # In[6]: #Bitwise XOR- both the pixels should not have value > 0 bitwiseXOR = cv2.bitwise_xor(rectangle, circle) cv2.imshow('XOR', bitwiseXOR) cv2.waitKey(0) # In[7]: #Bitwise NOT - invert the values of pixel values bitwiseNOT = cv2.bitwise_not(rectangle) cv2.imshow('NOT', bitwiseNOT) cv2.waitKey(0) bitwiseNOT2 = cv2.bitwise_not(circle) cv2.imshow('NOT', bitwiseNOT2) cv2.waitKey(0) # In[12]: # In[ ]:
true
27ebbde47617b4a0a74183f3d434366cfad42c10
Python
alvarongg/QSLcardGenerator
/Importador_archivos.py
UTF-8
2,947
2.890625
3
[ "MIT" ]
permissive
import tkinter as tk from tkinter import filedialog import pandas as pd from PIL import Image from PIL import ImageFont from PIL import ImageDraw path_foto = '' def Generador_Imagenes( dia, mes, anio, licencia, hora, mhz, rst, mod, qsl ): global path_foto img = Image.open(path_foto.name) draw = ImageDraw.Draw(img) font = ImageFont.truetype("Roboto-Regular.ttf", 40) #font = ImageFont.truetype("radio_stars.ttf", 40) #font = ImageFont.truetype(font='Arial', size=16, index=0, encoding='') #draw.text((x, y),"Sample Text",(r,g,b)) draw.text((130,900),licencia,(0,0,0),font=font) draw.text((380,900),dia,(0,0,0),font=font) draw.text((470,900),mes,(0,0,0),font=font) draw.text((550,900),anio,(0,0,0),font=font) draw.text((700,900),hora,(0,0,0),font=font) draw.text((900,900),mhz,(0,0,0),font=font) draw.text((1160, 900),rst,(0,0,0),font=font) draw.text((1300,900),mod,(0,0,0),font=font) draw.text((1470,900),qsl,(0,0,0),font=font) img.save(licencia+'_'+anio+'_'+mes+'_'+dia+'_'+hora+'_'+'qsl_9_Julio.jpg') def getExcel (): global df global dia global mes global anio global licencia global hora global mhz global rst global mod global qsl import_file_path = filedialog.askopenfilename() df = pd.read_excel (import_file_path) shape = df.shape cantidad = shape[0] print(cantidad) print(df) print(df.iloc[5,3]) for i in range(0,cantidad): dia = str(df.iloc[i,9]) mes = str(df.iloc[i,10]) anio = str(df.iloc[i,11]) licencia = str(df.iloc[i,3]) hora = str(df.iloc[i,4]) mhz = str(df.iloc[i,5]) rst = str(df.iloc[i,6]) mod = str(df.iloc[i,7]) qsl = str(df.iloc[i,8]) print(dia+''+mes+''+anio+''+licencia+''+hora+''+mhz+''+rst+''+mod+''+qsl) Generador_Imagenes(dia,mes,anio,licencia,hora,mhz,rst,mod,qsl) def getImage (): global path_foto path_foto = filedialog.askopenfile() print(path_foto.name) root= tk.Tk() root.title("Generador de tarjetas QSL") canvas1 = tk.Canvas(root, width = 300, height = 300, bg = 'lightsteelblue') canvas1.pack() browseButton_Excel = tk.Button(text='Paso 2: Importar Base_QSL', command=getExcel, bg='green', fg='white', font=('helvetica', 12, 'bold')) browseButton_Mail = tk.Button(text='Paso 1:Cargar nueva imagen', command=getImage, bg='green', fg='white', font=('helvetica', 12, 'bold')) canvas1.create_window(150, 150, window=browseButton_Mail) canvas1.create_window(150, 200, window=browseButton_Excel) root.mainloop()
true
3ef48147b11423d0fc8bbe917f16ef9ddda94fa6
Python
bozenamrozek/PYTHON
/03obliczenia.py
UTF-8
179
3.296875
3
[]
no_license
a=5 b=2 print('suma=' ,a+b) print('suma=' ,a-b) print('suma=' ,a/b) print('suma=' ,a*b) print('suma=' ,a**b) print('suma=' ,a%b) print('suma=' ,a//b) #dzielenie całkowite
true
2da3d29de8e36f47817676b1f5b9d2895fa2a46e
Python
praveenn7/blockchain_masterexamples
/Sample1.py
UTF-8
181
2.53125
3
[]
no_license
from bitcoin import * priv = random_key() print("Private Key : ", priv) pub = privtopub(priv) print("Public Key : ", pub) addr = pubtoaddr(pub) print("Address : " + addr)
true
17202184dfe564bb7fab472f37f8c2629797a900
Python
shilpageo/pythonproject
/advanced python/decorators/demo3.py
UTF-8
739
2.9375
3
[]
no_license
# #def vaccinaion portal(**kwargs): # print("request id allowed location ekm") #vaccination_portal(name="ram",age=25,address="address",health_issue=True) #age above>65 or health_issue=True {allowed} def decorator(fun): def wrapped(name,age,health_issue,place): if (age>65)or(health_issue==True): print("request id is allowed to ekm") else: raise Exception("not eligible") return fun(name,age,place,health_issue) return wrapped @decorator def vaccination_portal(**kwargs): name=kwargs["name"] age = kwargs["age"] place = kwargs["place"] health_issue = kwargs["health_issue"] vaccination_portal(name="ram",age=67,place="ekm",health_issue=False)
true
c5df9d21e579388b4d08ca4bf1219615097bab55
Python
enthusiasm99/crazypython
/04/P94_xiti_02.py
UTF-8
220
4.03125
4
[]
no_license
size = int(input("请输入一个数字:")) for i in range(1, size + 1): # 空格与行数i的关系 kongge = " " * (size - i) # *与行数i的关系 stars = "*" * (2 * i - 1) print(kongge + stars)
true
1b208280698b1dde433c20b1195f0efb0102fad6
Python
mmaina8/Python-AkiraChixDataModel
/student/models.py
UTF-8
1,403
2.5625
3
[]
no_license
from django.db import models from course.models import Course import datetime from django.core.exceptions import ValidationError # Create your models here. class Student(models.Model): first_name = models.CharField(max_length=50) last_name = models.CharField(max_length=50) date_of_birth = models.DateField() registration_number = models.CharField(max_length=50) place_of_residence = models.CharField(max_length=50) phone_number = models.CharField(max_length=50) email = models.EmailField(max_length=50) guardian_phone = models.CharField(max_length=50) id_number = models.IntegerField() date_joined = models.DateField() profile_picture = models.ImageField(upload_to="student_image",blank=True,null=True) course = models.ManyToManyField(Course,blank=False,related_name="students") def __str__(self): return self.first_name + " " + self.last_name def full_name(self): return "{} {}".format ( self.first_name, self.last_name) def get_age(self): today = datetime.date.today() return today.year-self.date_of_birth.year age = property(get_age) def clean(self): age=self.age if age<18 or age>30: raise ValidationError("above 18, below 30") return age # def teachers(self): # return [course.teacher for course in self.course.all()]
true
680bb01d5dec29f54dc0b598e855da72c12e0eda
Python
Firmino-Neto/Exercicios---Python--UFC-
/Função e vetores -py/21.py
UTF-8
557
3.65625
4
[ "MIT" ]
permissive
def Vetor( lista, tam ): print ("Digite os elementos da lista") contador = 0 while contador < tam: numero = int(input("Digite um numero: ")) lista.append( numero ) contador = contador + 1 def subtraiVetor(a,b): c = [] i = 0 while i < len(a): subtracao = a[i]-b[i] c.append(subtracao) i = i + 1 return c #Codigo principal [chamar função] a = [] b = [] #Fazer CompLista = 10 CompLista = int(input( "Digite a quantidade de numeros: " )) Vetor(a,CompLista) Vetor(b,CompLista) print(a) print(b) print(subtraiVetor(a,b))
true
4029c8ed53ebda15d04b606e132ac3c1ec7d8b41
Python
shengchaohu/shengchao
/yixue/interval.py
UTF-8
5,115
3.265625
3
[]
no_license
from collections import OrderedDict import bisect import load class Interval: ''' interval from json file, which is string by default ''' def time_start_end(self, label=load.label, question_start_time_delta=8, question_end_time_delta=5): ''' return a list of time interval, consisting of [start,end,(file) index] ''' _start_end=[[label[index][question_start_time_delta], label[index][question_end_time_delta],index] for index in range(len(label))] return sorted(_start_end,key=lambda x: x[0]) def merge(self,intervals): ''' merge intervals if overlapping. Intervals is of type list of list returns a list of list ''' ans = [] for interval in sorted(intervals, key=lambda x: x[0]): if not ans or interval[0] > ans[-1][1]: ans.append(interval) else: ans[-1][1] = max(ans[-1][1], interval[1]) return ans def insert(self,intervals,newinterval,merge=0): ''' linear time insert Insert new interval to a list of non-overlapping intervals (merge if merge=1). if merge=0, the two overlapping intervals will be printed out. The latter interval will not be added. Then Insert will continue. Intervals is of type list of list returns a list of list ''' ans = [] index = len(intervals) for i in range(len(intervals)): if newInterval[0] < intervals[i][0]: index = i break intervals.insert(index, newInterval) # this insert is built_in method for list # then repeat the same prodecure as Interval.merge(self, intervals) for interval in intervals: if not ans or interval[0] > ans[-1][1]: ans.append(interval) else: if(merge==0): print(interval, ans[-1]) continue elif(merge==1): ans[-1][1] = max(ans[-1][1], interval[1]) return ans class Interval_quick(Interval): ''' fast implementation of Interval ''' def time_start_end(self): ''' return a list of time interval, consisting of [start,end,(file) index] ''' c=Interval.time_start_end(self) c=[list(map(lambda ccc: int(float(ccc)), cc)) for cc in c] return sorted(c,key=lambda x: x[0]) def insert(self,intervals,newinterval,merge=1): ''' O(logn) time implementation of insert method ans and intervals are of type OrderedDict a in ans, i in intervals is of form {start time:(end time, index} new interval is given via a tuple (start time, end time, index) if merge=1, the overlapping intervals will be printed out and then merge. ''' # suppose OrderedDict is implemented using double linked list ans = OrderedDict() # find left bound keys = list(intervals.keys()) left_key=keys[bisect.bisect_left(keys,newinterval[0])] right_key=keys[bisect.bisect_left(keys,newinterval[1])] ...... for i in range(len(intervals)): if newInterval[0] < intervals[i][0]: index = i break intervals.insert(index, newInterval) # this insert is built_in method for list # then repeat the same prodecure as Interval.merge(self, intervals) for interval in intervals: if not ans or interval[0] > ans[-1][1]: ans.append(interval) else: if(merge==0): print(interval, ans[-1]) continue elif(merge==1): ans[-1][1] = max(ans[-1][1], interval[1]) return ans class RangeModule(): def __init__(self): self.ranges = [] def _bounds(self, left, right): i, j = 0, len(self.ranges) - 1 for d in (100, 10, 1): while i + d - 1 < len(self.ranges) and self.ranges[i+d-1][1] < left: i += d while j >= d - 1 and self.ranges[j-d+1][0] > right: j -= d return i, j def addRange(self, left, right): i, j = self._bounds(left, right) if i <= j: left = min(left, self.ranges[i][0]) right = max(right, self.ranges[j][1]) self.ranges[i:j+1] = [(left, right)] def queryRange(self, left, right): i = bisect.bisect_left(self.ranges, (left, float('inf'))) if i: i -= 1 return (bool(self.ranges) and self.ranges[i][0] <= left and right <= self.ranges[i][1]) def removeRange(self, left, right): i, j = self._bounds(left, right) merge = [] for k in range(i, j+1): if self.ranges[k][0] < left: merge.append((self.ranges[k][0], left)) if right < self.ranges[k][1]: merge.append((right, self.ranges[k][1])) self.ranges[i:j+1] = merge
true
4644ba197803f2a7f1f6012c9676144633b540a1
Python
jzeeck/BeautifulSoap-Example
/handler.py
UTF-8
696
2.578125
3
[]
no_license
from bs4 import BeautifulSoup import requests def processProduct(baseUrl, Item): #print "Processing {}{}".format(baseUrl, Item['href'].encode('utf8')) # Fetch page and parser r = requests.get(baseUrl + Item['href'].encode('utf8')) data = r.text soup = BeautifulSoup(data, "html.parser") prod_info = soup.find('div', {'id': 'prod-info'}) #print soup.prettify() #file = open(Item['href'].encode('utf8').replace("/","-") + ".txt", "wb") #file.write(unicode(soup.prettify()).encode("utf-8")) #file.flush() print prod_info.h1.string price = prod_info.find('span', {'class': 'price'}) print price.string print baseUrl + Item['href'].encode('utf8') + "\n" # unicode(s).encode("utf-8")
true
79a36f9f3052599679dfa7c0d5d6b8e9febf6773
Python
jace/zine-main
/zine/utils/text.py
UTF-8
4,117
2.65625
3
[ "BSD-3-Clause" ]
permissive
# -*- coding: utf-8 -*- """ zine.utils.text ~~~~~~~~~~~~~~~ This module provides various text utility functions. :copyright: (c) 2009 by the Zine Team, see AUTHORS for more details. :license: BSD, see LICENSE for more details. """ import re import string import unicodedata from urlparse import urlparse from werkzeug import url_quote from zine._dynamic.translit_tab import LONG_TABLE, SHORT_TABLE, SINGLE_TABLE _punctuation_re = re.compile(r'[\t !"#$%&\'()*\-/<=>?@\[\\\]^_`{|},.]+') _string_inc_re = re.compile(r'(\d+)$') def gen_slug(text, delim=u'-'): """Generates a proper slug for the given text. It calls either `gen_ascii_slug` or `gen_unicode_slug` depending on the application configuration. """ from zine.application import get_application if get_application().cfg['ascii_slugs']: return gen_ascii_slug(text, delim) return gen_unicode_slug(text, delim) def gen_ascii_slug(text, delim=u'-'): """Generates an ASCII-only slug.""" result = [] for word in _punctuation_re.split(text.lower()): word = _punctuation_re.sub(u'', transliterate(word)) if word: result.append(word) return unicode(delim.join(result)) def gen_unicode_slug(text, delim=u'-'): """Generate an unicode slug.""" return unicode(delim.join(_punctuation_re.split(text.lower()))) def gen_timestamped_slug(slug, content_type, pub_date): """Generate a timestamped slug, suitable for use as final URL path.""" from zine.application import get_application from zine.i18n import to_blog_timezone cfg = get_application().cfg pub_date = to_blog_timezone(pub_date) prefix = cfg['blog_url_prefix'].lstrip('/') if prefix: prefix += '/' if content_type == 'entry': if cfg['fixed_url_date_digits']: year = '%04d' % pub_date.year month = '%02d' % pub_date.month day = '%02d' % pub_date.day hour = '%02d' % pub_date.hour minute = '%02d' % pub_date.minute second = '%02d' % pub_date.second else: year = '%d' % pub_date.year month = '%d' % pub_date.month day = '%d' % pub_date.day hour = '%d' % pub_date.hour minute = '%d' % pub_date.minute second = '%d' % pub_date.second full_slug = u'%s%s%s' % ( prefix, cfg['post_url_format'].replace( '%year%', year).replace( '%month%', month).replace( '%day%', day).replace( '%hour%', hour).replace( '%minute%', minute).replace( '%second%', second), slug ) else: full_slug = u'%s%s' % (prefix, slug) return full_slug def increment_string(string): """Increment a string by one: >>> increment_string(u'test') u'test2' >>> increment_string(u'test2') u'test3' """ match = _string_inc_re.search(string) if match is None: return string + u'2' return string[:match.start()] + unicode(int(match.group(1)) + 1) def transliterate(string, table='long'): """Transliterate to 8 bit using one of the tables given. The table must either be ``'long'``, ``'short'`` or ``'single'``. """ table = { 'long': LONG_TABLE, 'short': SHORT_TABLE, 'single': SINGLE_TABLE }[table] return unicodedata.normalize('NFKC', unicode(string)).translate(table) def build_tag_uri(app, date, resource, identifier): """Build a unique tag URI. The tag URI must obey the ABNF defined in http://www.faqs.org/rfcs/rfc4151.html """ host, path = urlparse(app.cfg['blog_url'])[1:3] if ':' in host: host = host.split(':', 1)[0] path = path.strip('/') if path: path = ',' + path if not isinstance(identifier, basestring): identifier = str(identifier) return 'tag:%s,%s:%s/%s;%s' % (host, date.strftime('%Y-%m-%d'), path, url_quote(resource), url_quote(identifier))
true
9cf789f529d8c44b847652739809346399164e9e
Python
ancestor-mithril/UAIC_FII_PYTHON
/PythonProjects/Spanzuratoarea/main.py
UTF-8
1,637
3.046875
3
[]
no_license
"""C3. Spanzuratoarea Sa se scrie o aplicatie in care utilizatorul trebuie sa ghicesca un anumit cuvant. Cuvintele vor fi predefinite si vor avea o anumita categorie. La rulare userul alege o categorie si se va alege un cuvant random din cele existente in categoria aleasa. Utilizatorul poate incerca cate o litera odata. Daca ghiceste o litera, atunci i se vor afisa pozitiile din cuvant pentru litera respectiva. Utilizatorul are voie sa greseasca literele de un anumit numar maxim de incercari (in functie de lungimea cuvantului). In timpul jocului se va afisa numarul de incarcari ramase. La final, se va afisa cuvantul si numarul de incercari esuate. Cuvintele vor fi salvate in fisiere specifice categoriilor din care fac parte. De asemenea, se va tine evidenta scorurilor (tot intr-un fisier). """ import os import re from Spanzuratoarea.utils import handle_user_input, play_game from utilities import error_print, color_print def run(): game_folder = "game_folder" if not os.path.isdir(game_folder): error_print("run build_game.py script first to initialize game") exit(0) assert len(os.listdir(game_folder)) > 0, "assure there is at least 1 category ablo to be chosen" color_print(f"Bine ai venit la spanzuratoarea!") color_print(f"Alege una din urmatoarele categorii pentru joc:\n{', '.join(os.listdir(game_folder))}") possible_categories = "|".join(os.listdir(game_folder)) pattern = re.compile(f"({possible_categories})", re.IGNORECASE) chosen_category = handle_user_input(pattern).lower() play_game(chosen_category, game_folder) if __name__ == "__main__": run()
true
2e5e466262dcf6209a1f20ccfbbb751f40974885
Python
daivikswarup/opensoft16
/Grapher/test.py
UTF-8
28,014
2.6875
3
[]
no_license
import curve import math from curve import curve import numpy as np import cv2 # from SimpleCV import * from pytesseract import image_to_string from PIL import Image as IMAGE #from matplotlib import pyplot as plt # import matplotlib.pyplot as plt import re import time from sklearn.cluster import KMeans class graph: def __init__(self,document,pageno,x2,x4,y2,y4,imagename,crop_image): # reference to the document self.document = document # page in which the graph is present self.pageno = pageno #coordinates self.x2 = x2 self.x4 = x4 self.y2 = y2 self.y4 = y4 #scale self.dx = 0 #get it by calling findGradient(marking_imageurl) method self.dy = 0 #get it by calling findGradient(marking_imageurl) method #marking self.minx = 0 #get it by calling findMarkings(marking_imageurl)method twice. self.maxx = 0 #one time each for x and y axes self.miny = 0 #not working for bad quality images. self.maxy = 0 #markings on image must be sharp and clear enough. # is it a log graph self.isLog = False #poll self.pollDistance = 0 #curve point data for self.curveList = [] self.xlabel = None #get it by calling findLabel(label_imageurl) method twice. self.ylabel = None #one time each for x and y axes. self.description = None #even description can be obtained by the same method. self.graphboundX=None self.graphboundY=None self.image=imagename self.rectangle=crop_image self.textBoxImages=[] # to find x axis label and values def findxaxis_width(self,x1,y1,x2,y2): #cv2.imwrite("x_width.png",self.image) #img = IMAGE.open("x_width.png") #w,h=img.size #print'img size w=%d h=%d' %(w,h) #im = img.load() im=self.image #print self.image # print "x_width" # print "x1=%d y1=%d x2=%d y2=%d"%(x1,y1,x2,y2) y_temp=y1 y_array=[] alternate_flag=1 while(len(y_array)<3): x_temp=x1 #print "husdh" #print x_temp,x1,x2 a=np.array([200,200,200]) flag=1 while(x_temp<x2-1): # print "x_temp=%d y_temp=%d x2=%d"%(x_temp,y_temp,x2) #print (im[y_temp,x_temp].tolist()) if( (im[y_temp,x_temp+1].tolist() < [200,200,200]or im[y_temp,x_temp+1].tolist()<[200,200,200])): #print "failed" flag=0 break x_temp=x_temp+1 # print "out of loop flag=%d"%(flag) # print x_temp,y_temp if(flag==1 and alternate_flag==1): y_array.append(y_temp) alternate_flag=0 elif(flag==0): alternate_flag=1 y_temp+=1 self.graphboundY=y_array[2] return y_array def findyaxis_width(self,x4,y4,x1,y1): # img = Image.open(self.image) # w,h=img.size # im = img.load() im=self.image digit_pixel_size=(self.x2-x1)*9/236 marking_pixel_distance=(self.x2-x1)*10/488 print digit_pixel_size,marking_pixel_distance x_temp=x4 x_array=[] count =0 alternate_flag=1 while(x_temp>=0 and count<3): y_temp=y4 flag=1 while(y_temp<y1-1): if((im[y_temp,x_temp].tolist()<[200,200,200] or im[y_temp+1,x_temp].tolist()<[200,200,200])): flag=0 break y_temp+=1 if(flag==1 and alternate_flag==1): if(count==0): #print "count 0" #print x4-x_temp,marking_pixel_distance if(x4-x_temp>marking_pixel_distance): return -1 if(count==2): #print "count 2" #print x_array[1],x_temp #print x_array[1]-x_temp,digit_pixel_size if(x_array[1]-x_temp>digit_pixel_size): x_array.append(x_temp) count+=1 else: x_array[1]=x_temp else: print "count 1/0" print count x_array.append(x_temp) count+=1 alternate_flag=0 elif(flag==0): alternate_flag=1 x_temp-=1 print x_array self.graphboundX=x_array[2] return x_array def findLabel(self): x1=self.x4 y1=self.y2 img=self.image #print self.x2,self.x4,self.y2,self.y4 y=self.findxaxis_width(x1,y1,self.x2,self.y2) #print y iterator=0 y_array_len=len(y) if(y_array_len==2): y.insert(2,y[1]+100) y_array_len+=1 #print y #print 'len of y1 %d' % (y_array_len) while iterator<y_array_len-1: #print "iterator"+str(iterator) cropped = img[y[iterator] :y[iterator+1] ,x1:self.x2] s = 'images/temp_x' +str(iterator+1)+'.jpg' cv2.imwrite(s , cropped) iterator+=1 x=self.findyaxis_width(self.x4,self.y4,x1,y1) print x if(x!=-1): x_array_len=len(x) if(x_array_len==2): x.insert(x_array_len,0) x_array_len+=1 #print x iterator=x_array_len-1 #print 'len of x1 %d' % (x_array_len) i=0 while iterator>0: if(iterator==2 and x_array_len==4): cropped = img[self.y4:y1, x[iterator]: x[iterator-2]] iterator=1 else: cropped = img[self.y4:y1, x[iterator]: x[iterator-1]] s = 'images/temp_y'+str(i+1)+'.jpg' cv2.imwrite(s , cropped) iterator-=1 i+=1 else: print 'not a graph' #OCR for text labels and description of the graph. Call this method once for each of the three values. def findLabelText(self): for i in range(0,2): flag=0 if i==0: img = Image("images/temp_x2.jpg",0) else: img = Image("images/temp_y1.jpg",0) #print str(img.width) +" " + str(img.height) if img.width<img.height: img = img.rotate(-90,fixed = False) flag=1 #if img.width/img.height<3 : #crop image #print str(img.width) +" " + str(img.height) #if img.width<400 : #img = img.resize(img.width*5,img.height*5) if img.height<50 : #print "ok" img = img.resize(img.width*2,img.height*4) img_inv = img.invert() img_inv.scale(100,100) img_bin = img_inv.binarize() img_bin = img_bin.dilate(2) img_bin = img_bin.erode(1) else: img_inv = img.invert() img_inv.scale(100,100) img_bin = img_inv.binarize() #elif flag!=1: img_bin.save("images/temp.jpg") img = cv2.imread("images/temp.jpg") dst = cv2.fastNlMeansDenoisingColored(img,None,10,10,7,21) label = image_to_string(IMAGE.fromarray(dst),lang='eng') if flag==1: self.ylabel = label print label else: self.xlabel = label print label #return label #pass #OCR for markings on x and y axes.Returns min & max value of the markings on an axis in that order.Call this method once for each axis. def findMarkings(self): #flag=0 for i in range(0,2): if i == 0: img = Image("images/temp_x1.jpg",0) else: img = Image("images/temp_y2.jpg",0) if i==0: num_marking = int(img.width/self.dx+1) else: num_marking = int(img.height/self.dy+1) #print str(img.width) +" " + str(img.height) #if img.width/img.height<3 : #crop image if img.width<70: #print "ok" img = img.resize(img.width*4,img.height*4) img_inv = img.invert() img_inv.scale(100,100) img_bin = img_inv.binarize() img_bin = img_bin.dilate(2) img_bin = img_bin.erode(1) #img_bin.erode().show() #print str(img.width) +" " + str(img.height) #if img.width<400 : #img = img.resize(img.width*5,img.height*5) else: img_inv = img.invert() img_inv.scale(100,100) img_bin = img_inv.binarize() if img.height<50: #print "ok" img = img.resize(img.width*4,img.height*4) img_inv = img.invert() img_inv.scale(100,100) img_bin = img_inv.binarize() img_bin = img_bin.dilate(2) img_bin = img_bin.erode(1) else: img_inv = img.invert() img_inv.scale(100,100) img_bin = img_inv.binarize() """ if flag==1: img_dilate = img_inv.dilate(2) img_erode = img_dilate.erode(2) img_erode.save("rot_1.jpg") """ #elif flag!=1: img_bin.save("images/temp.jpg") img = cv2.imread("images/temp.jpg") dst = cv2.fastNlMeansDenoisingColored(img,None,10,10,7,21) marking = image_to_string(IMAGE.fromarray(dst),lang='eng') marking = marking.replace("\n"," ") marking = marking.split(" ") print marking for j in marking: if j=='': marking.remove(j) for j in range(len(marking)): print len(marking) marking[j] = marking[j].replace("O","0") #if marking[i][1]=="O": #marking[i][1]="0" for j in marking: if re.match("^\d+?\.?\d+?$", j) is None: marking.remove(j) print len(marking) for j in range(len(marking)): marking[j]=float(marking[j]) marking=sorted(marking) print marking for j in range(len(marking)): if marking[1]/marking[0] == marking[2]*1.0/marking[1]: self.isLog = True else: self.isLog = False """ if num_marking>len(marking) and self.isLog==False: if num_marking-len(marking)==2: #print "diff is 2" marking.append(marking[1]-2*marking[0]) marking.sort() marking.append(marking[len(marking)-1]+(marking[1]-marking[0])) marking.sort() if num_marking-len(marking)==1: marking.append(marking[len(marking)-1]+(marking[1]-marking[0])) marking.sort() #else: #i=int(i) if num_marking>len(marking) and self.isLog==True: if num_marking-len(marking)==2: #print "diff is 2" marking.append(marking[0]**2/marking[1]) marking.sort() marking.append(marking[len(marking)-1]*(marking[1]/marking[0])) marking.sort() if num_marking-len(marking)==1: marking.append(marking[len(marking)-1]*(marking[1]/marking[0])) marking.sort() """ if self.isLog==True: marking.append(marking[0]**2/marking[1]) marking.sort() marking.append(marking[len(marking)-1]*(marking[1]/marking[0])) marking.sort() if self.isLog==False: marking.append(2*marking[0]-marking[1]) marking.sort() marking.append(marking[len(marking)-1]+(marking[1]-marking[0])) marking.sort() print marking mark_len = len(marking) if i==0: self.minx=marking[0] self.maxx=marking[mark_len-1] else: self.miny=marking[0] self.maxy=marking[mark_len-1] #returns number of pixels between two markings on an axis. Call this method once for each axis. def findGradient(self): for i in range(0,2): if i==0: img = Image("images/temp_x1.jpg",0) else: img = Image("images/temp_y2.jpg",0) img_inv = img.invert() img_inv.scale(100,100) img_bin = img_inv.binarize() resize=1 if img_bin.width<70: resize = 1 img_bin = img_bin.resize(img.width*4,img.height*resize) flag=0 if img_bin.width<img_bin.height: flag = 1 img_bin = img_bin.rotate(-90,fixed = False) img_bin.save("images/temp.jpg") img = cv2.imread("images/temp.jpg") #h_img, w_img = img.shape[:2] #if w_img<h_img: img = cv2.fastNlMeansDenoisingColored(img,None,10,10,7,21) gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY) # grayscale _,thresh = cv2.threshold(gray,150,255,cv2.THRESH_BINARY_INV) # threshold kernel = cv2.getStructuringElement(cv2.MORPH_CROSS,(2,2)) dilated = cv2.dilate(thresh,kernel,iterations = 13) # dilate contours, hierarchy = cv2.findContours(dilated,cv2.RETR_EXTERNAL,cv2.CHAIN_APPROX_NONE) # get contours height = np.size(img, 0) width = np.size(img, 1) index =1 rect_dim=[] for contour in contours: # get rectangle bounding contour [x,y,w,h] = cv2.boundingRect(contour) y=y+h rect = [x,y,w,h] # discard areas that are too large if h>0.7*height and w>0.7*width: continue # discard areas that are too small if h<height*0.02 or w<width*0.02: continue #print rect cv2.rectangle(img,(x,y),(x+w,y-h),(255,0,255),2) rect_dim.append(x+w/2.0) cv2.imwrite("images/contoured.jpg", img) rect_dim.sort(reverse=True) pix_diff=[] #print len(rect_dim) #print rect_dim for i in range(0,len(rect_dim)-1): pix_diff.append(rect_dim[i]-rect_dim[i+1]) print pix_diff print sum(pix_diff)/len(pix_diff) print sum(pix_diff[:-1])/len(pix_diff[:-1]) if abs(sum(pix_diff)/len(pix_diff)-sum(pix_diff[:-1])/len(pix_diff[:-1]))>3: pix_diff.remove(pix_diff[-1]) pix_avg=sum(pix_diff)/(len(pix_diff)*1.0) pix_avg = pix_avg/resize if flag==1: pix_avgy=pix_avg print "pix_avgy="+str(pix_avgy) self.dy = pix_avgy else: pix_avgx=pix_avg print "pix_avgx="+str(pix_avgx) self.dx = pix_avgx def findCrop(self): for i in range(len(self.textBoxImages)): cv2.imwrite("images/temp_textbox.png",self.textBoxImages[i]) img=IMAGE.open("images/temp_textbox.png") # img = cv2.imread("temp_textbox.png") # w=np.size(img, 0) # h=np.size(img, 1) w,h=img.size print'img size w=%d h=%d i=%d' %(w,h,i) im = img.load() y_temp=0 while(y_temp<h): x_temp=0 while(x_temp<w-1): print y_temp,x_temp,h,w print im[x_temp,y_temp] if((im[x_temp,y_temp]<(200,200,200) or im[x_temp+1,y_temp]<(200,200,200))): img=cv2.imread("images/temp_textbox.png") cropped = img[y_temp-1:h,0:w] s = 'images/onlylabel_'+str(i+1)+'.png' cv2.imwrite(s , cropped) return y_temp x_temp+=1 y_temp+=1 print "als x_temp=%d y_temp=%d"%(x_temp,y_temp) #Returns all the labels and the corresponding colors in HSV of plots in graph in a curve datastructure. def findColorNnumOfPlots(self): for i in range(len(self.textBoxImages)): #flag=0 s='images/onlylabel_'+str(i+1)+'.png' img = Image(s,0) #print str(img.width) +" " + str(img.height) #print str(img.width) +" " + str(img.height) #if img.width<400 : #img = img.resize(img.width*5,img.height*5) img_inv = img.invert() img_inv.scale(100,100) img_bin = img_inv.binarize() """ if flag==1: img_dilate = img_inv.dilate(2) img_erode = img_dilate.erode(2) img_erode.save("rot_1.jpg") """ #elif flag!=1: img_bin.save("images/rot_1.jpg") img = cv2.imread("images/rot_1.jpg") dst = cv2.fastNlMeansDenoisingColored(img,None,10,10,7,21) graphs = image_to_string(IMAGE.fromarray(dst),lang='eng') graphs = graphs.replace("\n",">%$ ") #formatting the string to get the list graphs = graphs.split(">%$ ") #of plots plotted in given graphs print graphs graphNamesList=graphs n=len(graphs) #number of plots in given graph img = Image(s,0) img = img.resize(img.width*3,img.height*3) #resizing the image to make it big enough for cropping #print height #img = img.crop(15,15,img.width,img.height) #removing the edges of the given graph description image height = (img.height)*1.0/n width = img.width graphList=[] start = 0 for i in range(0,n): #cropping the image so as to get a single plot description cropImg = img.crop(0, start, width, height) #in one image graphList.append(cropImg) start+=height graphList1 = graphList #time.sleep(3) """ graphName = [] for i in graphList1: #getting the names of all the plots from the images cropped above #i = i.resize(i.width*4,i.height*4) i = i.invert() i.scale(100,100) i = i.binarize() #i = i.erode() i.save("temp.jpg") i = cv2.imread("temp.jpg") i = cv2.fastNlMeansDenoisingColored(i,None,10,10,7,21) g = image_to_string(IMAGE.fromarray(i),lang='eng') print g print "\n" graphName.append(g) """ graphColor = [] for i in graphList: #finding colors of plots of all the images cropped above i.save("images/temp.jpg") #raw_input() imge = cv2.imread("images/temp.jpg",1) imge = cv2.fastNlMeansDenoisingColored(imge,None,10,10,7,21) imge = cv2.cvtColor(imge, cv2.COLOR_BGR2RGB) #imge = cv2.cvtColor(imge, cv2.COLOR_RGB2HSV) # show our image plt.figure() #plt.axis("off") #plt.imshow(imge) imge = imge.reshape((imge.shape[0] * imge.shape[1], 3)) n_clusters = 3 #number of clusters in kmeans clustering clt = KMeans(n_clusters = 3) clt.fit(imge) hist = centroid_histogram(clt) bar,color = plot_colors(hist, n_clusters, clt.cluster_centers_) #bar = cv2.cvtColor(bar,cv2.COLOR_GRAY2RGB) # show our color bart plt.figure() #plt.axis() #plt.imshow(bar) #plt.show() if color[0]>240 and color[1]>240 and color[2]>240: color = [10.00, 10.00, 10.00] color = list(rgb2hsv(color[0],color[1],color[2])) #color[1] = color[1] #increasing the picture saturation and value of the image #color[2] = color[2] #which got reduced due to processing #color = hsv2rgb(color[0],color[1],color[2]) print color graphColor.append(color) for i in range(0,len(graphColor)): c = curve(graphColor[i],graphNamesList[i]) #c.color(graphColor[i]) #c.name(graphName[i]) self.curveList.append(c) #return graphColor, graphName #pass print graphNamesList print graphColor print self.curveList #<<<<<<< HEAD # the fill data funtion doesn,t take care of textbox inside the graph #image passing needs clarification def findMarkings(self): table=np.zeros((len(self.curveList),self.x2-self.x1,2)) for i in range(self.x1,self.x2): for j in range(self.y1,self.y2): for k in range(0,len(self.curveList)): if img_object[j,i].all()<(self.curveList[k]+20).all() and img_object[i,j].all()>(self.curveList[k]-20).all(): #replace image list with appropriatre object if self.miny+j*self.dy>table[k,i-1][1]-(self.maxy-self.miny)/10 and self.miny+j*self.dy<table[k,i-1][1]+(self.maxy-self.miny)/10 : self.istable=True if self.isLog==False: table[k,i]=[i*self.dx+self.minx,self.miny+j*self.dy] else: table[k,i]=[i*self.dx,math.exp(self.dy)] return table #End of Funtion to avoid merge conflict -Adapa def centroid_histogram(clt): numLabels = np.arange(0, len(np.unique(clt.labels_)) + 1) # grab the number of different clusters and create a histogram (hist, _) = np.histogram(clt.labels_, bins = numLabels) # based on the number of pixels assigned to each cluster hist = hist.astype("float") # normalize the histogram, such that it sums to one hist /= hist.sum() return hist # return the histogram #======= # is it a log graph #>>>>>>> 1919b2d4fde8870d45695236eb2367418646a5ba def plot_colors(hist, n_clusters, centroids): bar = np.zeros((50, 300, 3), dtype = "uint8") # initialize the bar chart representing the relative frequency startX = 0 # of each of the colors i = 0 # loop over the percentage of each cluster and the color of mini = 300 # each cluster colval = 0 for (percent, color) in zip(hist, centroids): endX = startX + (percent * 300) # plot the relative percentage of each cluster cv2.rectangle(bar, (int(startX), 0), (int(endX), 50), color.astype("uint8").tolist(), -1) flag=0 """ if color[0]>240 and color[1]>240 and color[2]>240: i=i+1 startX = endX continue """ temp=endX-startX if temp<mini and ((color[0]-color[1])>3 or (color[1]-color[0])>3 or (color[2]-color[1])>3 or (color[1]-color[2])>3 or (color[2]-color[0])>3 or (color[0]-color[2])>3): mini = temp flag=1 colval = i i=i+1 startX = endX """ if flag==1 and color[0]>240 and color[1]>240 and color[2]>240: i=i+1 startX = endX continue """ #color_req = color #startX = endX # return the bar chart print colval color_req = centroids[colval] return bar,color_req def rgb2hsv(r, g, b): r, g, b = r/255.0, g/255.0, b/255.0 mx = max(r, g, b) mn = min(r, g, b) df = mx-mn if mx == mn: h = 0 elif mx == r: h = (60 * ((g-b)/df) + 360) % 360 elif mx == g: h = (60 * ((b-r)/df) + 120) % 360 elif mx == b: h = (60 * ((r-g)/df) + 240) % 360 if mx == 0: s = 0 else: s = df/mx v = mx return h, s, v def hsv2rgb(h, s, v): h = float(h) s = float(s) v = float(v) h60 = h / 60.0 h60f = math.floor(h60) hi = int(h60f) % 6 f = h60 - h60f p = v * (1 - s) q = v * (1 - f * s) t = v * (1 - (1 - f) * s) r, g, b = 0, 0, 0 if hi == 0: r, g, b = v, t, p elif hi == 1: r, g, b = q, v, p elif hi == 2: r, g, b = p, v, t elif hi == 3: r, g, b = p, q, v elif hi == 4: r, g, b = t, p, v elif hi == 5: r, g, b = v, p, q r, g, b = int(r * 255), int(g * 255), int(b * 255) return r, g, b '''g1=graph('doc',1,292,57,232,39,'images/d.jpg') g1=graph('doc',1,1309,409,850,290,'images/a.jpg') g1.findLabel() g1.findLabelText() g1.findMarkings() g1.findGradient() print g1.xlabel print g1.ylabel print g1.dx print g1.dy print g1.minx, g1.maxx print g1.miny, g1.maxy print g1.isLog''' #289,407,855,1
true
5e5ac1d9af64a08f513d8eccf281aac64af9c5cc
Python
bhaskarbagchi/HackerNewsRanking
/Ycombinator_scrape/ycombinator_scrape.py
UTF-8
715
2.765625
3
[]
no_license
from bs4 import BeautifulSoup import requests for i in xrange(28): name = 'https://news.ycombinator.com/news?p=' page = requests.get(name +`(i+1)`) soup = BeautifulSoup(page.text) headings = soup.find_all('tr', { 'class':'athing' }) comments = soup.find_all('td', { 'class':'subtext'}) for i in xrange(len(headings)): if headings[i].span: print headings[i].span.string.strip() xx = headings[i].find_all('a') for x in xx: if x.parent.name == 'td': data = x.string udata=data.encode("utf-8").strip() asciidata=udata.decode("ascii","ignore") print asciidata if comments[i].span: print comments[i].span.string xx = comments[i].find_all('a') for x in xx: print x.string
true
240df440a7f0da9b43436d8016ffb9cd709dc3a8
Python
bematthe/IST736-Text-Mining
/Becky_MatthewsPeaseHW07.py
UTF-8
18,757
2.578125
3
[]
no_license
# -*- coding: utf-8 -*- """ Created on Sun Feb 7 21:13:20 2021 @author: Becky Matthews-Pease """ ############################################################ #Packages import nltk import sklearn import re import os import string import pandas as pd import numpy as np import random as rd import matplotlib.pyplot as plt from sklearn.model_selection import KFold from sklearn.feature_extraction.text import CountVectorizer from sklearn.feature_extraction.text import TfidfVectorizer from nltk.tokenize import word_tokenize from nltk.probability import FreqDist from nltk.corpus import stopwords from nltk.stem import PorterStemmer from nltk.tokenize import sent_tokenize, word_tokenize from nltk.stem.wordnet import WordNetLemmatizer from nltk.stem.porter import PorterStemmer from sklearn.feature_extraction.text import CountVectorizer, TfidfVectorizer from sklearn.metrics import confusion_matrix from sklearn.model_selection import train_test_split from sklearn.naive_bayes import MultinomialNB from sklearn.svm import LinearSVC from wordcloud import WordCloud, STOPWORDS, ImageColorGenerator from nltk.corpus import stopwords RawfileName = "C:/Users/becky/Desktop/DartData.csv" AllReviewsList=[] AllLabelsList=[] #For loop to split reviews and save to lists with open(RawfileName,'r') as FILE: FILE.readline() for row in FILE: print(row) NextLabel,NextReview=row.split(",", 1) AllReviewsList.append(NextReview) AllLabelsList.append(NextLabel) print(AllReviewsList) print(AllLabelsList) #InsertVectorizer MyCV1 = CountVectorizer(input = "content", stop_words = "english") MyFile = "C:/Users/becky/Desktop/DartData.csv" #Stemmer STEMMER = PorterStemmer() # Use NLTK's PorterStemmer in a function def MY_STEMMER(str_input): words = re.sub(r"[^A-Za-z\-]", " ", str_input).lower().split() words = [STEMMER.stem(word) for word in words] return words #Create different vectorizers: MyVect_STEM = CountVectorizer(input = 'content', analyzer = 'word', stop_words = 'english', tokenizer = MY_STEMMER, lowercase = True ) MyVect_IFIDF_STEM = TfidfVectorizer(input = 'content', analyzer = 'word', stop_words = 'english', tokenizer = MY_STEMMER, lowercase = True ) MyVect_STEM_Bern=CountVectorizer(input='content', analyzer = 'word', stop_words='english', tokenizer=MY_STEMMER, lowercase = True, binary=True ) FinalDF_STEM = pd.DataFrame() FinalDF_TFIDF_STEM = pd.DataFrame() FinalDF_STEM_Bern = pd.DataFrame() X1 = MyVect_STEM.fit_transform(AllReviewsList) X2 = MyVect_IFIDF_STEM.fit_transform(AllReviewsList) XB = MyVect_STEM_Bern.fit_transform(AllReviewsList) #Lisa of Tokens ColumnNames1 = MyVect_STEM.get_feature_names() def print_full(ColumnNames1): pd.set_option('display.max_rows', len(ColumnNames1)) print(ColumnNames1) pd.reset_option('display.max_rows') print_full(ColumnNames1) ColumnNames2 = MyVect_IFIDF_STEM.get_feature_names() def print_full(ColumnNames2): pd.set_option('display.max_rows', len(ColumnNames2)) print(ColumnNames2) pd.reset_option('display.max_rows') print_full(ColumnNames2) ColumnNamesB = MyVect_STEM_Bern.get_feature_names() def print_full(ColumnNamesB): pd.set_option('display.max_rows', len(ColumnNamesB)) print(ColumnNamesB) pd.reset_option('display.max_rows') print_full(ColumnNamesB) NumFeatures4 = len(ColumnNamesB) #Place in data table builderS = pd.DataFrame(X1.toarray(),columns = ColumnNames1) builderTS = pd.DataFrame(X2.toarray(),columns = ColumnNames2) builderB = pd.DataFrame(XB.toarray(),columns = ColumnNamesB) #Add column builderS["Label"] = AllLabelsList builderTS["Label"] = AllLabelsList builderB["Label"] = AllLabelsList #Convert to Data frame FinalDF_STEM = FinalDF_STEM.append(builderS) FinalDF_TFIDF_STEM = FinalDF_TFIDF_STEM.append(builderTS) FinalDF_STEM_Bern = FinalDF_STEM_Bern.append(builderB) ## Replace NA with 0 FinalDF_STEM = FinalDF_STEM.fillna(0) FinalDF_TFIDF_STEM = FinalDF_TFIDF_STEM.fillna(0) FinalDF_STEM_Bern = FinalDF_STEM_Bern.fillna(0) #Remove columns with numbers MyList=[] for col in FinalDF_TFIDF_STEM.columns: LogR=col.isdigit() if(LogR==True): MyList.append(str(col)) print(MyList) FinalDF_TFIDF_STEM.drop(MyList, axis = 1, inplace = True) def RemoveNums(SomeDF): temp = SomeDF MyList = [] for col in temp.columns: Logical2=str.isalpha(col) if(Logical2==False): MyList.append(str(col)) temp.drop(MyList, axis = 1, inplace = True) return temp FinalDF_STEM = RemoveNums(FinalDF_STEM) FinalDF_STEM_Bern = RemoveNums(FinalDF_STEM_Bern) FinalDF_TFIDF_STEM = RemoveNums(FinalDF_TFIDF_STEM) print(FinalDF_STEM) print(FinalDF_TFIDF_STEM) print(FinalDF_STEM_Bern) ######################################################################## ## Create the testing set with a random sample. rd.seed(1234) sklearn.model_selection.StratifiedKFold(n_splits = 10, shuffle = False, random_state = None) TrainDF1, TestDF1 = train_test_split(FinalDF_STEM, test_size = 0.3, random_state = 10) TrainDF2, TestDF2 = train_test_split(FinalDF_TFIDF_STEM, test_size = 0.3, random_state = 10) TrainDF3, TestDF3 = train_test_split(FinalDF_STEM_Bern, test_size = 0.3) print(FinalDF_STEM) print(TrainDF1) print(TrainDF2) print(TrainDF3) print(TestDF1) print(TestDF2) print(TestDF3) ## Separate and save labels; Remove labels from test set Test1Labels = TestDF1["Label"] Test2Labels = TestDF2["Label"] Test3Labels = TestDF3["Label"] ## remove labels TestDF1 = TestDF1.drop(["Label"], axis = 1) TestDF2 = TestDF2.drop(["Label"], axis = 1) TestDF3 = TestDF3.drop(["Label"], axis = 1) #Remove from Training set Train1Labels = TrainDF1["Label"] Train2Labels = TrainDF2["Label"] Train3Labels = TrainDF3["Label"] ## remove labels TrainDF1 = TrainDF1.drop(["Label"], axis = 1) TrainDF2 = TrainDF2.drop(["Label"], axis = 1) TrainDF3 = TrainDF3.drop(["Label"], axis = 1) ######################################################################## ### Create the NB model ### MyModelNB1 = MultinomialNB() MyModelNB2 = MultinomialNB() MyModelNB3 = MultinomialNB() MyModelNB1.fit(TrainDF1, Train1Labels) MyModelNB2.fit(TrainDF2, Train2Labels) MyModelNB3.fit(TrainDF3, Train3Labels) Prediction1 = MyModelNB1.predict(TestDF1) Prediction2 = MyModelNB2.predict(TestDF2) Prediction3 = MyModelNB3.predict(TestDF3) ### Predition vs labeled data ### print("\nThe prediction from NB is:") print(Prediction1) print("\nThe actual labels are:") print(Test1Labels) def print_full(Test1Labels): pd.set_option('display.max_rows', len(Test1Labels)) print(Test1Labels) pd.reset_option('display.max_rows') print_full(Test1Labels) print("\nThe prediction from NB is:") print(Prediction2) print("\nThe actual labels are:") print(Test2Labels) def print_full(Test2Labels): pd.set_option('display.max_rows', len(Test2Labels)) print(Test2Labels) pd.reset_option('display.max_rows') print_full(Test2Labels) print("\nThe prediction is:") print(Prediction3) print("\nThe actual labels are:") print(Test3Labels) def print_full(Test3Labels): pd.set_option('display.max_rows', len(Test3Labels)) print(Test3Labels) pd.reset_option('display.max_rows') print_full(Test3Labels) ######################################################################## ### Confusion Matrix ### #CountVectorizer cnf_matrix1 = confusion_matrix(Test1Labels, Prediction1) print("\nThe confusion matrix is:") print(cnf_matrix1) #IFIDF cnf_matrix2 = confusion_matrix(Test2Labels, Prediction2) print("\nThe confusion matrix is:") print(cnf_matrix2) #Bernoulli cnf_matrix3 = confusion_matrix(Test3Labels, Prediction3) print("\nThe confusion matrix is:") print(cnf_matrix3) ######################################################################## ### Prediction Probabilities ### #CountVectorizer print(np.round(MyModelNB1.predict_proba(TestDF1),2)) #IFIDF print(np.round(MyModelNB2.predict_proba(TestDF2),2)) #Bernoulli print(np.round(MyModelNB3.predict_proba(TestDF3),2)) ######################################################################## ### SVM with Linear Kernel ### #CountVectorizer SVM_Model = LinearSVC(C = 10) SVM_Model.fit(TrainDF1, Train1Labels) print("SVM prediction:\n", SVM_Model.predict(TestDF1)) print("Actual:") print(Test1Labels) def print_full(Test1Labels): pd.set_option('display.max_rows', len(Test1Labels)) print(Test1Labels) pd.reset_option('display.max_rows') print_full(Test1Labels) SVM_matrix = confusion_matrix(Test1Labels, SVM_Model.predict(TestDF1)) print("\nThe confusion matrix is:") print(SVM_matrix) print("\n\n") #IFIDF SVM_Model.fit(TrainDF2, Train2Labels) print("SVM prediction:\n", SVM_Model.predict(TestDF2)) print("Actual:") print(Test2Labels) def print_full(Test2Labels): pd.set_option('display.max_rows', len(Test2Labels)) print(Test2Labels) pd.reset_option('display.max_rows') print_full(Test2Labels) SVM_matrix = confusion_matrix(Test2Labels, SVM_Model.predict(TestDF2)) print("\nThe confusion matrix is:") print(SVM_matrix) print("\n\n") #Bernoulli SVM_Model.fit(TrainDF3, Train3Labels) print("SVM prediction:\n", SVM_Model.predict(TestDF3)) print("Actual:") print(Test3Labels) def print_full(Test3Labels): pd.set_option('display.max_rows', len(Test3Labels)) print(Test3Labels) pd.reset_option('display.max_rows') print_full(Test3Labels) SVM_matrix = confusion_matrix(Test3Labels, SVM_Model.predict(TestDF3)) print("\nThe confusion matrix is:") print(SVM_matrix) print("\n\n") ######################################################################## ### SVM with Poly Kernel ### #CountVectorizer SVM_ModelPoly = sklearn.svm.SVC(C = 1000, kernel = 'poly', degree = 2, gamma = "auto", verbose = True) print(SVM_ModelPoly) SVM_ModelPoly.fit(TrainDF1, Train1Labels) print("SVM prediction:\n", SVM_ModelPoly.predict(TestDF1)) print("Actual:") print(Test1Labels) def print_full(Test1Labels): pd.set_option('display.max_rows', len(Test1Labels)) print(Test1Labels) pd.reset_option('display.max_rows') print_full(Test1Labels) SVM_matrixPoly = confusion_matrix(Test1Labels, SVM_ModelPoly.predict(TestDF1)) print("\nThe confusion matrix is:") print(SVM_matrixPoly) print("\n\n") #IFIDF SVM_ModelPoly = sklearn.svm.SVC(C = 1000, kernel = 'poly', degree = 2, gamma = "auto", verbose = True) print(SVM_ModelPoly) SVM_ModelPoly.fit(TrainDF2, Train2Labels) print("SVM prediction:\n", SVM_ModelPoly.predict(TestDF2)) print("Actual:") print(Test2Labels) def print_full(Test2Labels): pd.set_option('display.max_rows', len(Test2Labels)) print(Test2Labels) pd.reset_option('display.max_rows') print_full(Test2Labels) SVM_matrixPoly = confusion_matrix(Test2Labels, SVM_ModelPoly.predict(TestDF2)) print("\nThe confusion matrix is:") print(SVM_matrixPoly) print("\n\n") #Bernoulli SVM_ModelPoly = sklearn.svm.SVC(C = 1000, kernel = 'poly', degree = 2, gamma = "auto", verbose = True) print(SVM_ModelPoly) SVM_ModelPoly.fit(TrainDF3, Train3Labels) print("SVM prediction:\n", SVM_ModelPoly.predict(TestDF3)) print("Actual:") print(Test3Labels) def print_full(Test3Labels): pd.set_option('display.max_rows', len(Test3Labels)) print(Test3Labels) pd.reset_option('display.max_rows') print_full(Test3Labels) SVM_matrixPoly = confusion_matrix(Test2Labels, SVM_ModelPoly.predict(TestDF2)) print("\nThe confusion matrix is:") print(SVM_matrixPoly) print("\n\n") ######################################################################## ### SVM with Radial Kernel ### #CountVectorizer SVM_ModelRBF = sklearn.svm.SVC(C = 1000, kernel = 'rbf', verbose = True, gamma = "auto") SVM_ModelRBF.fit(TrainDF1, Train1Labels) print("SVM prediction:\n", SVM_ModelRBF.predict(TestDF1)) print("Actual:") print(Test1Labels) def print_full(Test1Labels): pd.set_option('display.max_rows', len(Test1Labels)) print(Test1Labels) pd.reset_option('display.max_rows') print_full(Test1Labels) SVM_matrixRBF = confusion_matrix(Test1Labels, SVM_ModelRBF.predict(TestDF1)) print("\nThe confusion matrix is:") print(SVM_matrixRBF) print("\n\n") #IFIDF SVM_ModelRBF = sklearn.svm.SVC(C = 1000, kernel = 'rbf', verbose = True, gamma = "auto") SVM_ModelRBF.fit(TrainDF2, Train2Labels) print("SVM prediction:\n", SVM_ModelRBF.predict(TestDF2)) print("Actual:") print(Test2Labels) def print_full(Test2Labels): pd.set_option('display.max_rows', len(Test2Labels)) print(Test2Labels) pd.reset_option('display.max_rows') print_full(Test2Labels) SVM_matrixRBF = confusion_matrix(Test2Labels, SVM_ModelRBF.predict(TestDF2)) print("\nThe confusion matrix is:") print(SVM_matrixRBF) print("\n\n") #Bernoulli SVM_ModelRBF = sklearn.svm.SVC(C = 1000, kernel = 'rbf', verbose = True, gamma = "auto") SVM_ModelRBF.fit(TrainDF3, Train3Labels) print("SVM prediction:\n", SVM_ModelRBF.predict(TestDF3)) print("Actual:") print(Test3Labels) def print_full(Test3Labels): pd.set_option('display.max_rows', len(Test3Labels)) print(Test3Labels) pd.reset_option('display.max_rows') print_full(Test3Labels) SVM_matrixRBF = confusion_matrix(Test3Labels, SVM_ModelRBF.predict(TestDF3)) print("\nThe confusion matrix is:") print(SVM_matrixRBF) print("\n\n") ######################################################################## ###Frequency Distribution####### def plot_coefficients(MODEL = SVM_Model, COLNAMES = TrainDF1.columns, top_features = 10): coef = MODEL.coef_.ravel() top_positive_coefficients = np.argsort(coef,axis = 0)[-top_features:] top_negative_coefficients = np.argsort(coef,axis = 0)[:top_features] top_coefficients = np.hstack([top_negative_coefficients, top_positive_coefficients]) plt.figure(figsize=(15, 5)) colors = ["red" if c < 0 else "blue" for c in coef[top_coefficients]] plt.bar( x = np.arange(2 * top_features) , height=coef[top_coefficients], width = .5, color = colors) feature_names = np.array(COLNAMES) plt.xticks(np.arange(0, (2*top_features)), feature_names[top_coefficients], rotation = 60, ha = "right") plt.show() plot_coefficients() ######################################################################## ###Create Word Cloud####### text = ("sinking-ship", "selfish", "high-turnover", "no-growth", "overtime", "caution", "misery", "keep-looking", "unrealistic-expectations", "downhill", "cult", "excellent", "playground", "racists", "good", "poor", "okay", "unorganized", "easy", "liked", "run", "unfair-treatment", "plastics-are-evil", "mediocrity", "too-many-hours", "hard-work", "amazing-exposure", "bad-treatment", "good", "potential", "employees-under-valued", "mediocre", "high-stress", "constant-rifs", "tired", "careful-what-you-say", "lazy", "solid-employment", "company-went-south", "needs-improvement", "sham", "would-not-recommend", "look-elsewhere", "watch-your-back", "quite-miserable", "elitist", "egotistical", "judgmental", "racist", "going down-hill", "enjoyed", "great-experience", "unsafe", "unclean", "seems-great-but-improvement-needed", "no-help", "bobs-greed", "environment-lacking-understanding", "good-experience", "sad-company", "great-job-if-you-don't-want-to-contribute", "company-going downhill", "friendly-co-workers", "friendly-co-workers", "friendly-co-workers", "friendly-co-workers", "friendly-co-workers", "friendly-co-workers", "friendly-co-workers", "great-culture", "great-culture", "great-culture", "strong-values", "no-core-values", "toxic-corporate-culture", "toxic-corporate-culture", "decent-pay", "low-pay", "decent-pay", "low-pay", "low-pay","low-pay","low-pay","low-pay", "low-pay," "low-pay", "low-pay", "terrible-management", "terrible-management", "terrible-management", "terrible-management", "terrible-management", "terrible-management", "terrible-management", "terrible-management", "management-not-interested-in-growing", "cold-hearted-management", "terrible-management", "terrible-management", "leadership-lacking", "leadership-lacking", "fair-management", "great-employer", "great-experience", "toxic-environment", "worst-environment", "outdated", "decent-stepping-stone", "outdated", "outdated", "outdated", "okay-entry-level", "okay-entry-level", "advancement", "outdated", "outdated", "just-a-job", "opportunity", "decent-for-initial-experience", "outdated", "outdated", "outdated", "outdated", "good-steppingstone", "not-a-place-to-stay-long-term", "good-place-to-start", "good-work-life-balance", "good-work-life-balance", "worst-training ", "worst-training", "worst-onboarding-experience", "great-benefits", "good-benefits", "great-benefits", "great-benefits", "great-benefits," "great-benefits", "great-benefits", "cheap-health-insurance", "bad-paid-time-off", "worst-company", "solid-company", "good-company", "worst-company", "small-company", "great-company", "solid-company", "steady-job", "challenging-job ", "decent-job", "steady-job", "best-job", "demanding-job", "great-place", "nice-place", "nice-place", "great-place", "good-enough-place") type(text) def listToString(text): str1 = "" for ele in text: str1 += ele return str1 print(listToString(text)) mytext = (listToString(text)) # Import packages import matplotlib.pyplot as plt def plot_cloud(wordcloud): # Set figure size plt.figure(figsize=(40, 30)) # Display image plt.imshow(wordcloud) # No axis details plt.axis("off"); from wordcloud import WordCloud, STOPWORDS wordcloud = WordCloud(width = 3000, height = 2000, random_state = 1, background_color = 'deepskyblue', colormap = 'Pastel1', collocations = False).generate(mytext) plot_cloud(wordcloud)
true
588d194d1c1ec4ed8cf36f93f0d3fa20d5f83530
Python
ggqshr/fill_mongo
/fill_mongo.py
UTF-8
4,747
2.703125
3
[]
no_license
import yaml import pymongo import random from os.path import exists import pickle import logging import tqdm import base64 logging.basicConfig(level=logging.INFO) CONFIG_FILE = "config.yaml" BOUND = range(3000, 6000) # 随机对数据进行减少,防止数据都一样 random_list = [] for i in range(65,91): random_list.append(chr(i)) for i in range(0,10): random_list.append(i) class ConfigObj: obj = None def __init__(self): with open(CONFIG_FILE, "r", encoding="utf-8") as f: self.obj = yaml.load(f.read(), Loader=yaml.FullLoader) def get_db(self): return self.obj['db'] def get_keys(self): return self.obj['from'], self.obj['to'] def get_field_name(self): return self.obj['field_name'] if self.obj['field_name'] is not None else "post_time" def get(self, k: str): return self.obj[k] obj = ConfigObj() def read_from_data(key): """ 根据传入的Key拿取数据,如果本地有,就从本地读取,如果没有就从mongo中读取,然后返回 :param key: 拿去数据的key :return: 根据key拿到的数据 """ db_config = obj.get_db() flag = str(base64.b64encode( f"{db_config['host']}:{db_config['port']}{db_config['name']}{db_config['collectionname']}".encode("utf-8")), "utf-8") key_file_name = f".{flag}-{key}" # 如果本地有缓存的数据就从缓存中拿去数据 if exists(key_file_name): with open(key_file_name, "rb") as f: return pickle.load(f) # 如果本地没有数据,就需要从mongo中读取,然后存储到本地 mongo_data = [dd.copy() for dd in get_data_from_mongo(db_config, key)] with open(key_file_name, "wb") as f: pickle.dump(mongo_data, f) return mongo_data def get_data_from_mongo(db, key): """ 根据Key从mongo中读取数据 :param db: 连接的mongo的信息 :param key: 拿取数据的Key :return: 拿取的数据 """ client = pymongo.MongoClient(db['host'], db['port']) client.admin.authenticate("jason#619", "jason#619") collect = client.get_database(db['name']).get_collection(db['collectionname']) data = collect.find( filter={"post_time": key}, projection={'_id': False}, # skip=random.randint(*BOUND), batch_size=500, ) return data def update_func(x, key, value): x.update({key: value}) this_id = x.get("id",None) if this_id is None: return x if type(this_id) is str: random_index = random.choice(list(range(len(this_id)))) this_id = this_id[:random_index] + str(random.choice(random_list)) + this_id[random_index:] x['id'] = this_id else: this_id = str(this_id) random_index = random.choice(list(range(len(this_id)))) this_id = this_id[:random_index] + str(random.choice(list(range(0,10)))) + this_id[random_index:] x['id'] = int(this_id) return x def write_to_mongo(db, key, data): """ 根据db的配置以及key写入数据 :param db: 数据库配置 :param key: 要写入的key :param data: 要写入的数据 :return: """ client = pymongo.MongoClient(db['host'], db['port']) client.admin.authenticate("jason#619", "jason#619") collect = client.get_database(db['name']).get_collection(db['collectionname']) write_data = map(lambda x: update_func(x, obj.get_field_name(), key), data) collect.insert_many(write_data) def write_to_aim(): logging.info("加载配置文件") from_keys, to_keys = obj.get_keys() logging.info(f"从{from_keys}填充到{to_keys}") logging.info("开始写入数据") for to_key in tqdm.tqdm(to_keys): from_key = random.choice(from_keys) logging.info(f"当前选择读取的数据源为{from_key}") dd = read_from_data(from_key) logging.info(f"当前数据源的数据长度为{len(dd)}") write_len = len(dd) - random.choice(BOUND) while write_len <= 100: logging.info(f"当前选择的key对应的数据长度过小!当前key为{from_key}长度为{len(dd)},考虑删除掉此key") from_key = random.choice(from_keys) logging.info(f"当前选择读取的数据源为{from_key}") dd = read_from_data(from_key) logging.info(f"当前数据源的数据长度为{len(dd)}") write_len = len(dd) - random.choice(BOUND) final_dd = random.sample(dd, write_len).copy() logging.info(f"向{to_key}写入{write_len}条数据") write_to_mongo(obj.get_db(), to_key, final_dd) logging.info(f"写入{to_key}完成") del dd if __name__ == '__main__': write_to_aim()
true
56ada6bf524975107d2c045096262525437cd49d
Python
tennyson-mccalla/PPaItCS
/7.4.py
UTF-8
395
3.796875
4
[]
no_license
def standing(credits): if credits >= 26: stand = "Senior" elif credits >= 16: stand = "Junior" elif credits >= 7: stand = "Sophomore" else: stand = "Freshman" return stand def main(): print() C = int(input("How many credits have you got?: ")) print() print("That makes a {} at this institution.\n".format(standing(C))) main()
true
fbbb87dc3bf000ea05b729930e6c5d440b7f7df9
Python
anirudhpillai/algorithms
/leetcode/max_increase_to_keep_city_skyline.py
UTF-8
603
2.796875
3
[]
no_license
class Solution(object): def maxIncreaseKeepingSkyline(self, grid): """ :type grid: List[List[int]] :rtype: int """ lr_skyline = [max(row) for row in grid] tb_skyline = [] for col_idx in range(len(grid[0])): tb_skyline.append(max(row[col_idx] for row in grid)) result = 0 for r in range(len(grid)): for c in range(len(grid[0])): height = min(lr_skyline[r], tb_skyline[c]) result += height - grid[r][c] return result
true
dd3fc5f23ba2a16893bef3d50c54ae2307e46fe6
Python
philips-ni/ecfs
/leetcode/077_combinations/python/combinations.py
UTF-8
719
3.03125
3
[]
no_license
class Solution: def combine(self, n, k): """ :type n: int :type k: int :rtype: List[List[int]] """ l=list(range(1,n+1)) allPaths=[] visited = [] self.dfs(l,k,0,visited,allPaths) return allPaths def dfs(self,l,k,index,visited,allPaths): # print "index: %d , visited: %s, allPaths: %s" % (index, str(visited), str(allPaths)) if len(visited)==k: allPaths.append(visited) # print "path founded" return while len(l) - index >= k - len(visited): tmpVisited = visited + [l[index]] index += 1 self.dfs(l,k,index,tmpVisited,allPaths)
true
a1d6e8bc173f3843e466fbe4e680f519ae79fccd
Python
jmr988/serverTips
/tips.py
UTF-8
441
3.484375
3
[]
no_license
TIP_OUT = .03 totalSales = int(input('Enter total sales:')) totalBeer = int(input('Enter total beer sales:')) totalLiquor = int(input('Enter total liquor sales:')) totalWine = int(input('Enter total wine sales:')) totalDue = int(input('Enter total due:')) totalAlchol = (totalBeer + totalLiquor + totalWine) supportTip = (totalSales * TIP_OUT) barTip = (totalAlchol * TIP_OUT) tips = totalDue - (supportTip + barTip) print (tips)
true
18600fe017f7c802b73ff99f516716e92b51a650
Python
bigfacebig/NGSTools
/VCF/vcf.py
UTF-8
4,431
2.75
3
[]
no_license
import sys import os import re class VCF: """some function to deal with VCF file""" def __init__(self, file): # super(VCF, self).__init__() self.file = file def _readVCF(self): """read vcf file""" if not os.path.exists(self.file): sys.exit('%s file not exist\n' % self.file) if self.file.endswith('.gz'): import gzip return gzip.open(self.file, 'r').readlines() else: return open(self.file, 'r').readlines() def filter(self,stat=''): """filter the VCF""" vcf = self._readVCF() filter_vcf = [] for i in vcf: if i.startswith('#'): continue words = i.split('\t') if stat == 'PASS': if words[6] != 'PASS' or words[6] != '.': continue if words[4].find(','): words[4] = words[4].split(',')[0] filter_vcf.append(i) vcf = [] return filter_vcf def novo(self, vcf): """get the novo muation""" novo = [] for i in range(len(vcf)): words = vcf[i].split('\t') if not re.search('snp\d+=rs',words[7]): novo.append(vcf[i]) continue return novo def get_SNP_INDEL(self, vcf): """get the SNP and InDel muation\n """ snp = [] indel = [] for i in range(len(vcf)): words = vcf[i].split('\t') if len(words[3]) == 1 and len(words[4].split(',')[0]) == 1: snp.append(vcf[i]) else: indel.append(vcf[i]) return snp, indel def chr_stat(self, vcf): """stat the muation in the chromosomo\n return a dict: chromosomo = { '1' : numOfMuationInTheChr1 '2' : numOfMuationInTheChr2 ... } """ chromosomo = {} for line in vcf: words = line.split('\t') if words[0] in chromosomo: chromosomo[str(words[0])] += 1 else: chromosomo[str(words[0])] = 1 return chromosomo def stat_indel_length(self, vcf): """stat the number per indel length return a dict; indel_length = { 1 : number 2 : number -1 : number ... } """ indel_length = {} for line in vcf: words = line.split('\t') if len(words[3]) == 1 and len(words[4]) == 1: continue else: length = len(words[4]) - len(words[3]) if length in indel_length: indel_length[length] += 1 else: indel_length[length] = 1 return indel_length def stat_func(self, vcf): """stat the num of snp or indel muation that functional return a dict: func = { 'intergenic' : number 'exonic' : number ... } """ func = {} function = '' for line in vcf: words = line.split('\t') for i in words[7].split(';'): if i.startswith('Func=') :#Func=ncRNA_exonic function = i.split('=')[1] break for f in function.split(','): if f in func: func[f] += 1 else: func[f] = 1 return func def stat_exonicfunc(self, vcf): """stat the num of snp/indel muation that exonic functional return a dict: exonicfunc = { 'missense_SNV' : number ... } """ exonicfunc = {} function = '' flag = 0 for line in vcf: words = line.split('\t') for i in words[7].split(';'): if i.startswith('Func='): function = i.split('=')[1] for j in function.split(','): if j == 'exonic': flag = 1 break if flag == 0: continue for i in words[7].split(';'): if i.startswith('ExonicFunc='): function = i.split('=')[1] break for f in function.split(','): if f in exonicfunc: exonicfunc[f] += 1 else: exonicfunc[f] = 1 flag = 0 return exonicfunc def get_Hom_Het(self, vcf): """get the number of Het and Hom muation return a array[2] [Hom_num,Het_num] """ Het_num = 0 Hom_num = 0 for line in vcf: hehe = line.split('\t')[-2].split(':') xixi = line.split('\t')[-1].split(':') format = dict(zip(hehe,xixi)) if not format.has_key('GT'): continue if format['GT'] == '1/1' or format['GT'] == '0/0': Hom_num += 1 else: Het_num += 1 return Hom_num, Het_num def ts_tv(self, vcf): """for snp muation get the ts/tv ratio return: ts,tv,ts/tv """ ts = 0 tv = 0 ts_flag = ['AG', 'GA', 'CT', 'TC'] for line in vcf: words = line.split('\t') if words[3].upper()+words[4].split(',')[0].upper() in ts_flag: ts += 1 else: tv += 1 return ts, tv, '%.9f' % (ts/float(tv))
true
5c086dcabef87c393760cd0ee6fc3a7b32d130ef
Python
C109156233/pythonlearn
/python-mid/階層判斷.py
UTF-8
196
3.40625
3
[]
no_license
# -*- coding: utf-8 -*- """ Created on Wed Apr 7 15:49:24 2021 @author: linnn """ m=int(input("請輸入M?")) b=1 i=1 while(b<m): i=i+1 b=b*i print("超過M為",m,"的最小值為:",i)
true
37e5fc6e8ca941d219eabe9af424bf70ecd8c638
Python
sanchi191/Plagiarism
/plag-project/plagproject/users/basics.py
UTF-8
3,977
2.921875
3
[]
no_license
import numpy as np import os import matplotlib.pyplot as plt def remComm(prgm): n = len(prgm) res = "" s_cmt = False m_cmt = False #Traversethe given program i=0 while(i<n): # Ifsinglelinecomment if (s_cmt == True and prgm[i] == '\n'): s_cmt = False i+=1 # If multiple line comment is on, then check for end of it elif (m_cmt == True and prgm[i] == '*' and prgm[i + 1] == '/'): m_cmt = False i+=2 # If this character is in a comment, ignore it elif (s_cmt or m_cmt): i+=1 continue # Check for beginning of comments and set the approproate flags elif (prgm[i] == '/' and prgm[i + 1] == '/'): s_cmt = True i+=1 elif (prgm[i] == '/' and prgm[i + 1] == '*'): m_cmt = True i+=1 # If current character is a non-comment character, append it to res else: res += prgm[i] i+=1 return res # f = open("subtree.cpp", 'r') # prgm = f.read() # w = remComm(prgm) # print(w) # exit() numerics=['+','-','=','*','/','<','>',':','.','!','"','\'','&','|','^','#',';','{','}','(',')'] keywords = ['auto' ,'break','case', 'char', 'const', 'continue' ,'default', 'do', 'double','else' ,'enum' ,'extern', 'float' ,'for', 'goto', 'if', 'int', 'long', 'register', 'return', 'short', 'signed', 'sizeof', 'static', 'struct', 'switch','typedef', 'union' ,'unsigned' ,'void' ,'volatile' ,'while'] def specialchars(code): new_str = " " remove = False for num in code: if num in numerics: if remove==True: fil = " " else: fil = " " + num + " " new_str = new_str + fil else: new_str+=num return new_str # f = open("subtree.cpp", 'r') # prgm = f.read() # w = remComm(prgm) # w2 = specialchars(w) # print(w2) # exit() def perform_all_funcs(files): finalstr = "" o1 = remComm(files) new_str= specialchars(o1) for i in new_str.split(): # print(j) # for j in i: if i in keywords or i in numerics: finalstr += (" " + i + " ") # pass else: finalstr = finalstr + " k " #print(finalstr,"b") return finalstr # f = open("subtree.cpp", 'r') # prgm = f.read() # w = perform_all_funcs(prgm) # print(w) # exit() def k_gram(finalstr,k): #print(finalstr,"a") k=5 result = set() finalstr = finalstr.split() for line in range(len(finalstr)-k+1): #print(line) kgram_string = "" for word in range(k): #print(word) kgram_string = kgram_string + finalstr[line+word] #print(kgram_string) #break result.add(kgram_string) return result # f = open("subtree.cpp", 'r') # prgm = f.read() # w = perform_all_funcs(prgm) # w= k_gram(w,5) # print(w) # exit() def common (files_in_dir): files_in_directory = [] l=0 C=0 Cv= [] path = files_in_dir dir = os.listdir(path) dir = sorted(dir) for i in dir: files_in_directory.append(i) kgrams = [] for x in range(len(files_in_directory)): f= open(path+"/"+files_in_directory[x],"r") kgrams.append(k_gram(perform_all_funcs(f.read()), 5)) # print(files_in_directory) matrix = np.zeros((len(files_in_directory), len(files_in_directory))) for z in range(len(files_in_directory)): for w in range(z + 1, len(files_in_directory)): C=0 for a in kgrams[z]: if a in kgrams[w]: C += 1 #print(C) l = min(len(kgrams[z]), len(kgrams[w])) Cv.append(C/l) matrix[z,w] = C/l return matrix # path = '/home/oem/PycharmProjects/pythonProject1/Parser/Assignment_5' # data = common(path) # plt.imshow(data) # plt.colorbar() # plt.show()
true
73ab6f34c063439af6e3c2725973eaf15058583e
Python
ipod825/HOPE
/pysrc/run_batch.py
UTF-8
2,117
2.703125
3
[ "Apache-2.0" ]
permissive
#!/usr/bin/env python # -*- coding: utf-8 -*- import sys import os import timeit import config from config import SolverType from libdai_solver import JunctionTree, MF, TRWBP from wish_solver import Wish import argparse import math from utils import listEnum def parse_arg(): parser = argparse.ArgumentParser(description='Run different algorithms for a problem in a directory') parser.add_argument("indir", help="Direcory where problems are stored.") parser.add_argument("solver_type", type=int, help="SolverType:"+listEnum(SolverType)) parser.add_argument("-s", "--samplesize", type=int, default=7, help="Saplesize per quantile.") parser.add_argument("-t", "--timeout", type=int, default=10, help="Timeout for optimization.") parser.add_argument("-o", "--outdir", default=config.output_dir, help="Directory where output are stored") return parser.parse_args() if __name__ == '__main__': args = parse_arg() solver_type = args.solver_type timeout = args.timeout isLog = True if solver_type == SolverType.JT: solver = JunctionTree() elif solver_type == SolverType.MF: solver = MF() elif solver_type == SolverType.TRWBP: solver = TRWBP() elif solver_type == SolverType.WISH: solver = Wish(samplesize=args.samplesize, timeout=args.timeout) else: isLog = False output_path = os.path.join(args.outdir,solver.__class__.__name__) if solver_type==SolverType.WISH: output_path += '_'+str(timeout) # empty the file ifit exists open(output_path, 'w').close() for path in os.listdir(args.indir): if not path.endswith('.uai'): continue path = os.path.join(args.indir, path) start = timeit.default_timer() res = solver.solve(path) stop = timeit.default_timer() if not isLog: res = math.log(res) output = open(output_path, 'a') output.write('{},{},{}\n'.format(os.path.basename(path), res, stop - start)) print '{},{},{}\n'.format(os.path.basename(path), res, stop - start) output.close()
true
0f77bb38efc091fe61d785f6bda5bcbc33027eb1
Python
eraguzin-bnl/nEXO_SiPM_Simulator
/bnl_asic_sim.py
UTF-8
10,264
2.9375
3
[]
no_license
# -*- coding: utf-8 -*- """ Created on Fri Jan 18 15:51:50 2019 @author: Eraguzin This is the top level module for the entire digital simulation. It sets up the GUI and calls the simulation """ import Tkinter as tk import imageio from simulation import Simulation_Functions import os, re class GUI_WINDOW(tk.Frame): def __init__(self, master=None): self.params = dict( #Rectangles are top left x and y, and then bottom right x and y FPGA_width = 1000, FPGA_height = 100 ) self.params['canvas_x'] = 1000 self.params['canvas_y'] = 900 self.params['num_asics'] = 4 self.params['common_signals'] = 1 self.params['serial_signals'] = 1 self.params['daisy_signals'] = 1 self.params['buffer_x'] = 500 self.params['buffer_y'] = 50 self.params['block_size'] = 20 self.params['FPGA_dims'] = [0, 0, self.params['FPGA_width'], self.params['FPGA_height']] #Create the simulator self.sim = Simulation_Functions() #Give the simulator the gui objects so it can manipulate them (change colors) self.sim.gui = self.set_up_gui(master) self.sim.master = master self.sim.params = self.params def set_up_gui(self, master): #It's calling the constructor of the parent tkinter object, the pack method of the class, which is now a tkinter object frame = tk.Frame.__init__(self,master) self.pack() #Finish/reset button finish_button = tk.Button(self, text="Start Simulation",command=self.simulation,width=25) finish_button.grid(row=0,column=0,columnspan=1) hbar=tk.Scrollbar(frame,orient=tk.HORIZONTAL) vbar=tk.Scrollbar(frame,orient=tk.VERTICAL) w = tk.Canvas(width=self.params['canvas_x'], height=self.params['canvas_y'], bg = "white", scrollregion=(0,0,2000,2000), yscrollcommand=vbar.set, xscrollcommand=hbar.set) hbar.pack(side=tk.BOTTOM,fill=tk.X) hbar.config(command=w.xview) vbar.pack(side=tk.RIGHT,fill=tk.Y) vbar.config(command=w.yview) w.pack() w.create_rectangle(self.params['FPGA_dims'], fill="yellow") #X and then Y coordinates w.create_text((self.params['FPGA_dims'][2] - self.params['FPGA_dims'][0])/2, (self.params['FPGA_dims'][3] - self.params['FPGA_dims'][1])/2, text="FPGA") size = self.determine_asic_size() self.params['size'] = size signals_to_pass = self.params['common_signals'] + self.params['daisy_signals'] w.create_line(700,150,700,850,width = 2) w.create_line(800,150,800,850,width = 2) w.create_line(900,150,900,850,width = 2) w.create_text(850,130, text="How far light is from creating another peak in the ASIC", anchor=tk.CENTER) w.create_text(700,870, text="0 ns", anchor=tk.CENTER) w.create_text(800,870, text="500 ns", anchor=tk.CENTER) w.create_text(900,870, text="1000 ns", anchor=tk.CENTER) w.create_line(950,200,1000,200,width = 2, arrow=tk.FIRST, tag = "ASIC0_line", fill = "red") w.create_line(950,400,1000,400,width = 2, arrow=tk.FIRST, tag = "ASIC1_line", fill = "red") w.create_line(950,600,1000,600,width = 2, arrow=tk.FIRST, tag = "ASIC2_line", fill = "red") w.create_line(950,800,1000,800,width = 2, arrow=tk.FIRST, tag = "ASIC3_line", fill = "red") for count, i in enumerate(range(self.params['num_asics'])): #Create ASICs w.create_rectangle((self.params['serial_signals'] * self.params['per_signal']), self.params['FPGA_height'] + ((i+1) * self.params['buffer_y']) + (i * size[1]), (self.params['serial_signals'] * self.params['per_signal']) + size[0], self.params['FPGA_height'] + ((i+1) * self.params['buffer_y']) + ((i + 1) * size[1]), fill="light blue", tags=("asic{}".format(i))) w.create_text((self.params['serial_signals'] * self.params['per_signal']), self.params['FPGA_height'] + ((i+1) * self.params['buffer_y']) + (i * size[1]), text="ASIC {}".format(i), anchor=tk.SW) #Create common signals for j in range(signals_to_pass): w.create_line((self.params['serial_signals'] * self.params['per_signal']) + ((j + 0.5) * self.params['per_signal']), self.params['FPGA_height'] + ((i+1) * self.params['buffer_y']) + (i * size[1]), (self.params['serial_signals'] * self.params['per_signal']) + ((j + 0.5) * self.params['per_signal']), self.params['FPGA_height'] + ((i) * self.params['buffer_y']) + (i * size[1]), tags=("chip{}".format(i), "common{}".format(j)), width = 5) #Create horizontal line for serial signals y_spacing = size[1]/self.params['serial_signals'] for j in range(self.params['serial_signals']): w.create_line((self.params['serial_signals'] * self.params['per_signal']), self.params['FPGA_height'] + ((i+1) * self.params['buffer_y']) + (i * size[1]) + ((j + 0.5) * y_spacing), (self.params['serial_signals'] * self.params['per_signal']) - ((j+0.5) * self.params['per_signal']), self.params['FPGA_height'] + ((i+1) * self.params['buffer_y']) + (i * size[1]) + ((j + 0.5) * y_spacing), tags=("chip{}".format(i), "serial{}".format(j)), width = 5) if (count > (self.params['num_asics'] - 2)): #Create vertical line for serial signals for j in range(self.params['serial_signals']): w.create_line((self.params['serial_signals'] * self.params['per_signal']) - ((j+0.5) * self.params['per_signal']), self.params['FPGA_height'] + ((i+1) * self.params['buffer_y']) + (i * size[1]) + ((j + 0.5) * y_spacing), (self.params['serial_signals'] * self.params['per_signal']) - ((j+0.5) * self.params['per_signal']), self.params['FPGA_height'], tags=("serial{}".format(j)), width = 5) #Create daisy chained signals y_spacing = size[1]/self.params['daisy_signals'] for j in range(self.params['daisy_signals']): #horizontal line w.create_line((self.params['serial_signals'] * self.params['per_signal']) + size[0], self.params['FPGA_height'] + ((i+1) * self.params['buffer_y']) + (i * size[1]) + ((j + 0.5) * y_spacing), (self.params['serial_signals'] * self.params['per_signal']) + size[0] + ((j+0.5) * self.params['per_signal']), self.params['FPGA_height'] + ((i+1) * self.params['buffer_y']) + (i * size[1]) + ((j + 0.5) * y_spacing), tags=("chip{}".format(i), "daisy{}".format(j)), width = 5) #vertical line w.create_line((self.params['serial_signals'] * self.params['per_signal']) + size[0] + ((j+0.5) * self.params['per_signal']), self.params['FPGA_height'] + ((i+1) * self.params['buffer_y']) + (i * size[1]) + ((j + 0.5) * y_spacing), (self.params['serial_signals'] * self.params['per_signal']) + size[0] + ((j+0.5) * self.params['per_signal']), self.params['FPGA_height'], tags=("chip{}".format(i), "daisy{}".format(j)), width = 5) return w def example_of_changing_color(self,w): print(w.find_withtag("serial1")) lines = (w.find_withtag("serial1")) for i in lines: w.itemconfig(i, fill="blue") def determine_asic_size(self): available_x = self.params['canvas_x'] total_signal_lines = self.params['common_signals'] + self.params['serial_signals'] + (2 * self.params['daisy_signals']) self.params['per_signal'] = (available_x - self.params['buffer_x']) / (total_signal_lines - 1) available_y = self.params['canvas_y'] - self.params['FPGA_height'] - self.params['buffer_y'] y_per_asic = available_y / self.params['num_asics'] y_for_block = y_per_asic - self.params['buffer_y'] x_for_block = self.params['per_signal'] * (self.params['common_signals'] + self.params['daisy_signals']) return x_for_block, y_for_block def simulation(self): self.sim.simulation() images = [] directory = os.path.join(os.getcwd(), "Simulation_Output") filenames = os.listdir(directory) ordered_files = sorted(filenames, key=lambda x: (int(re.sub('\D','',x)),x)) print(directory) for filename in ordered_files: filename_to_use = os.path.join(directory, filename ) print(filename_to_use) images.append(imageio.imread(filename_to_use)) for speed in [0.05, 0.1, 0.5]: imageio.mimsave('Simulation{}.gif'.format(speed), images, 'GIF', duration = speed, loop = 0) print("DONE") def main(): root = tk.Tk() root.geometry("1500x1000") #You want the size of the app to be 500x500 # root.resizable(0, 0) #Don't allow resizing in the x or y direction root.title("Quad FE ASIC Test GUI") GUI_WINDOW(root) root.mainloop() if __name__ == "__main__": main()
true
553fe21397313d555e0956b690a8e6c90d15f1c0
Python
ArielHL/DataScienceRepo
/PythonStatistics/moby_dick_file.py
UTF-8
2,098
3.5625
4
[]
no_license
import re def bag_of_words(filename="./data/moby_dick.txt"): with open(filename, "r", encoding="utf8") as f: bag = {} for line in f: words = re.findall("\w*", line) for w in words: if len(w) <= 0: continue if w in bag: bag[w] += 1 else: bag[w] = 1 return bag def bag_of_bigramms(filename="./data/moby_dick.txt"): with open(filename, "r", encoding="utf8") as f: bag = {} prev_word = None for line in f: words = re.findall("\w*", line) for w in words: if len(w) <= 0: continue if prev_word is None or len(prev_word) <= 0: prev_word = w continue bigramm = "{} {}".format(prev_word, w) prev_word = w if bigramm in bag: bag[bigramm] += 1 else: bag[bigramm] = 1 return bag def most_frequent_words(bag): values = list(bag.values()) top_index = values.index(max(values)) return list(bag.keys())[top_index] def word_conditional_probability(bag_words, bag_bigramms, prev_word = "The", word = "Whale"): num_words = sum(bag_words.values()) p_prev_word = bag_words[prev_word] / num_words num_bigramms = sum(bag_bigramms.values()) p_bigramm = bag_bigramms["{} {}".format(prev_word, word)] / num_bigramms return p_bigramm / p_prev_word bag_words = bag_of_words() print("Bag of words (moby dick text) size: {}".format(len(bag_words))) top_word = most_frequent_words(bag_words) print("Most frequent word: {}; count: {}".format(top_word, bag_words[top_word])) bag_bigramms = bag_of_bigramms() print("Bag of bigramms (moby dick text) size: {}".format(len(bag_bigramms))) p_prev_word = word_conditional_probability(bag_words, bag_bigramms, "with", "this") print("Probability of word <{}> after word <{}> is: {}".format("this", "with", p_prev_word))
true
54e0be56044b96569a25ccd2d1abb660e18b09c3
Python
hayeong922/final_projec_info_viz
/demo/time_series/time_series.py
UTF-8
8,090
2.921875
3
[]
no_license
import pandas import vincent import re from collections import defaultdict import math import operator import json from collections import Counter from nltk.corpus import stopwords import string # f is the file pointer to the JSON data set emoticons_str = r""" (?: [:=;] # Eyes [oO\-]? # Nose (optional) [D\)\]\(\]/\\OpP] # Mouth )""" regex_str = [ emoticons_str, r'<[^>]+>', # HTML tags r'(?:@[\w_]+)', # @-mentions r"(?:\#+[\w_]+[\w\'_\-]*[\w_]+)", # hash-tags r'http[s]?://(?:[a-z]|[0-9]|[$-_@.&amp;+]|[!*\(\),]|(?:%[0-9a-f][0-9a-f]))+', # URLs r'(?:(?:\d+,?)+(?:\.?\d+)?)', # numbers r"(?:[a-z][a-z'\-_]+[a-z])", # words with - and ' r'(?:[\w_]+)', # other words r'(?:\S)' # anything else ] tokens_re = re.compile(r'(' + '|'.join(regex_str) + ')', re.VERBOSE | re.IGNORECASE) emoticon_re = re.compile(r'^' + emoticons_str + '$', re.VERBOSE | re.IGNORECASE) def tokenize(s): return tokens_re.findall(s) def preprocess(s, lowercase=False): tokens = tokenize(s) if lowercase: tokens = [token if emoticon_re.search(token) else token.lower() for token in tokens] return tokens print '' print '' print '*******Read Twitter Data!********' fname = 'data/collect_zika.json' dates_zika = [] en_list = [] pt_list = [] es_list = [] tweet_count = 0 with open(fname, 'r') as f: for line in f: tweet = json.loads(line) tweet_count +=1 terms_hash = [term for term in preprocess(tweet['text']) if term.startswith('zika')] # track when the hashtag is mentioned #if '#zika' in terms_hash: if 'zika' in terms_hash: dates_zika.append(tweet['created_at']) if tweet['lang'] == 'en': en_list.append(tweet['created_at']) if tweet['lang'] == 'pt': pt_list.append(tweet['created_at']) if tweet['lang'] == 'es': es_list.append(tweet['created_at']) #print 'en',en_list print 'tweet_count',tweet_count # Removing stop-words punctuation = list(string.punctuation) stop = stopwords.words('english') + punctuation + ['rt','via'] # count single term with counter with open(fname, 'r') as f: count_all = Counter() for line in f: tweet = json.loads(line) # create a list with all the terms terms_stop = [term for term in preprocess(tweet['text']) if term not in stop] # update the counter count_all.update(terms_stop) #print the first 5 most frequent words print 'single term frequence',(count_all.most_common(5)) # update terms without stop words ### sentiment analysis part # compute probability # n_docs is the total n. of tweets # com: co-occurence was stored # count_stop_single(which does not store stop-words) # co-occurence com = defaultdict(lambda : defaultdict(int)) # f is the file pointer to the JSON data set with open(fname, 'r') as f: for line in f: tweet = json.loads(line) terms_only = [term for term in preprocess(tweet['text']) if term not in stop and not term.startswith(('#','@'))] # Build co-occurrence matrix for i in range(len(terms_only)-1): for j in range(i+1,len(terms_only)): w1,w2 = sorted([terms_only[i],terms_only[j]]) if w1 != w2: com[w1][w2] += 1 print ' ' print 'co-occurence' com_max = [] # for each term, look for the most common co-occurrent terms for t1 in com: t1_max_terms = sorted(com[t1].items(),key=operator.itemgetter(1),reverse=True)[:5] for t2,t2_count in t1_max_terms: com_max.append(((t1,t2),t2_count)) # Get the most frequent co-occurrences terms_max = sorted(com_max,key=operator.itemgetter(1),reverse=True) print (terms_max[:5]) print ' ' count_stop_single = {} count_stop_single = count_all p_t = {} p_t_com = defaultdict(lambda: defaultdict(int)) n_docs = tweet_count for term, n in count_stop_single.items(): p_t[term] = float(n) / float(n_docs) for t2 in com[term]: p_t_com[term][t2] = float(com[term][t2])/float(n_docs) # compute semantic orientation # given two vocab for positives and negative terms # these postive and negative opinion words or sentiement words are from # Bing Liu, Minqing Hu and Junsheng Cheng. "Opinion Observer: Analyzing # and Comparing Opinions on the Web." Proceedings of the 14th # International World Wide Web conference (WWW-2005), May 10-14, # 2005, Chiba, Japan. with open('positive-words.txt','r') as f: positive_vocab = [line.strip() for line in f] with open('negative-words.txt','r') as f: negative_vocab = [line.strip() for line in f] # can compute PMI of each pair of term # and then compute the Semantic Orientation pmi = defaultdict(lambda : defaultdict(int)) for t1 in p_t: for t2 in com[t1]: denom = p_t[t1] * p_t[t2] pmi[t1][t2] = math.log(p_t_com[t1][t2]/denom) semantic_orientation = {} for term, n in p_t.items(): positive_assoc = sum(pmi[term][tx] for tx in positive_vocab) negative_assoc = sum(pmi[term][tx] for tx in negative_vocab) semantic_orientation[term] = positive_assoc - negative_assoc semantic_sorted = sorted(semantic_orientation.items(), key=operator.itemgetter(1), reverse=True) top_pos = semantic_sorted[:10] top_neg = semantic_sorted[-10:] print 'top positive' print(top_pos) print ' ' print 'top negative' print(top_neg) print ' ' print 'sentiment analysis' #print("zika: %f" % semantic_orientation['zika']) print("Zika: %f" % semantic_orientation['Zika']) print("birth: %f" % semantic_orientation['birth']) # a list of "1" to count the hashtags ones = [1] * len(dates_zika) # the index of the series idx = pandas.DatetimeIndex(dates_zika) # the actual series (at series of 1s for the moment) zika = pandas.Series(ones, index=idx) # Resampling / bucketing per_minute = zika.resample('1Min').sum().fillna(0) time_chart = vincent.Line(per_minute) time_chart.axis_titles(x='Time', y='Freq') #time_chart.to_json('time_series.json', html_out=True, html_path='time_series.html') time_chart.to_json('time_series.json', html_out=True, html_path='time_series.html') # different language time_series, currently 10 min maybe change it to 1 min # english ones = [1] * len(en_list) idx = pandas.DatetimeIndex(en_list) ENGLISH = pandas.Series(ones, index=idx) per_minute_en = ENGLISH.resample('10Min').sum().fillna(0) # portuguese ones = [1] * len(pt_list) idx = pandas.DatetimeIndex(pt_list) PORTUGUESE = pandas.Series(ones, index=idx) per_minute_pt = PORTUGUESE.resample('10Min').sum().fillna(0) # spanish ones = [1] * len(es_list) idx = pandas.DatetimeIndex(es_list) SPANISH = pandas.Series(ones, index=idx) per_minute_es = SPANISH.resample('10Min').sum().fillna(0) # all the data together match_data = dict(ENGLISH = per_minute_en, PORTUGUESE = per_minute_pt, SPANISH = per_minute_es) # we need a DataFrame, to accomodate multiple series all_matches = pandas.DataFrame(data=match_data, index=per_minute_en.index) # Resampling as above all_matches = all_matches.resample('10Min').sum().fillna(0) # and now the plotting time_chart = vincent.Line(all_matches[['ENGLISH', 'PORTUGUESE', 'SPANISH']]) time_chart.axis_titles(x='Time', y='Freq') time_chart.legend(title='Matches') time_chart.to_json('time_chart.json', html_out=True, html_path='time_chart.html') with open(fname, 'r') as f: count_all = Counter() for line in f: tweet = json.loads(line) # Create a list with all the terms terms_all = [term for term in preprocess(tweet['lang'])] # Update the counter count_all.update(terms_all) # Print the first 5 most frequent words word_freq = count_all.most_common(5) labels, freq = zip(*word_freq) data = {'data': freq, 'x': labels} bar = vincent.Bar(data, iter_idx='x') #bar.to_json('bar_chart.json', html_out=True, html_path='bar_chart.html') bar.to_json('bar_chart.json', html_out=True, html_path='bar_chart.html')
true
ba559319127e38a76b663da7c0a4179b1c36c3a9
Python
euribates/advent_of_code_2020
/day05/second.py
UTF-8
375
3.0625
3
[]
no_license
#!/usr/bin/env python # -*- coding: utf-8 -*- import loader karte = {} for seat in loader.read_input("input"): karte[seat.seat_id] = seat min_seat_id = min(karte.keys()) max_seat_id = max(karte.keys()) for i in range(min_seat_id+1, max_seat_id): if (i-1) in karte and i not in karte and (i+1) in karte: sol = i break print(f"Solution 2 is {sol}")
true
a83bc75fb55ce7fc54c38e388d2a13ed8ea23244
Python
Zhihao-de/kh_community
/server/util/MessageProducer.py
UTF-8
892
2.6875
3
[]
no_license
import pika # 新建连接,rabbitmq安装在本地则hostname为'localhost' class MessageProducer: connection = None def __init__(self, host, username, password): self.hostname = host self.port = 5672 self.username = username self.password = password def connect(self): credentials = pika.PlainCredentials(self.username, self.password) parameters = pika.ConnectionParameters(host=self.hostname, port=5672, virtual_host='/', credentials=credentials) connection = pika.BlockingConnection(parameters) return connection def produce(self, message): channel = self.connection.channel() channel.queue_declare(queue='sat') channel.basic_publish(exchange='', routing_key='sat', body=message) print(" [x] Sent %s" % message) def close(self): self.connection.close()
true
26529fae28b79323ac40c07e1a63cfd93affb66b
Python
Subtracting/mp3player
/ideas.py
UTF-8
423
2.671875
3
[]
no_license
# # keyboard input # if event.type == pygame.KEYDOWN: # if event.key == pygame.K_s: # play_song() # elif event.key == pygame.K_p and paused == False: # pause_song() # elif event.key == pygame.K_q: # # write last known time when quitting # file1 = open("temp.txt", "w") # file1.write(str(timer) + ',' + str(file)) # pygame.mixer.quit() # running = False
true
afef230370580c72e01bc79ba5336353d15d36b6
Python
VicGanoh/Python_Tut
/Python/hello.py
UTF-8
83
3.296875
3
[]
no_license
#name = input('What is your name?\n') #print('hello ' + name) print('hello world')
true
9a67b182ed7030360568d3d7fb50a81db96c82dc
Python
thiagofeijor/100-days-of-python-bootcamp
/day-35-rain-alert/main.py
UTF-8
1,234
2.546875
3
[]
no_license
import requests import os from twilio.rest import Client from twilio.http.http_client import TwilioHttpClient OWM_Endpoint = "https://api.openweathermap.org/data/2.5/onecall" api_key = os.environ.get("OWM_API_KEY") account_sid = os.environ.get("sid") auth_token = os.environ.get("AUTH_TOKEN") weather_params = { "lat": "-14.663350", "lon": "-52.339279", "appid": api_key, "exclude": "current,minutely,daily" } response = requests.get(OWM_Endpoint, params=weather_params) response.raise_for_status() weather_data = response.json() weather_slice = weather_data["hourly"][:12] will_rain = False for hour_data in weather_slice: condition_code = hour_data["weather"][0]["id"] if int(condition_code) < 700: will_rain = True if will_rain: proxy_client = TwilioHttpClient() proxy_client.session.proxies = {'https': os.environ['https_proxy']} client = Client(account_sid, auth_token, http_client=proxy_client) message = client.messages \ .create( body="It's going to rain today. Remember to bring an ☔️", from_="YOUR TWILIO VIRTUAL NUMBER", to="YOUR TWILIO VERIFIED REAL NUMBER" ) print(message.status)
true
aef1d9a1480c8729bc0cbcc399b6ba3467b261e2
Python
DangoWang/dayu_widgets
/dayu_widgets/examples/MLabelTest.py
UTF-8
4,035
2.84375
3
[ "MIT" ]
permissive
#!/usr/bin/env python # -*- coding: utf-8 -*- ################################################################### # Author: Mu yanru # Date : 2019.2 # Email : muyanru345@163.com ################################################################### from dayu_widgets.MDivider import MDivider from dayu_widgets.MFieldMixin import MFieldMixin from dayu_widgets.MLabel import MLabel from dayu_widgets.MPushButton import MPushButton from dayu_widgets.qt import * class MLabelTest(QWidget, MFieldMixin): def __init__(self, parent=None): super(MLabelTest, self).__init__(parent) self._init_ui() def _init_ui(self): div1 = MLabel(text='Default') div2 = MLabel(text='Disabled') div2.setEnabled(False) grid_lay = QGridLayout() data_list = [ (MLabel.H1Type, u'一级标题', 'H1 Type', True, False), (MLabel.H2Type, u'二级标题', 'H2 Type', True, False), (MLabel.H3Type, u'三级标题', 'H3 Type', True, False), (MLabel.H4Type, u'四级标题', 'H4 Type', True, False), (MLabel.TextType, u'正文', 'Text Type', True, False), (MLabel.HelpType, u'辅助文字', 'Help Type', True, False), ] for row, data in enumerate(data_list): type, title1, title2, link1, link2 = data grid_lay.addWidget(MLabel(text=title1, type=type, link=link1), row, 0) grid_lay.addWidget(MLabel(text=title1, type=type, link=link2), row, 1) grid_lay.addWidget(MLabel(text=title2, type=type, link=link1), row, 2) grid_lay.addWidget(MLabel(text=title2, type=type, link=link2), row, 3) data_bind_label = MLabel(type=MLabel.H3Type) self.register_field('show_text', 'Guess') self.register_field('is_link', True) self.bind('show_text', data_bind_label, 'text') self.bind('is_link', data_bind_label, 'link') button = MPushButton.primary(text='Random An Animal') button.clicked.connect(self.slot_change_text) link_button = MPushButton.primary(text='Link') link_button.clicked.connect(self.slot_link_text) lay_elide = QVBoxLayout() label_none = MLabel('This is a elide NONE mode label. Ellipsis should NOT appear in the text.') label_left = MLabel( 'This is a elide LEFT mode label. The ellipsis should appear at the beginning of the text. xiao mao xiao gou xiao ci wei') label_left.set_elide_mode(Qt.ElideLeft) label_middle = MLabel( 'This is a elide MIDDLE mode label. The ellipsis should appear in the middle of the text. xiao mao xiao gou xiao ci wei') label_middle.set_elide_mode(Qt.ElideMiddle) label_right = MLabel( 'This is a elide RIGHT mode label. The ellipsis should appear at the end of the text. xiao mao xiao gou xiao ci wei') label_right.set_elide_mode(Qt.ElideRight) lay_elide.addWidget(label_none) lay_elide.addWidget(label_left) lay_elide.addWidget(label_middle) lay_elide.addWidget(label_right) main_lay = QVBoxLayout() main_lay.addWidget(div1) main_lay.addWidget(div2) main_lay.addWidget(MDivider('different type')) main_lay.addLayout(grid_lay) main_lay.addWidget(MDivider('data bind')) main_lay.addWidget(data_bind_label) main_lay.addWidget(button) main_lay.addWidget(link_button) main_lay.addWidget(MDivider('elide mode')) main_lay.addLayout(lay_elide) main_lay.addStretch() self.setLayout(main_lay) def slot_change_text(self): import random self.set_field('show_text', random.choice(['Dog', 'Cat', 'Rabbit', 'Cow'])) def slot_link_text(self): self.set_field('is_link', not self.field('is_link')) if __name__ == '__main__': import sys app = QApplication(sys.argv) test = MLabelTest() from dayu_widgets import dayu_theme dayu_theme.apply(test) test.show() sys.exit(app.exec_())
true
b4a841d70d4104908887566e4872ec402cd17632
Python
omivore/connect4
/rules/lowinverse.py
UTF-8
1,871
3.046875
3
[]
no_license
# lowinverse.py import computer import itertools def generate_solutions(board, me): # Find all combinations of columns. For each pair's columns, find all possible pairs of two vertically consecutive squares # that have an odd upper square and are empty. Find all combinations of these square pairs to each other across columns. for col1, col2 in itertools.product(range(7), range(7)): if col1 == col2: continue for upper1, upper2 in itertools.product(*[[row for row in range(6) if row % 2 == 0 and row != 0 and board[col][row].state.value == computer.State.empty.value and board[col][row - 1].state.value == computer.State.empty.value] for col in [col1, col2]]): # Find all the verticals' solutions. vertical = computer.rules.vertical solved = [] for solution in vertical.generate_solutions(board, me): for square in solution.squares: if square in (board[col1][upper1], board[col1][upper1 - 1], board[col2][upper2], board[col2][upper2 - 1]): continue else: for solutionset in solution.solved: solved.append(solutionset) # Yield the two upper squares as solutions. yield computer.Solution(computer.Rule.lowinverse, (board[col1][upper1], board[col1][upper1 - 1], board[col2][upper2], board[col2][upper2 - 1]), [(board[col1][upper1], board[col2][upper2]), (board[col1][upper1], board[col1][upper1 - 1]), (board[col2][upper2], board[col2][upper2 - 1])] + solved)
true
36c7926a8f4283bab7fa5b9e301999c0a5e2d8fe
Python
renwenhua/webUI_autoTest
/pageobjects/page_exit.py
UTF-8
326
2.515625
3
[]
no_license
#!usr/bin/env python #encoding:utf-8 from pageobjects.base import BasePage from selenium.webdriver.common.by import By import sys class Exit(BasePage): button_exit=(By.PARTIAL_LINK_TEXT,"退出") def exit(self): self.driver.switch_to.window(self.driver.window_handles[0]) self.click(*self.button_exit)
true
2bc9eeaf3977bea5493bb2ad1999eed3659493b9
Python
lightstep/lightstep-benchmarks
/benchmark/satellite.py
UTF-8
6,415
2.75
3
[]
no_license
import logging import platform import requests import time from os import path from .utils import BENCHMARK_DIR, start_logging_subprocess from .exceptions import SatelliteBadResponse, DeadSatellites DEFAULT_PORTS = list(range(8360, 8368)) logger = logging.getLogger(__name__) BANDWIDTH_LIMIT_KB_PER_SEC = 50*1024 class MockSatelliteHandler: def __init__(self, port, mode): self.port = port # we will subtract this number from how many received spans satellites # report this will give us the ability to reset spans_received without # even communicating with satellites self._spans_received_baseline = 0 mock_satellite_path = path.join(BENCHMARK_DIR, 'mock_satellite.py') mock_satellite_logger = logging.getLogger(f'{__name__}.{port}') args = ["python3", mock_satellite_path, str(port), mode] if platform.system() == "Linux": args = [ "trickle", "-s", "-u", str(BANDWIDTH_LIMIT_KB_PER_SEC), "-d", str(BANDWIDTH_LIMIT_KB_PER_SEC) ] + args self._handler = start_logging_subprocess(args, mock_satellite_logger) def is_running(self): return self._handler.poll() is None def get_spans_received(self): host = "http://localhost:" + str(self.port) res = requests.get(host + "/spans_received") if res.status_code != 200: raise SatelliteBadResponse("Error getting /spans_received.") try: spans_received = int(res.text) - self._spans_received_baseline return spans_received except ValueError: raise SatelliteBadResponse("Satellite didn't sent an int.") def reset_spans_received(self): self._spans_received_baseline += self.get_spans_received() def terminate(self): # cross-platform way to terminate a program # on Windows calls TerminateProcess, on Posix sends SIGTERM self._handler.terminate() # wait for an exit code while self._handler.poll() is None: pass class MockSatelliteGroup: """ A group of mock satellites. """ def __init__(self, mode, ports=DEFAULT_PORTS): """ Initializes and starts a group of mock satellites. Parameters ---------- mode : str Mode determines the response characteristics, like timing, of the mock satellites. Can be 'typical', 'slow_succeed', or 'slow_fail'. ports : list of int Ports the mock satellites should listen on. A mock satellite will be started for each specified port. Raises ------ DeadSatellites If one or more of the satellites died during startup. """ self._ports = ports self._satellites = \ [MockSatelliteHandler(port, mode) for port in ports] time.sleep(1) if not self.all_running(): raise DeadSatellites() def __enter__(self): return self def __exit__(self, type, value, traceback): self.shutdown() return False def get_spans_received(self): """ Gets the number of spans that mock satellites have received. Returns ------- int The number of spans that the mock satellites have received. None If the satellite group has been shutdown. Raises ------ DeadSatellites If one or more of the mock satellites have died unexpctedly. SatelliteBadResponse If one or more of the mock satellites sent a bad response. """ # before trying to communicate with the mock, check if its running if not self._satellites or not self.all_running(): raise DeadSatellites("One or more satellites is not running.") received = sum([s.get_spans_received() for s in self._satellites]) logger.info(f'All satellites have {received} spans.') return received def all_running(self): """ Checks if all of the mock satellites in the group are running. Returns ------- bool Whether or not the satellites are running. """ # if the satellites are shutdown, they aren't running if not self._satellites: return False for s in self._satellites: if not s.is_running(): return False return True def reset_spans_received(self): """ Resets the number of spans that the group of mock satellites have received to 0. Does nothing if the satellite group has been shutdown.\ Raises ------ SatelliteBadResponse If we were unable to reset the number of spans received. """ if not self._satellites: logger.warn( "Cannot reset spans received since satellites are shutdown.") return logger.info("Resetting spans received.") for s in self._satellites: s.reset_spans_received() def start(self, mode, ports=DEFAULT_PORTS): """ Restarts the group of mock satellites. Should only be called if the group is currently shutdown. Parameters ---------- mode : str Mode deteremines the response characteristics, like timing, of the mock satellites. Can be 'typical', 'slow_succeed', or 'slow_fail'. ports : list of int Ports the mock satellites should listen on. A mock satellite will be started for each specified port. """ if self._satellites: logger.warn( "Cannot startup satellites because they are already running.") return logger.info("Starting up mock satellite group.") self.__init__(mode, ports=ports) def shutdown(self): """ Shutdown all satellites. Should only be called if the satellite group is currently running. """ if not self._satellites: logger.warn( "Cannot shutdown satellites since they are already shutdown.") return logger.info("Shutting down mock satellite group.") for s in self._satellites: s.terminate() self._satellites = None
true
c67b3401b6c150422d3d18233c63004c20337f38
Python
marcelopontes1/Estudos-Python-GUPPE
/S5/trigesimo_programa.py
UTF-8
272
4.28125
4
[]
no_license
num1 = int(input('Insira um número: ')) num2 = int(input('Insira um número: ')) num3 = int(input('Insira um número: ')) numbers = [num1, num2, num3] # Sorting list of Integers in ascending numbers.sort() print(f'A ordem crescente desses números é: {numbers}')
true
1e61d5b086adbb0b91072cb1ed003a3754fe6294
Python
jecustoms/yaweather
/examples/simple.py
UTF-8
235
2.71875
3
[ "MIT" ]
permissive
from yaweather import UnitedKingdom, YaWeather y = YaWeather(api_key='secret') res = y.forecast(UnitedKingdom.London) print(f'Now: {res.fact.temp} °C, feels like {res.fact.feels_like} °C') print(f'Condition: {res.fact.condition}')
true
d79100c2cf4f428e4b02bcd3fc83fc10f2052fce
Python
Pride7K/Python
/Dicionario/dicionario_exercicio1.py
UTF-8
450
3.421875
3
[]
no_license
from random import * from operator import itemgetter jogadores = {} jogadores_vencedor = {} for i in range (1,5): jogadores[f'Jogador{i}'] = randint(1,6); print(jogadores) for jogador,dado in jogadores.items(): print(f'O {jogador} tirou {dado}'); print(""); jogadores_vencedor = sorted(jogadores.items(),key=itemgetter(1),reverse=True); for i in jogadores_vencedor: print(f'{i[0]} tirou {i[1]} no dado');
true
6b96e6145e09308a795759f7f733bc3924b8f928
Python
hhhhjjj/my_scrapy
/my_re.py
UTF-8
261
3.375
3
[]
no_license
import re line = "Cats are smarter than dogs" matchObj = re.match(r'(.*) are (.*?) .*', line, re.M | re.I) # re.M是多行匹配,re.I是对大小写不敏感 if matchObj: print(matchObj.group(1)) print(matchObj.group(2)) else: print("no match")
true
78a056927bce75e078dc6c277b44cdabb26bea40
Python
caristi/CursoPython
/Rectangulo.py
UTF-8
251
3.703125
4
[]
no_license
class Rectangulo: def __init__(self,base,altura): self.base = base self.altura = altura def calcularArea(self): return self.base * self.altura rec = Rectangulo(2,3) print(rec.calcularArea())
true
e9ee625b24848dd5aa237ba9a9b4441374a9f64a
Python
chenxu0602/LeetCode
/1382.balance-a-binary-search-tree.py
UTF-8
1,755
3.515625
4
[]
no_license
# # @lc app=leetcode id=1382 lang=python3 # # [1382] Balance a Binary Search Tree # # https://leetcode.com/problems/balance-a-binary-search-tree/description/ # # algorithms # Medium (75.48%) # Likes: 398 # Dislikes: 23 # Total Accepted: 21.9K # Total Submissions: 29.1K # Testcase Example: '[1,null,2,null,3,null,4,null,null]' # # Given a binary search tree, return a balanced binary search tree with the # same node values. # # A binary search tree is balanced if and only if the depth of the two subtrees # of every node never differ by more than 1. # # If there is more than one answer, return any of them. # # # Example 1: # # # # # Input: root = [1,null,2,null,3,null,4,null,null] # Output: [2,1,3,null,null,null,4] # Explanation: This is not the only correct answer, [3,1,4,null,2,null,null] is # also correct. # # # # Constraints: # # # The number of nodes in the tree is between 1 and 10^4. # The tree nodes will have distinct values between 1 and 10^5. # # # @lc code=start # Definition for a binary tree node. # class TreeNode: # def __init__(self, val=0, left=None, right=None): # self.val = val # self.left = left # self.right = right class Solution: def balanceBST(self, root: TreeNode) -> TreeNode: # O(N) def dfs(node): return dfs(node.left) + [node.val] + dfs(node.right) if node else [] def chain(data): if not data: return None mid = len(data) // 2 head = TreeNode(data[mid]) head.left = chain(data[:mid]) head.right = chain(data[mid + 1:]) return head if not root: return root data = dfs(root) return chain(data) # @lc code=end
true
e5aadd45883492841edc1bcbea1ae7fdc8bfa48a
Python
Miguelmargar/ucd_programming1
/practical 1/p1p3.py
UTF-8
161
2.921875
3
[]
no_license
# My third program print("Name: Miguel Martinez") print("") print("Address: 4 Westminster Park, Mount Brown, Blackrock, D8") print("") print("Phone no.: 0873752689")
true
beb92ba4a298eec5af3f535c45e534c4f7f653f5
Python
Ihsan545/Search-and-Sort-Array-Assignment
/test_collections/test_sort_and_search_array.py
UTF-8
642
2.828125
3
[]
no_license
import unittest import array as r import fun_with_collections.sort_and_search_array as basic_list_exception class MyTestCase(unittest.TestCase): def test_search_array(self): self.assertFalse(basic_list_exception.search_array([5, -1, 3, 6, 8, 9, 4, 10], -1)) def test_sort_array(self): n = r.array([9, 3, 1, 5, 8, 6, 4, 7]) to_list = n.tolist() _list = to_list.sort() to_list = r.array(to_list) self.assertTrue(basic_list_exception.sort_array(([9.0, 3.0, 1.0, 5.0, 8.0, 6.0, 4.0, 7.0]))) """" I tried my bet, but I could not figure out the sort test""" if __name__ == '__main__': unittest.main()
true
69c56de19260f86dd9ac1ad0e7b22c6f1bc1b81f
Python
Wizmann/ACM-ICPC
/Leetcode/Algorithm/python/1000/00693-Binary Number with Alternating Bits.py
UTF-8
195
2.5625
3
[ "LicenseRef-scancode-warranty-disclaimer" ]
no_license
def lowbit(x): return x & (-x) class Solution(object): def hasAlternatingBits(self, n): a = n ^ (n >> 1) b = a ^ (a >> 1) c = b - lowbit(b) return c == 0
true
8e0c89b19ebf6efdea0b42c506edaed4224def0d
Python
md6380/vaccine-feed-ingest
/vaccine_feed_ingest/schema/schema.py
UTF-8
4,637
2.609375
3
[ "MIT" ]
permissive
#!/usr/bin/env python3 import warnings from typing import List, Optional from pydantic import BaseModel """ DEPRECATION NOTICE vaccine_feed_ingest/schema/schema.py is DEPRECATED. Instead of using this file, import the published package using the line: from vaccine_feed_ingest_schema import location ~or~ from vaccine_feed_ingest_schema import load This file is maintained in the source so that currently open PRs will not break. It will be removed from source by 2021-05-01, potentially earlier. """ warnings.warn( "vaccine_feed_ingest/schema/schema.py is deprecated. Use the the published vaccine_feed_ingest_schema" + "package instead.", DeprecationWarning, stacklevel=2, ) class Address(BaseModel): """ { "street1": str, "street2": str, "city": str, "state": str as state initial e.g. CA, "zip": str, }, """ street1: str street2: Optional[str] city: str state: str zip: str class LatLng(BaseModel): """ { "latitude": float, "longitude": float, }, """ latitude: float longitude: float class Contact(BaseModel): """ { "contact_type": str as contact type enum e.g. booking, "phone": str as (###) ###-###, "website": str, "email": str, "other": str, } """ contact_type: Optional[str] phone: Optional[str] website: Optional[str] email: Optional[str] other: Optional[str] class OpenDate(BaseModel): """ { "opens": str as iso8601 date, "closes": str as iso8601 date, } """ opens: Optional[str] closes: Optional[str] class OpenHour(BaseModel): """ { "day": str as day of week enum e.g. monday, "opens": str as hh:mm, "closes": str as hh:mm, } """ day: str open: str closes: str class Availability(BaseModel): """ { "drop_in": bool, "appointments": bool, }, """ drop_in: Optional[bool] appointments: Optional[bool] class Vaccine(BaseModel): """ { "vaccine": str as vaccine type enum, "supply_level": str as supply level enum e.g. more_than_48hrs } """ vaccine: str supply_level: Optional[str] class Access(BaseModel): """ { "walk": bool, "drive": bool, "wheelchair": str, } """ walk: Optional[bool] drive: Optional[bool] wheelchair: Optional[str] class Organization(BaseModel): """ { "id": str as parent organization enum e.g. rite_aid, "name": str, } """ id: Optional[str] name: Optional[str] class Link(BaseModel): """ { "authority": str as authority enum e.g. rite_aid or google_places, "id": str as id used by authority to reference this location e.g. 4096, "uri": str as uri used by authority to reference this location, } """ authority: Optional[str] id: Optional[str] uri: Optional[str] class Source(BaseModel): """ { "source": str as source type enum e.g. vaccinespotter, "id": str as source defined id e.g. 7382088, "fetched_from_uri": str as uri where data was fetched from, "fetched_at": str as iso8601 datetime (when scraper ran), "published_at": str as iso8601 datetime (when source claims it updated), "data": {...parsed source data in source schema...}, } """ source: str id: str fetched_from_uri: Optional[str] fetched_at: Optional[str] published_at: Optional[str] data: dict class NormalizedLocation(BaseModel): id: str name: Optional[str] address: Optional[Address] location: Optional[LatLng] contact: Optional[List[Contact]] languages: Optional[List[str]] # [str as ISO 639-1 code] opening_dates: Optional[List[OpenDate]] opening_hours: Optional[List[OpenHour]] availability: Optional[Availability] inventory: Optional[List[Vaccine]] access: Optional[Access] parent_organization: Optional[Organization] links: Optional[List[Link]] notes: Optional[List[str]] active: Optional[bool] source: Source class ImportMatchAction(BaseModel): """Match action to take when importing a source location""" id: Optional[str] action: str class ImportSourceLocation(BaseModel): """Import source location record""" source_uid: str source_name: str name: Optional[str] latitude: Optional[float] longitude: Optional[float] import_json: dict match: Optional[ImportMatchAction]
true
74fe53c37c91a3d49d0d414247b77bef2d27ed5b
Python
Murph9/KaggleComp
/intseq/firstreadin.py
UTF-8
703
2.96875
3
[]
no_license
# -*- coding: utf-8 -*- """ Created on Sat Aug 13 13:36:59 2016 @author: Kazuma Wittick """ """ import numpy as np train = np.loadtxt('train.csv', dtype = str) train = train[1:2] for row in train: seq = str(row) print seq """ import re with open('train.csv') as f: content = f.readlines() content.pop(0) data = [] for line in content: m = re.search('"(.*)"', line) string = m.group(0) string = string.replace('"', '') array = map(int, string.split(',')) data.append(array) #print data[0:10] minimum = 10000 for array in data: yy = len(array) minimum = min(yy, minimum) if yy == 1: print array print minimum print 348751093847501987*19087501938475
true
2bd1b2d6412fa0a567a715a206706e8d758335bf
Python
harryhaos/pyal
/reverselist.py
UTF-8
597
3.625
4
[]
no_license
__author__ = 'harryhao' ''' reverse linked list ''' class Node: def __init__(self, data, next_n): self.data = data self.next_n = next_n def reve(head): p = head q = head.next_n head.next_n = None while q: r = q.next_n q.next_n = p p = q q = r return p def print_arr(head): while head: print head.data head = head.next_n if __name__ == '__main__': a = Node(1, None) b = Node(2, None) c = Node(3, None) a.next_n = b b.next_n = c c.next_n = None print_arr(reve(a))
true
c6b5ab2788210f46d49bca706cc12150c2fc7fe2
Python
SucharitaDhar/PirplePythonCourse
/Homework #4 (lists)/List.py
UTF-8
693
3.828125
4
[ "Unlicense" ]
permissive
myUniqueList = [] myLeftovers = [] def addToList(item): if item in myUniqueList: addToLeftovers(item) return False else: myUniqueList.append(item) return True def addToLeftovers(item): myLeftovers.append(item) # Testing the addToList function print(myUniqueList) #[] print(addToList("pizza")) # Returns True print(myUniqueList) # ['pizza'] print(myLeftovers) # [] # Adding the element that already exists print(addToList("pizza")) # Returns False print(myUniqueList) # ['pizza'] print(myLeftovers) # ['pizza'] # Adding a new element print(addToList("burger")) # Returns True print(myUniqueList) # ['pizza', 'burger'] print(myLeftovers) # ['pizza']
true
a48510578f6daade35a3b151d73ceffd84baf6e0
Python
satyx/Data-Structure-Practice
/paranthesis_balance.py
UTF-8
559
3.21875
3
[]
no_license
test=int(input()) start=('(','{','[') while test>0: a=list() flag=True exp=input() for i in exp: if i in start: a.append(i) elif i==')': if len(a)==0: flag=False break if a.pop()!='(': flag=False break elif i=='}': if len(a)==0: flag=False break if a.pop()!='{': flag=False break elif i==']': if len(a)==0: flag=False break if a.pop()!='[': flag=False break if flag==False: print("not balanced") elif len(a)!=0: print("not balanced") else: print("balanced") test-=1
true
3bebe8768c0ba67dd3b638ddef003e9f7ee04350
Python
mve17/SPISE-2019
/Day 3/rain.py
UTF-8
1,723
3.5
4
[]
no_license
from tkinter import * import time WINDOW_WIDTH=1000 #pixels WINDOW_HEIGHT=300 RAINDROP_WIDTH=10 class Sky(): def __init__(self): #gui window setup self.root=Tk() self.canvas=Canvas(self.root,width=WINDOW_WIDTH,height=WINDOW_HEIGHT) self.canvas.pack() #lists to store raindrop information self.raindrops=[] self.raindrop_heights=[] #initialize scheduled rainfall self.time=0 self.schedule=[] def add_raindrops_to_top(self,position_list): #positions between 0 and WINDOW_WIDTH for position in position_list: self.raindrops.append(self.canvas.create_rectangle(position,0,position+RAINDROP_WIDTH,RAINDROP_WIDTH,fill='blue')) self.raindrop_heights.append(0) def fall(self,distance=7): remaining_raindrops=[] remaining_raindrop_heights=[] for i,raindrop in enumerate(self.raindrops): self.canvas.move(raindrop,0,distance) self.raindrop_heights[i]+=distance if self.raindrop_heights[i]<WINDOW_HEIGHT: #raindrop i still on screen remaining_raindrops.append(raindrop) remaining_raindrop_heights.append(self.raindrop_heights[i]) else: self.canvas.delete(raindrop) self.canvas.update() self.raindrops=remaining_raindrops self.raindrop_heights=remaining_raindrop_heights self.time+=1 def set_raindrop_schedule(self,schedule): #raindrop schedule should be a list of lists, of raindrop positions to add at time 0,1,2... self.schedule=schedule def start_rain(self): while True: if self.time<len(self.schedule): self.add_raindrops_to_top(self.schedule[self.time]) time.sleep(.1) self.fall() if __name__=='__main__': sky=Sky() sky.set_raindrop_schedule([[0,7,100,140,150]]) sky.start_rain() mainloop() #required to get the tkinter gui going
true
57de17b868dfccdd14d3b7fefccd1d3a9ea8ddfe
Python
lonyle/causal_bandit
/code+data/algorithm_framework.py
UTF-8
5,523
2.609375
3
[]
no_license
import numpy as np class AlgorithmFramework: def __init__(self, algorithm, offline_data, match_machine, option='offline_online'): self.algorithm = algorithm # the algorithm oracle has 'draw_arm' and 'update' two APIs self.match_machine = match_machine self.offline_data = offline_data self.option = option self.N_offline = len(self.offline_data[self.match_machine.treatment_name]) self.context_dim = len(offline_data.keys()) - 3 # exclude "action", "reward" and "propensity score" # if the match_machine is ps_matching, the context is the propensity score self.context_pool = [] self.choice_pool = [] # has the same index as the context for idx in range(self.N_offline): if self.match_machine.__class__.__name__ == 'PropensityScoreMatching': self.context_pool.append(self.offline_data['propensity_score'][idx]) else: context_vec = [] for context_name in self.match_machine.context_names: context_vec.append(self.offline_data[context_name][idx]) self.context_pool.append(context_vec) # added on Jan 29 if self.match_machine.choice_names != None: choice_vec = [] for choice_name in self.match_machine.choice_names: choice_vec.append(self.offline_data[choice_name][idx]) self.choice_pool.append(choice_vec) self.context_generator = False self.t = 0 # self.maintain a time count self.batch_mode_status = None # by default, batch_mode_status=None which means we do not use the batch mode # When batch_mode_status = True, we need to do the batch update # When batch_mode_status = False, we are in the online phase and we skip the batch update ######## public ######## def real_draw_arm(self, context, choices=[], do_match=True, update_pending=True): # sometimes, we choose from a selected subset self.real_context = context self.real_choices = choices # do the matching first if self.option != 'only_online': if self.batch_mode_status == None: if do_match: self.match_all_possible() action = self.match_machine.get_pending_action(context, update_pending) if action: # short-cut print ('context:', context, 'pending action:', action) return action elif self.batch_mode_status == True: self.match_all_possible_batch() elif self.batch_mode_status == False: pass # do nothing else: print ('invalid value for batch_mode_status') action = self.choose_arm(context, choices) self.real_action = action return action def real_feedback(self, reward): if self.option != 'only_offline': # if only_offline, do not need to update the online feedback self.update(self.real_context, self.real_action, reward, is_online=True) if self.match_machine.__class__.__name__ != 'PropensityScoreMatching': self.context_pool.append(self.real_context) if self.match_machine.choice_names != None: self.choice_pool.append(self.real_choices) ######################## def choose_arm(self, context, choices): if self.algorithm.contextual == True: if len(choices) == 0: # default choices from a fixed set of arms action = self.algorithm.draw_arm(context, self.t, self.option) else: action = self.algorithm.draw_arm(context, choices, self.t, self.option) else: # now, context-independent decisions support dynamic choices action = self.algorithm.draw_arm(choices, self.t, self.option) return action def update(self, context, action, reward, is_online=False): # depending on whether the algorithm has context or not if self.algorithm.contextual == True: self.algorithm.update(context, action, reward, is_online) else: self.algorithm.update(action, reward, is_online) self.t += 1 def match_all_possible(self): # match until there is no matched while True: sample = self.match(self.t) if sample: self.update(sample['context'], sample['action'], sample['reward']) else: return def match(self, t): # different algorithms random_context, random_choice_set = self.generate_random_context() if self.algorithm.contextual == True: action = self.algorithm.draw_arm(random_context, random_choice_set, t) else: action = self.algorithm.draw_arm(random_choice_set, t) reward = self.match_machine.find_sample_reward(random_context, action) if not reward: return False else: return {"context": random_context, "reward": reward, "action": action} ## updated on 2020-10-08: match all the data points in a batch mode def match_all_possible_batch(self): for action in range(self.algorithm.N_arm): while True: random_context, _ = self.generate_random_context() reward = self.match_machine.find_sample_reward(random_context, action) if not reward: # no more offline data break else: self.update(random_context, action, reward) def get_environment_for_context(self, env): self.context_generator = True self.env = env def generate_random_context(self): # generate a random context from the context distribution # TODO: if we have both context and choice_set, we also need to generate the choice_set if self.context_generator == True: random_choice_set = [] # set the random choice set to empty (do not consider Yahoo data) return self.env.generate_context(), random_choice_set random_idx = np.random.randint(len(self.context_pool)) random_context = self.context_pool[random_idx] if len(self.choice_pool) > 0: random_choice_set = self.choice_pool[random_idx] else: random_choice_set = [] return random_context, random_choice_set
true
b149d514b231196b2e285416ee3177a3c7849695
Python
laperlej/hkmeans
/kmeans.py
UTF-8
6,091
3.078125
3
[]
no_license
from itertools import chain, imap import numpy as np from scipy.stats import pearsonr import random from tree import Tree import sklearn.metrics as metrics class ClusteringAlgorithm(object): def __init__(self, points): self.points = points self.idmaker = IdMaker() self.clusters = None def __str__(self): string = "" count = 1 for cluster in self.clusters: string += "cluster%s:\n" % (count) count += 1 tmp = [str(point)for point in cluster.points] tmp.sort() for point in tmp: string += "\t%s\n" % (point) return string def get_labels(self): points = [] labels_true = [] labels_pred = [] count=0 for cluster in self.clusters: for point in cluster.points: points.append(point) label = self.idmaker.get_id(point.label) labels_true.append(label) labels_pred.append(count) count+=1 return points, labels_true, labels_pred def eval_clusters(self): """calculates the adjusted rand index of the clustering based on the label of the points """ _, labels_true, labels_pred = self.get_labels() ari = metrics.adjusted_rand_score(labels_true, labels_pred) hom = metrics.homogeneity_score(labels_true, labels_pred) comp = metrics.completeness_score(labels_true, labels_pred) return ari, hom, comp class KMeans(ClusteringAlgorithm): def __init__(self, points, k): super(KMeans, self).__init__(points) self.k = k self.clusters = [] def generate_clusters(self): #initialise centers centers = random.sample(self.points, self.k) self.clusters = [Cluster([], centers[i]) for i in range(self.k)] self.clusters[0].points = self.points #repeat until no change moves = [None] while moves: moves = [] #add points to clusters for cluster in self.clusters: for point in cluster.points: dists = [clust.distance(point) for clust in self.clusters] index_min = np.argmin(dists) if cluster is not self.clusters[index_min]: cluster.points.remove(point) self.clusters[index_min].points.append(point) moves.append(point) #calculate new centers for cluster in self.clusters: try: cluster.new_center() except IndexError: cluster.center = random.choice(self.points) class HKMeans(ClusteringAlgorithm): def __init__(self, points, k): super(HKMeans, self).__init__(points) self.k = k self.clusters = Tree(Cluster(points)) def split_node(self, node): cluster = node.content kmeans = KMeans(cluster.points, k=2) kmeans.generate_clusters() node.left, node.right = [Tree(cluster) for cluster in kmeans.clusters] def node_to_split(self): return max(self.clusters) def generate_clusters(self): Tree(Cluster(self.points)) while len(self.clusters) < self.k: self.split_node(self.node_to_split()) class Cluster(object): def __init__(self, points, center=None): self.points = points self.center = center def average_distance(self): dists = [self.center.distance(point) for point in self.points] return np.mean(dists) def distance(self, point): return self.center.distance(point) def new_center(self): if self.points: new_data = [] for arrays in zip(*[point.data for point in self.points]): new_array = np.mean(np.dstack(arrays), axis=2) new_data.append(*new_array) self.center = Dataset(new_data) else: raise IndexError def __lt__(self, other): return self.average_distance() < other.average_distance() def __gt__(self, other): return self.average_distance() > other.average_distance() class Dataset(object): def __init__(self, data, name="", label="", comment=""): self.data = [np.array(array) for array in data] self.name = name self.label = label self.comment = comment def __str__(self): return "{0} - {1}".format(self.label, self.comment) def distance(self, dataset): zipped_data = zip(*[self.data, dataset.data]) coeffs = [1-pearsonr(*arrays)[0] for arrays in zipped_data] return np.mean(coeffs) class IdMaker(object): """returns a unique id for any object """ def __init__(self): self.items = {} self.next_id = 0 def __len__(self): return len(self.items) def get_next_id(self): """returns the next id """ self.next_id += 1 return self.next_id def get_id(self, item): """looks if object already assigned an id otherwise creates a new id """ index = self.items.get(item) if index == None: self.items[item] = self.get_next_id() return self.items[item] def get_items(self): """returns the list of all items """ return self.items def read_input(): """test function which reads points from test_data.txt(iris3), clusters it and outputs the clusters """ points = [] with open("test_data.txt") as test_file: for line in test_file: line = line.split() values = [[float(x) for x in line[1:4]]] point = Dataset(values, label=line[5]) points.append(point) return points if __name__ == '__main__': POINTS = read_input() #KMEANS = KMeans(POINTS, 3) #KMEANS.generate_clusters() #print KMEANS HKMEANS = HKMeans(POINTS, 3) HKMEANS.generate_clusters() print HKMEANS
true
b8ece6cd2dd1b287de1a03dff8ca71ffdd62b5be
Python
alenzhao/Lux
/bf.py
UTF-8
4,986
2.609375
3
[ "MIT" ]
permissive
#!/usr/bin/env python import sys import os.path import re import numpy import scipy.stats import scipy.special import argparse def diff_dirichlet_density_at_origin(a,a2): a = numpy.array(a) a2 = numpy.array(a2) if len(a) != 3 or len(a2) != 3: sys.exit('error: both concentration parameters should have three elements') return (scipy.special.gamma(numpy.sum(a))*scipy.special.gamma(numpy.sum(a2)))/ \ (numpy.prod(scipy.special.gamma(a))*numpy.prod(scipy.special.gamma(a2)))* \ numpy.prod(scipy.special.gamma(a+a2-1))/scipy.special.gamma(numpy.sum(a+a2)-3) def calculate_bf(chains): samples = [{},{}] # read the HMC chain files for n,filename in enumerate(chains): with open(filename,'r') as f: labels_flag = False adaptation_flag = False indices = {} sample_index = 0 # go through the lines of the HMC chain file for line in f: # comment lines if line[0] == '#': # let us figure out how many samples there are if line.strip().startswith('# num_samples ='): n_samples = int(re.match('# num_samples = ([0-9]+) \(Default\)',line.strip()).group(1)) # to make sure that we do not take warmup samples if line.strip() == '# Adaptation terminated': adaptation_flag = True continue # the first nonempty and noncomment line has the column headers if not labels_flag and len(line.strip().split(',')) > 1: # get the column indices of the mu variables and initialize sample arrays labels = line.strip().split(',') mu_indices = numpy.where([label.startswith('mu.') for label in labels])[0] for mu_index in mu_indices: index,component = map(int,re.match('mu\.([0-9]+)\.([1-3]{1})',labels[mu_index]).group(1,2)) if not samples[n].has_key(index): indices[index] = [None,None,None] samples[n][index] = numpy.nan*numpy.zeros((n_samples,3)) if indices[index][component-1] != None: sys.exit('error: the header %s is found more than once in the file %s'%(labels[mu_index],filename)) indices[index][component-1] = mu_index labels_flag = True continue # after seeing the '# Adaptatation terminated' line all the nonempty and noncomment lines should be sample lines if adaptation_flag and len(line.strip().split(',')) > 1: fields = line.strip().split(',') for mu_index in indices.iterkeys(): if indices[mu_index][0] == None: sys.exit('error: the variable mu.%d.1 is not found in the file %s'%(mu_index,filename)) elif indices[mu_index][1] == None: sys.exit('error: the variable mu.%d.2 is not found in the file %s'%(mu_index,filename)) elif indices[mu_index][2] == None: sys.exit('error: the variable mu.%d.3 is not found in the file %s'%(mu_index,filename)) samples[n][mu_index][sample_index,0] = fields[indices[mu_index][0]] samples[n][mu_index][sample_index,1] = fields[indices[mu_index][1]] samples[n][mu_index][sample_index,2] = fields[indices[mu_index][2]] sample_index += 1 # check that the chains have the same mu variables if not (numpy.sort(samples[0].keys()) == numpy.sort(samples[1].keys())).all(): sys.exit('error: the number of mu variables or their indices differ between the two chains') # go through all the mu variables for mu_index in numpy.sort(samples[0].keys()): # calculate all the pair-wise differences between the samples of the two chains Delta_theta = numpy.vstack(((numpy.array([samples[0][mu_index][:,0]]).T - samples[1][mu_index][:,0]).flatten(1),(numpy.array([samples[0][mu_index][:,1]]).T - samples[1][mu_index][:,1]).flatten(1))) # kernel density estimation density = scipy.stats.kde.gaussian_kde(Delta_theta,bw_method='scott') density.set_bandwidth(bw_method=density.factor/4.) # calculate the savage-dickey density ratio print 'mu[%d]\t%f'%(mu_index,diff_dirichlet_density_at_origin([0.8,0.8,0.8],[0.8,0.8,0.8])/density.evaluate([0,0])) if __name__ == '__main__': parser = argparse.ArgumentParser(description='Calculates Bayes factor between two conditions based on the Stan HMC output chains') parser.add_argument('-c1','--chain-1',action='store',dest='chain1',type=str,required=True,help='output chain of the first condition') parser.add_argument('-c2','--chain-2',action='store',dest='chain2',type=str,required=True,help='output chain of the second condition') parser.add_argument('-v','--version',action='version',version='%(prog)s 0.666') options = parser.parse_args() if not os.path.isfile(options.chain1): sys.exit('error: %s is not a file'%(options.chain1)) if not os.path.isfile(options.chain2): sys.exit('error: %s is not a file'%(options.chain2)) calculate_bf([options.chain1,options.chain2])
true
e9f2fcb61cb0fad2d25349c7d1e68a66971b63b7
Python
GeforceTesla/ECE661_Computer_Vision_Combined
/Hw9/import/Ncc_Op.py
UTF-8
3,515
2.671875
3
[]
no_license
import cv2 import numpy as np from Epipole_Op import Epipole_Op class Ncc_Op(object): def __init__(self, des1, des2, img1, img2, matrix_F): self.descriptor1 = des1 self.descriptor2 = des2 self.img1 = img1 self.img2 = img2 self.matrix_F = matrix_F self.ncc_size = 13 self.threshold = 0.8 self.ncc_calculation() def get_neighbor(self, x, y, gray_image): size = self.ncc_size size_half = int(size/2) neighbor = np.zeros((size,size)) for m in range(-size_half, (size_half+1)): for n in range(-size_half, (size_half+1)): neighbor[n+size_half][m+size_half] = gray_image[y+n][x+m] return neighbor def get_ncc_point(self, neighbor1, neighbor2): point = 0 mean1 = 0 mean2 = 0 ncc_numerator = 0 ncc_denominator1 = 0 ncc_denominator2 = 0 Wncc = self.ncc_size for i in range(Wncc): for j in range(Wncc): mean1 += neighbor1[i][j] mean2 += neighbor2[i][j] mean1 = mean1/(Wncc*Wncc) mean2 = mean2/(Wncc*Wncc) for i in range(Wncc): for j in range(Wncc): ncc_numerator += (neighbor1[i][j]-mean1)*(neighbor2[i][j]-mean2) ncc_denominator1 += np.square(neighbor1[i][j]-mean1) ncc_denominator2 += np.square(neighbor2[i][j]-mean2) ncc_denominator = np.sqrt(ncc_denominator1*ncc_denominator2) point = ncc_numerator/ncc_denominator return point def ncc_calculation(self): for i in self.descriptor1: i.neighbor = self.get_neighbor(i.x, i.y, self.img1) for i in self.descriptor2: i.neighbor = self.get_neighbor(i.x, i.y, self.img2) for i in range(len(self.descriptor1)): point = 0 point_max = -1e10 matched_point = 0 x1 = np.zeros(3) x2 = np.zeros(3) row = int(self.descriptor1[i].y_rect) for j in range(len(self.descriptor2)): if(int(self.descriptor2[j].y_rect) < row -4 or int(self.descriptor2[j].y_rect) > row + 4): continue x2[0] = self.descriptor2[j].x x2[1] = self.descriptor2[j].y x2[2] = 1 constraint1 = np.dot(np.dot(x2.T, self.matrix_F), x1) if constraint1 > 0.055: continue point = self.get_ncc_point(self.descriptor1[i].neighbor, self.descriptor2[j].neighbor) if(point > point_max): point_max = point self.descriptor1[i].point = point_max self.descriptor1[i].match = j self.descriptor2[j].point = point_max self.descriptor2[j].match = i for j in range(i): if(self.descriptor1[j].match == self.descriptor1[i].match): if(self.descriptor1[j].point < self.descriptor1[i].point): self.descriptor1[j].match = -1 self.descriptor1[j].score = -1 else: self.descriptor1[i].match = -1 self.descriptor1[i].score = -1 break def get_descriptor1(self): return self.descriptor1 def get_descriptor2(self): return self.descriptor2
true
d160b3ff6a0bc21d5382c1856630f4aa14848385
Python
jcyang36/YoutubeDemStats
/youtube_stats.py
UTF-8
1,526
2.625
3
[]
no_license
#We break this out into separate files because of YouTube API Quota Limit import pandas as pd import urllib.request import json #api key key = "key=YOURKEYHERE" #video api and params youtube_vid_stats = "https://www.googleapis.com/youtube/v3/videos?" part_stats = "part=statistics" video_views = [] video_likes = [] video_dislikes = [] video_comments = [] video_list = pd.read_excel('candidate_yt_vids.xlsx') ids = video_list['Video ID'] for i in ids: req = youtube_vid_stats+'&'+key+'&'+part_stats+'&id='+i search_items = json.loads(urllib.request.urlopen(req).read()) print(req) if search_items['pageInfo']['totalResults'] == 0: views = 'removed' likes = 'removed' dislikes = 'removed' comments = 'removed' else: stats = search_items['items'][0]['statistics'] views = stats['viewCount'] try: likes = stats['likeCount'] except: likes = 'disabled' try: dislikes = stats['dislikeCount'] except: dislikes = 'disabled' try: comments = stats['commentCount'] except: comments = 'disabled' video_views.append(views) video_likes.append(likes) video_dislikes.append(dislikes) video_comments.append(comments) video_list['views'] = video_views video_list['likes'] = video_likes video_list['dislikes'] = video_dislikes video_list['comments'] = video_comments video_list.to_excel('candidate_yt_statistics.xlsx') print('done')
true
8b082caef883032806350423486681638e760828
Python
Aasthaengg/IBMdataset
/Python_codes/p02409/s115682449.py
UTF-8
1,207
2.6875
3
[]
no_license
import sys k1 = [[0 for i in xrange(10)] for j in xrange(3)] k2 = [[0 for i in xrange(10)] for j in xrange(3)] k3 = [[0 for i in xrange(10)] for j in xrange(3)] k4 = [[0 for i in xrange(10)] for j in xrange(3)] n = input() for i in xrange(n): m = map(int,raw_input().split()) if m[0] == 1: k1[m[1]-1][m[2]-1] = k1[m[1]-1][m[2]-1] + m[3] elif m[0] == 2: k2[m[1]-1][m[2]-1] = k2[m[1]-1][m[2]-1] + m[3] elif m[0] == 3: k3[m[1]-1][m[2]-1] = k3[m[1]-1][m[2]-1] + m[3] elif m[0] == 4: k4[m[1]-1][m[2]-1] = k4[m[1]-1][m[2]-1] + m[3] for i in xrange(3): for j in xrange(10): x = ' ' + str(k1[i][j]) sys.stdout.write(x) if j == 9: print "" print"#"*20 for i in xrange(3): for j in xrange(10): y = ' ' + str(k2[i][j]) sys.stdout.write(y) if j == 9: print "" print"#"*20 for i in xrange(3): for j in xrange(10): z = ' ' + str(k3[i][j]) sys.stdout.write(z) if j == 9: print "" print"#"*20 for i in xrange(3): for j in xrange(10): zz = ' ' + str(k4[i][j]) sys.stdout.write(zz) if j == 9: print ""
true
a291ecb36ca1578c8511f1df3a37d38a44329229
Python
Rup-Royofficial/Codeforces_solutions
/Gravity_Flip.py
UTF-8
97
3.671875
4
[]
no_license
a = int(input()) x = list(map(int,input().split())) x.sort() for i in x: print(i,end=" ")
true
944b137529a001a634728bacacbb13aeb15c974f
Python
meethu/LeetCode
/solutions/0204.count-primes/count-primes.py
UTF-8
968
3.5
4
[]
no_license
class Solution: # def isPrime(self, n): # for i in range(2, int(n ** 0.5) + 1): # if n % i == 0: # return False # return True # def countPrimes(self, n: int) -> int: # if n <= 2: return 0 # cnt = 0 # for i in range(2, n): # if self.isPrime(i): # cnt += 1 # return cnt def countPrimes(self, n: int) -> int: if n <= 2: return 0 isPrime = [1] * n cnt = 0 for i in range(2, n): if isPrime[i]: # 2x2 2x3 2x4 2x5 ... # 3x2 3x3 3x4 3x5 ... # 计算重复,直接 i * i 开始跳过重复部分 j = i * i while j < n: isPrime[j] = 0 j += i return sum(isPrime[2:]) # https://leetcode-cn.com/problems/count-primes/solution/ru-he-gao-xiao-pan-ding-shai-xuan-su-shu-by-labula/
true
360f22b4e01448b12533e8c3590111eef8732b6e
Python
Kitsunekoyama/Area
/web/app.py
UTF-8
16,569
2.734375
3
[]
no_license
""" Documentation for the web module File Handling the front-end of AREA's web interface """ from flask import Flask, render_template, request, redirect, url_for import requests import time import json import sys app = Flask(__name__) """ **Global variables** ID: Server generated UID data: services and A/R index associated - json user_data: Array of relations - A/R list info_action: Informations about a specific Action (service, action, info) info_reaction: Informations about a specific Reaction (service, reaction, info) info_username: Information about the username (name of the user) """ ID = [] data = [] user_data = [] info_action = [] info_reaction = [] info_username = [] google_redirection = "" """ **Google module** contains: -google function -google_callback function google: posts the information to the google service at: http://sv:8080/google google_callback: posts the user information to the authentication page and redirects to the google authentication service at: http://sv:8080/authGoogle """ @app.route('/google', methods=['GET', 'POST']) def google(): response = requests.post("http://sv:8080/google") return (redirect(response.text)) @app.route('/google_callback', methods=['GET', 'POST']) def google_callback(): global relation r = requests.post("http://sv:8080/authGoogle", json = {'id': ID, 'code': request.args.get('code')}) return (redirect(google_redirection)) """ **fill_data & index functions** index: calls fill_data fill_data: fills the data global variable with the services and A/R index associated """ @app.route('/fill_data') def fill_data(): global data # jsn = [] # error_msg = [] # response = requests.get("https://api.jikan.moe/v3/search/anime?q=rezero") # if response.status_code == 200: # jsn = response.json() # send and reception info to server r = requests.post("http://sv:8080/service") # check post and get if r.status_code == 500: print("error server", file=sys.stderr) error_msg = "Error server" # convert reception info to json data = r.json() print("Fill data", file=sys.stderr) print(data, file=sys.stderr) @app.route('/', methods=['GET', 'POST']) def index(): if data == []: fill_data() return render_template('index.html', **locals()) """ **logout function** logout: empties the global variables: ID, user_data and info_username """ @app.route('/logout', methods=['GET', 'POST']) def logout(): global ID global user_data global info_username ID = [] user_data = [] info_username = [] return redirect(url_for('index')) """ **login function** login: checks the login information """ @app.route("/login", methods=['POST', 'GET']) def login(status = 'default'): error_msg = "" if data == []: fill_data() if (status == 'error'): error_msg = "Invalid username or password" print("Invalid username or password", file=sys.stderr) if (status == 'error_post'): error_msg = "Bad request method POST" print("Bad request method POST", file=sys.stderr) return render_template('login.html', **locals()) """ **register function** register: callows for a user to register """ @app.route("/register", methods=['POST', 'GET']) def register(status = 'default'): error_msg = "" if data == []: fill_data() if (status == 'error'): error_msg = "Invalid username or password" print("Invalid username or password", file=sys.stderr) if (status == 'error_post'): error_msg = "Bad request method POST" print("Bad request method POST", file=sys.stderr) return render_template('register.html', **locals()) """ **check_register function** check_register: posts to the server the information the user filled in the registration page """ @app.route("/check_register", methods=['POST', 'GET']) def check_register(): global ID global info_username print("CHECK_REGISTER", file=sys.stderr) if request.method == 'POST': u = request.form['username'] p = request.form['password'] # send and reception info to server r = requests.post("http://sv:8080/signUp?username=" + u + "&password=" + p) # check post and get if r.status_code == 500: print(r, file=sys.stderr) register('error') if r.status_code == 200: ID = r.text # convert reception info to json # r = r.json() print("GO HUB", file=sys.stderr) info_username = u return hub() return register('error_post') """ **check_id function** check_id: checks the credentials the user filled in when logging in """ @app.route("/hub", methods=['POST', 'GET']) def check_id(): global ID global info_username if request.method == 'POST': u = request.form['username'] p = request.form['password'] print(u, file=sys.stderr) print(p, file=sys.stderr) # send and reception info to server r = requests.post("http://sv:8080/login?username=" + u + "&password=" + p) # check post and get if r.status_code == 200: ID = r.text print("SUCESS:", file=sys.stderr) print(ID, file=sys.stderr) if r.status_code == 500: print("ERROR: " + str(r), file=sys.stderr) login('error') info_username = u return hub() if ID == []: return login('error_post') return hub() """ **hub function** hub: prints out the relations the user chose on the /hub page """ @app.route("/hub", methods=['POST', 'GET']) def hub(status = 'default'): global user_data error_msg = "" if ID == []: return login('error') if data == []: fill_data() if user_data == []: json = {"id": ID} print(json, file=sys.stderr) r = requests.post("http://sv:8080/hub", json=json) if r.status_code == 200: #print("r:", file=sys.stderr) #print(r, file=sys.stderr) print(r.json, file=sys.stderr) user_data = r.json() print("SUCESS:", file=sys.stderr) print(user_data, file=sys.stderr) print(type(user_data), file=sys.stderr) if r.status_code == 500: print("ERROR: " + str(r), file=sys.stderr) login('error') if status == 'error_delete': error_msg = "Error delete" if status == 'error_activation': error_msg = "Error activation" return render_template('hub.html', **locals(), user_data=user_data, info_username=info_username) @app.route('/active/<int:n>', methods=['POST', 'GET']) def active(n): global user_data print("[ACTIVE]", file=sys.stderr) print(n, file=sys.stderr) if ID == []: return login('error') if user_data == []: return hub('error_activation') data_to_send = {"id": ID, "ndx": n} r = requests.post("http://sv:8080/active", json=data_to_send) if r.status_code == 200: user_data = r.json() print("ACTIVE SUCESS", file=sys.stderr) if r.status_code == 500: print("ACTIVE FAILED", file=sys.stderr) hub('error_active') print("USER_DATA", file=sys.stderr) print(user_data, file=sys.stderr) return hub() @app.route('/unactive/<int:n>', methods=['POST', 'GET']) def unactive(n): global user_data print("[UNACTIVE]", file=sys.stderr) print(n, file=sys.stderr) if ID == []: return login('error') if user_data == []: return hub('error_activation') data_to_send = {"id": ID, "ndx": n} r = requests.post("http://sv:8080/unactive", json=data_to_send) if r.status_code == 200: user_data = r.json() print("UNACTIVE SUCESS", file=sys.stderr) if r.status_code == 500: print("UNACTIVE FAILED", file=sys.stderr) hub('error_unactive') print("USER_DATA", file=sys.stderr) print(user_data, file=sys.stderr) return hub() """ **delete function** delete: deletes the relation """ @app.route("/delete/<int:n>", methods=['POST', 'GET']) def delete(n): global user_data if ID == []: return login('error') if user_data == []: return hub('error_delete') data_to_send = {"id": ID, "ndx": n} # send and reception info to server r = requests.post("http://sv:8080/delete", json=data_to_send) # check post and get if r.status_code == 200: user_data = r.json() print("DELETE SUCESS", file=sys.stderr) if r.status_code == 500: print(r, file=sys.stderr) hub('error_delete') return hub() """ **service function** service: displays the available services unless the id is empty """ @app.route("/service", methods=['POST', 'GET']) def service(): if ID == []: return login('error') return render_template('service.html', **locals(), data=data) """ **action function** -action: displays the available actions unless the id is empty """ @app.route("/action/<int:n>", methods=['POST', 'GET']) def action(n): if ID == []: return login('error') print("SELECT ACTION n = " + str(n), file=sys.stderr) return render_template('action.html', **locals(), data=data) """ **config_actions function** config_actions: displays the available options an action has """ @app.route("/config_action/<int:s>/<int:a>", methods=['POST', 'GET']) def config_action(s, a): if ID == []: return login('error') print("ACTION selected service = " + str(s) + " a = " + str(a), file=sys.stderr) print("len " + str(len(data["services"][s]["action"][a]["arg"])), file=sys.stderr) return render_template('config_action.html', **locals(), data=data) """ **reactions function** reactions: displays the available reactions corresponding to the service and action pair selected """ @app.route('/reaction/<int:s>/<int:a>', methods=['POST', 'GET']) def reaction(s, a): global info_action global google_redirection if ID == []: return login('error') print("REACTION selected service = " + str(s) + " a = " + str(a), file=sys.stderr) if request.method == 'POST': info = request.form.getlist('info[]') print("[INFO]", file=sys.stderr) print(info, file=sys.stderr) info_action = { 'service' : s, 'action' : a, 'info' : info } print("[SUCESS] tab_action", file=sys.stderr) print(info_action, file=sys.stderr) for i in range (0, len(data["services"][s]["action"][a]["arg"])): if (data["services"][s]["action"][a]["arg"][i]["name"] == "google"): print("GOOGLE", file=sys.stderr) google_redirection = 'another_service' return redirect(url_for('google')) return another_service() print("[INFO] ERROR !", file=sys.stderr) return hub() """ **another_service function** another_service: lets the user add another service to add a reaction to, unless the id is empty """ @app.route('/another_service', methods=['POST', 'GET']) def another_service(): if ID == []: return login('error') print("[INFO] INFO ACTION", file=sys.stderr) print(info_action, file=sys.stderr) return render_template('another_service.html', **locals(), data=data, info_action=info_action) """ **select_reaction and config_reactions functions** select_reaction: displays the available reactions unless the id is empty config_reactions: displays the available options a reaction has """ @app.route('/select_reaction/<int:s>', methods=['POST', 'GET']) def select_reaction(s): if ID == []: return login('error') print("SELECT REACTION s = " + str(s), file=sys.stderr) return render_template('select_reaction.html', **locals(), data=data) @app.route('/config_reaction/<int:s>/<int:r>', methods=['POST', 'GET']) def config_reaction(s, r): if ID == []: return login('error') return render_template('config_reaction.html', **locals(), data=data) """ **create function** create: adds a relation once the service, the action, its configuration, the reaction, its corresponding service and configuration are selected """ @app.route("/create/<int:s>/<int:r>", methods=['POST', 'GET']) def create(s, r): global user_data global info_action global info_reaction global google_redirection if ID == []: return login('error') if request.method == 'POST': info = request.form.getlist('info[]') print("[INFO]", file=sys.stderr) print(info, file=sys.stderr) info_reaction = { 'service' : s, 'reaction' : r, 'info' : info } print("[SUCESS] tab_action", file=sys.stderr) print(info_reaction, file=sys.stderr) else: print("[ERROR] POST FAIL", file=sys.stderr) return login('error') new_data = data.copy() print("NEW_DATA", file=sys.stderr) print(new_data, file=sys.stderr) print("END NEW DATA", file=sys.stderr) print(new_data["services"][info_action["service"]]["action"][info_action["action"]]["arg"], file=sys.stderr) if info_action["info"] != []: for i in range(0, len(new_data["services"][info_action["service"]]["action"][info_action["action"]]["arg"])): #print("[CHECK] " + str(new_data["services"][info_action["service"]]["action"][info_action["action"]]["arg"][i]), file=sys.stderr) if new_data["services"][info_action["service"]]["action"][info_action["action"]]["arg"][i]["type"] != "oauth": new_data["services"][info_action["service"]]["action"][info_action["action"]]["arg"][i]["value"] = info_action["info"][i] if info_reaction["info"] != []: for i in range(0, len(new_data["services"][info_reaction["service"]]["reaction"][info_reaction["reaction"]]["arg"])): if new_data["services"][info_reaction["service"]]["reaction"][info_reaction["reaction"]]["arg"][i]["type"] != "oauth": new_data["services"][info_reaction["service"]]["reaction"][info_reaction["reaction"]]["arg"][i]["value"] = info_reaction["info"][i] info_to_send = {"id": ID, "action": new_data["services"][info_action["service"]]["action"][info_action["action"]], "reaction": new_data["services"][info_reaction["service"]]["reaction"][info_reaction["reaction"]]} print(info_to_send, file=sys.stderr) # send and reception info to server print("[BEFORE SEND INFO SERVER]", file=sys.stderr) response = requests.post("http://sv:8080/create", json=info_to_send) print("[AFTER SEND INFO SERVER]", file=sys.stderr) info_action = [] info_reaction = [] # check post and get if response.status_code == 200: # convert reception info to json user_data = response.json() print("SUCESS CREATE", file=sys.stderr) print(user_data, file=sys.stderr) for i in range (0, len(data["services"][s]["reaction"][r]["arg"])): if (data["services"][s]["reaction"][r]["arg"][i]["name"] == "google"): print("GOOGLE", file=sys.stderr) google_redirection = 'hub' return redirect(url_for('google')) elif response.status_code == 500: print(response, file=sys.stderr) login('error') return hub() """ **error function** error: displays an error page with the 404 error code """ @app.errorhandler(404) def error(error): return render_template('error.html'), 404 """ **debug function** debug: displays a page with essential debug information such as the data, user_data and id """ @app.route('/debug', methods=['GET', 'POST']) def debug(): print(ID, file=sys.stderr) print(data, file=sys.stderr) print(user_data, file=sys.stderr) if (data != []): return (data) if (user_data != []): return (user_data) if (ID != []): return (ID) return ("debug") @app.route('/test', methods=['GET', 'POST']) def test(): url = "https://api.jikan.moe/v3/search/anime?q=" animeID = None if request.method == 'POST': animeID = request.form['anime_name'] else: animeID = "re:zero" response = requests.get(url + animeID) if response.status_code == 200: jsn = response.json() data = jsn["results"] return render_template('test.html', **locals()) if __name__ == "__main__": app.run(host='0.0.0.0', port=80, debug=True, threaded=True)
true
cf77327e5d9f5b1ea9357a3f80e6038bd1c23929
Python
DableUTeeF/sift_rep
/models.py
UTF-8
2,763
2.5625
3
[]
no_license
from torch import nn def conv3x3(in_planes, out_planes, stride=1): """3x3 convolution with padding""" return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride, padding=1, bias=False) class BasicBlock(nn.Module): expansion = 1 def __init__(self, inplanes, planes, stride=1, downsample=None): super(BasicBlock, self).__init__() self.conv1 = conv3x3(inplanes, planes, stride) self.bn1 = nn.BatchNorm2d(planes) self.relu = nn.ReLU(inplace=True) self.conv2 = conv3x3(planes, planes) self.bn2 = nn.BatchNorm2d(planes) self.downsample = downsample self.stride = stride def forward(self, x): residual = x out = self.conv1(x) out = self.bn1(out) out = self.relu(out) out = self.conv2(out) out = self.bn2(out) if self.downsample is not None: residual = self.downsample(x) out += residual out = self.relu(out) return out class ResCift(nn.Module): def __init__(self, layers): self.inplanes = 64 super(ResCift, self).__init__() block = BasicBlock self.conv1 = nn.Conv2d(3, 64, kernel_size=3, padding=1, bias=False) self.bn1 = nn.BatchNorm2d(64) self.relu = nn.ReLU(inplace=True) self.layer1 = self._make_layer(block, 64, layers[0]) self.layer2 = self._make_layer(block, 128, layers[1], stride=2) self.layer3 = self._make_layer(block, 256, layers[2], stride=2) self.fc = nn.Linear(256 * block.expansion, 128) def _make_layer(self, block, planes, blocks, stride=1): downsample = None if stride != 1 or self.inplanes != planes * block.expansion: downsample = nn.Sequential( nn.Conv2d(self.inplanes, planes * block.expansion, kernel_size=1, stride=stride, bias=False), nn.BatchNorm2d(planes * block.expansion), ) layers = [block(self.inplanes, planes, stride, downsample)] self.inplanes = planes * block.expansion for i in range(1, blocks): layers.append(block(self.inplanes, planes)) return nn.Sequential(*layers) def forward(self, x): x = x[0] x = x.permute(0, 3, 1, 2) x = self.conv1(x) x = self.bn1(x) x = self.relu(x) x = self.layer1(x) x = self.layer2(x) x = self.layer3(x) x = nn.AdaptiveAvgPool2d((1, 1))(x) x = x.view(x.size(0), -1) x = self.fc(x) x = x.view(1, -1, 128) return x class Cift(nn.Module): def __init__(self): super().__init__() def forward(self, image, kp): pass
true
b2e88fcb1d5b040c6df708277b4db06bd0ce0fcc
Python
dr-dos-ok/Code_Jam_Webscraper
/solutions_python/Problem_199/2764.py
UTF-8
622
3.453125
3
[]
no_license
def check(lista): return sum(lista) == len(lista) def convert(string): return [True if i=='+' else False for i in string] def invert(lis): return [not i for i in lis] def fun(string,n): lista = convert(string) count = 0 for i in range(len(lista)-n+1): if not lista[i]: lista[i:i+n] = invert(lista[i:i+n]) count += 1 res = 'IMPOSSIBLE' if check(lista): res = count return res t = int(input()) for i in range(1, t + 1): n, m = input().split(" ") # read a list of integers, 2 in this case print("Case #{}: {}".format(i, fun(n, int(m))))
true
57ed8830209f2efd772f23bbeeee6cd804d2af82
Python
MichalKacprzak99/WFiIS-IMN-2020
/lab07/src/nav_stokes_numba.py
UTF-8
5,045
2.53125
3
[]
no_license
from numba import njit import numpy as np from chart_generator import map_generator, contour_generator DELTA = 0.01 p = 1.0 mi = 1.0 N_X = 200 N_Y = 90 i1 = 50 j1 = 55 j2 = j1 + 2 IT_MAX = 20000 @njit def y(i): return DELTA * i @njit def x(i): return DELTA * i @njit def psi_A(psi, Qwe): for j in range(j1, N_Y + 1): psi[0][j] = Qwe / (2 * mi) * (pow(y(j), 3) / 3 - pow(y(j), 2) / 2 * (y(j1) + y(N_Y)) + y(j) * y( j1) * y(N_Y)) @njit def psi_C(psi, Qwy, Qwe): for j in range(0, N_Y + 1): psi[N_X][j] = Qwy / (2 * mi) * (y(j) * y(j) * y(j) / 3 - y(j) * y(j) / 2 * y(N_Y)) + Qwe * y(j1) * y( j1) * (-y(j1) + 3 * y(N_Y)) / (12 * mi) @njit def psi_B(psi): for i in range(1, N_X): psi[i][N_Y] = psi[0][N_Y] @njit def psi_D(psi): for i in range(i1, N_X): psi[i][0] = psi[0][j1] @njit def psi_E(psi): for j in range(1, j1 + 1): psi[i1][j] = psi[0][j1] @njit def psi_F(psi): for i in range(1, i1 + 1): psi[i][j1] = psi[0][j1] @njit def modify_psi(psi, Qwe, Qwy): psi_A(psi, Qwe) psi_C(psi, Qwy, Qwe) psi_B(psi) psi_D(psi) psi_E(psi) psi_F(psi) @njit def new_psi_i_j(i, j, psi, zeta): return 0.25 * (psi[i + 1][j] + psi[i - 1][j] + psi[i][j + 1] + psi[i][j - 1] - DELTA * DELTA * zeta[i][j]) @njit def zeta_A(zeta, Qwe): for j in range(j1, N_Y + 1): zeta[0][j] = Qwe / (2 * mi) * (2 * y(j) - y(j1) - y(N_Y)) @njit def zeta_C(zeta, Qwe): for j in range(0, N_Y + 1): zeta[N_X][j] = Qwe / (2 * mi) * (2 * y(j) - y(N_Y)) @njit def zeta_B(zeta, psi): for i in range(1, N_X): zeta[i][N_Y] = 2.0 / (DELTA * DELTA) * (psi[i][N_Y - 1] - psi[i][N_Y]) @njit def zeta_D(zeta, psi): for i in range(i1 + 1, N_X): zeta[i][0] = 2.0 / (DELTA * DELTA) * (psi[i][1] - psi[i][0]) @njit def zeta_E(zeta, psi): for j in range(1, j1): zeta[i1][j] = 2.0 / (DELTA * DELTA) * (psi[i1 + 1][j] - psi[i1][j]) @njit def zeta_F(zeta, psi): for i in range(1, i1 + 1): zeta[i][j1] = 2.0 / (DELTA * DELTA) * (psi[i][j1 + 1] - psi[i][j1]) zeta[i1][j1] = 0.5 * (zeta[i1 - 1][j1] + zeta[i1][j1 - 1]) @njit def modify_zeta(Qwe, Qwy, psi, zeta): zeta_A(zeta, Qwe) zeta_C(zeta, Qwy) zeta_B(zeta, psi) zeta_D(zeta, psi) zeta_E(zeta, psi) zeta_F(zeta, psi) @njit def new_zeta_i_j(omega, i, j, zeta, psi): return 0.25 * (zeta[i + 1][j] + zeta[i - 1][j] + zeta[i][j + 1] + zeta[i][j - 1]) - omega * p / (16 * mi) * \ ((psi[i][j + 1] - psi[i][j - 1]) * (zeta[i + 1][j] - zeta[i - 1][j]) - (psi[i + 1][j] - psi[i - 1][j]) * (zeta[i][j + 1] - zeta[i][j - 1])) @njit def calculate_u_v(psi, u, v): for i in range(1, N_X): for j in range(1, N_Y): if (i > i1 or j > j1): # if i > i1 or j > j1: u[i][j] = (psi[i][j + 1] - psi[i][j - 1]) / (2 * DELTA) v[i][j] = -(psi[i + 1][j] - psi[i - 1][j]) / (2 * DELTA) @njit def error(zeta, psi): result = 0.0 for i in range(1, N_X): result += psi[i+1][j2] + psi[i-1][j2] + psi[i][j2+1] + psi[i][j2-1] - 4*psi[i][j2] - DELTA*DELTA*zeta[i][j2] return result @njit def solve(psi, zeta, Qwe, Qwy): errors = [] for it in range(1, IT_MAX + 1): if it < 2000: omega = 0.0 else: omega = 1.0 for i in range(1, N_X): for j in range(1, N_Y): if (i <= i1 and j > j1) or (i > i1): # if i > i1 or j > j1: psi[i][j] = new_psi_i_j(i, j, psi, zeta) zeta[i][j] = new_zeta_i_j(omega, i, j, zeta, psi) modify_zeta(Qwe, Qwy, psi, zeta) errors.append(error(zeta, psi)) return errors def nav_stokes_numba(Qwe): Qwy = Qwe * (pow(y(N_Y), 3) - pow(y(j1), 3) - 3 * pow(y(N_Y), 2) * y(j1) + 3 * pow(y(j1), 2) * y(N_Y)) / (pow(y(N_Y), 3)) psi = np.zeros((N_X + 1, N_Y + 1)) zeta = np.zeros((N_X + 1, N_Y + 1)) psi[0:i1, 0:j1] = np.nan zeta[0:i1, 0:j1] = np.nan modify_psi(psi, Qwe, Qwy) # modify_zeta(Qwe, Qwy, psi, zeta) errors = solve(psi, zeta, Qwe, Qwy) with open(f'../error_data/errors_{Qwe}.txt', 'w') as f: for err in errors: f.write(f"{err}\n") u = np.zeros((N_X + 1, N_Y + 1)) v = np.zeros((N_X + 1, N_Y + 1)) calculate_u_v(psi, u, v) # tmp_x, tmp_y = np.mgrid[0:N_X / 100 + DELTA:DELTA, 0:N_Y / 100 + DELTA:DELTA] tmp_x = np.linspace(0.0, (N_X+1)*DELTA, N_X+1, endpoint=True) tmp_y = np.linspace(0.0, (N_Y+1)*DELTA, N_Y+1, endpoint=True) map_generator(tmp_x, tmp_y, np.transpose(u), rf'Q={Qwe}, u(x,y)', f'u_{Qwe}.png') map_generator(tmp_x, tmp_y, np.transpose(v), rf'Q={Qwe}, v(x,y)', f'v_{Qwe}.png') contour_generator(tmp_x, tmp_y, np.transpose(zeta), rf'Q={Qwe}, $\zeta(x,y)$', f'zeta_{Qwe}.png') contour_generator(tmp_x, tmp_y, np.transpose(psi), rf'Q={Qwe}, $\psi(x,y)$', f'psi_{Qwe}.png')
true
89d5fa2ae37d569134b6f7f503e8ebac45d310a8
Python
dr-dos-ok/Code_Jam_Webscraper
/solutions_python/Problem_155/793.py
UTF-8
386
3.203125
3
[]
no_license
#!/usr/bin/python import sys def deficit(str): result = 0 preceding = 0 for i in range(len(str)): result = max(result, i-preceding) preceding += int(str[i]) return result if __name__ == "__main__": sys.stdin.readline() for i,line in enumerate(sys.stdin.readlines()): maxShy, levels = line.strip().split() print "Case #{0}: {1}".format(str(i+1), str(deficit(levels)))
true
8e518ccad4a48ea3af61458e9b1ba09eb36c29b1
Python
MarineGirardey/TP5_tests
/linkedlist_tp_unittest.py
UTF-8
4,915
3.875
4
[]
no_license
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Wed Feb 3 15:54:03 2021 @author: Marine Girardey """ class Node: """Node class for a linked list Attributes ---------- param_data : int link : node.Node """ def __init__(self, data): """Class constructor Parameters ---------- param_data : int the data Returns ------- None Node object """ self.data = data self.next = None def __repr__(self): return self.data class LinkedList: """LinkedList class to create a linked list Attributes ---------- param_data : any """ def __init__(self, nodes=None): """Class constructor Parameters ---------- data : any The value of the given node. Returns ------- None A class instance. """ self.head = None if nodes is not None and len(nodes) != 0: node = Node(data=nodes.pop(0)) self.head = node for elem in nodes: node.next = Node(data=elem) node = node.next def get(self, index): """ get the index of each node and print the node of a given index Parameters ---------- index : index of a node """ if self.head is None: raise Exception('Node vide') else: return self.leonardo_recurs(index, self.head) def leonardo_recurs(self, index, node): """ recursive function to browse each node until index is not equal to 0 Parameters ---------- index : the wanted index enter from the get function node : the node corresponding to a specific index """ print(index, node) if node is None: return node if index == 0: return node else: return self.leonardo_recurs(index - 1, node.next) def add_after(self, data, new_node): """ insert a new node after the node with the value == data Parameters ---------- data : searched data new_node : node to insert """ if not self.head: raise Exception("List is empty") for node in self: if node.data == data: new_node.next = node.next node.next = new_node return raise Exception("Node with data '{}' not found".format(data)) def add_before(self, data, new_node): """ insert a new node before the node with the value == data Parameters ---------- data : searched data new_node : node to insert """ if not self.head: raise Exception("List is empty") if self.head.data == data: return self.add_first(new_node) prev_node = self.head for node in self: if node.data == data: prev_node.next = new_node new_node.next = node return prev_node = node raise Exception("Node with data '{}' not found".format(data)) def remove_node(self, data): """ delete all node(s) value == data Parameters ---------- data : searched data to delete """ if not self.head: raise Exception("List is empty") if self.head.data == data: self.head = self.head.next return previous_node = self.head for node in self: if node.data == data: previous_node.next = node.next return previous_node = node raise Exception("Node with data '{}' not found".format(data)) def add_first(self, node_to_add): """ insert a node as the first node of the linkedlist Parameters ---------- node_to_add : node to insert """ node_to_add.next = self.head self.head = node_to_add def add_last(self, node_to_add): """ insert a node as the last one of the linkedlist Parameters ---------- node_to_add : node to insert """ if self.head == None: self.head = node_to_add return node = self.head # while node.next is not None:* while node.next is not None: node = node.next node.next = node_to_add def __repr__(self): node = self.head nodes = [] while node is not None: nodes.append(node.data) node = node.next #return "a" return "{}".format(nodes) def __iter__(self): node = self.head while node is not None: yield node node = node.next
true
39e80ab8015684d2830e725208ab34d82a717a33
Python
chloeeekim/TIL
/Algorithm/Leetcode/Codes/HappyNumber.py
UTF-8
1,111
3.984375
4
[]
no_license
""" 202. Happy Number : https://leetcode.com/problems/happy-number/ 양의 정수 하나가 주어졌을 때, 해당 숫자가 happy number인지 확인하는 문제 - happy number : 각 자릿수의 제곱을 더한 값을 구하는 방식을 반복했을 때, 1이 나오는 숫자 - happy number가 아니라면 위 방식을 반복했을 때, 1을 포함하지 않는 숫자들의 cycle이 반복된다 Example: - Input : 19 - Output : true - 1^2 + 9^2 = 82 / 8^2 + 2^2 = 68 / 6^2 + 8^2 = 100 / 1^2 + 0^2 + 0^0 = 1 Note: 반복되는지를 확인하기 위하여 seen 리스트를 사용 이전에 나왔었던 숫자가 나온다면 happy number가 아님 """ class Solution: def isHappy(self, n: int) -> bool: seen = [] num = n while True : nxt = 0 while num != 0 : nxt += (num % 10) ** 2 num = num // 10 if nxt == 1 : return True if nxt in seen : return False else : seen.append(nxt) num = nxt return False
true
d69a4625529496d6f9e40011510c50659b6fe813
Python
PhoduCoder/PythonPractice
/Flatten_List.py
UTF-8
201
3.0625
3
[]
no_license
#sec_vec=[[1,2,3],[2,3], 4] sec_vec=[[1,2,3],5,[2,3], 4] flat_list=[] for i in sec_vec: if(type(i)) is list: for num in i: flat_list.append(num) else: flat_list.append(i) print (flat_list)
true
0a0e3be59583ac287b1771b68798399fd7672347
Python
sanggs/IndependentStudy-Fall2019
/JacobiSolver.py
UTF-8
3,433
2.59375
3
[]
no_license
import torch import numpy as np class JacobiSolver: def __init__(self, particles, femObject): self.particles = torch.from_numpy(particles) self.femObject = femObject self.dampingFactor = 2.0/3.0 # def writeToFile(self, i): # if i == 0: # f = open("points.csv", "w") # else: # f = open("points.csv", "a") # npArray = self.lattice.numpy() # np.savetxt(f, npArray[None], delimiter=',') # f.close() # def multiplyWithA(self): # #print(self.gridWidth) # #print(self.h) # self.lattice.resize_((1,1,self.gridWidth, self.gridWidth)) # centralWeight = 4.0/(self.h*self.h) # edgeWeight = -1.0/(self.h*self.h) # mask = torch.tensor([[0,edgeWeight,0],[edgeWeight,centralWeight,edgeWeight],[0,edgeWeight,0]], dtype=torch.float32) # mask.resize_((1,1,3,3)) # output = torch.nn.functional.conv2d(self.lattice, mask, bias=None, stride=1, padding=0) # b = torch.nn.functional.pad(output, (1,1,1,1), mode='constant', value=(-self.b/(self.h * self.h))) # self.lattice = self.lattice.resize_((self.gridWidth*self.gridWidth)) # return b.view((self.gridWidth*self.gridWidth)) # def getResidual(self, rhs): # q = self.multiplyWithA() # #print("q from get Residual") # #print(q.view((self.gridWidth, self.gridWidth))) # residue = rhs.sub(q) # #print("residue from getResidual") # self.projectToZero(residue) # #print(residue.view((self.gridWidth, self.gridWidth))) # return residue # def projectToZero(self, v): # v = v.resize_((self.gridWidth, self.gridWidth)) # v[0,:] = 0 # v[self.gridWidth-1,:] = 0 # v[:,0] = 0 # v[:,self.gridWidth-1] = 0 # v = v.resize_((self.gridWidth*self.gridWidth)) def dampedJacobi(self, b, q, dInverse, r, num_iteration, residue): self.residue = torch.tensor(residue, dtype = torch.float32) self.maxIterations = num_iteration q = self.multiplyWithA() #print("printing q") #print(q.view(self.gridWidth, self.gridWidth)) r = b.sub(q) #print("Residue after 1st step") self.projectToZero(r) print(r.view((self.gridWidth, self.gridWidth))) #print(b.shape) convergence_norm = 0 self.writeToFile(0) for i in range(0, self.maxIterations): convergence_norm = torch.sqrt(torch.max(r*r)) print("printing convergence norm "+str(convergence_norm)) #print(convergence_norm) #if convergence_norm < self.residue: #print("Convergence Norm less than threshold") #print(i) #return if i > self.maxIterations: #print("printing convergence norm") #print(convergence_norm) print("Ideally should not have come here") break r = dInverse * r * self.dampingFactor self.projectToZero(r) self.lattice = self.lattice + r #print("printing lattice after "+ str(i+1)) #print(self.lattice) q = self.multiplyWithA() r = b.sub(q) self.projectToZero(r) self.writeToFile(i+1) #print("Ended after "+str(i)+ " iterations") print(convergence_norm) return
true
b8c0ef7b6a4ea0a7ba5b34b09072134d56c5e796
Python
william-letton/ASSIST
/test.py
UTF-8
1,637
3.21875
3
[ "Unlicense" ]
permissive
##Perform the SVM classification on the data, using the C and gamma parameters ##chosen from the optimisation, and definining the training and testing data ## according the IDs output by the CreateTrainingData function. def TrainClassifier(dataset,bestParams,IDgroups): print("do nothing") # Import train_test_split function. from sklearn.model_selection import train_test_split ##Create X (dimensions array) for training X=dataset.Data ##Create y (class array) for training y=dataset.Target ##Create X (dimensions array) for testing X=dataset.Data ##Create y (class array) for testing # Import svm model from sklearn import svm # Create a svm Classifier. Linear Kernel clf = svm.SVC(kernel='rbf',C=bestParams['C'],gamma=bestParams['gamma']) #Train the model using the training sets clf.fit(X,y) #Predict the response for test dataset y_pred = clf.predict(X) # Import scikit-learn metrics module for accuracy calculation from sklearn import metrics # Model Accuracy: how often is the classifier correct? print("Accuracy: ",metrics.accuracy_score(y,y_pred)) # Model Precision: what percentage of positively labelled tuples are actually positive? print("Precision: ",metrics.precision_score(y,y_pred)) #Model Recall: What percentage of positive tuples are labelled as positive? print("Recall: ",metrics.recall_score(y,y_pred)) ##Convert the y_pred numpy array to a list. y_pred_list=list() for item in y_pred: y_pred_list.append(item) print(y_pred_list)
true
0f2f6613c578a56eb555c6f872639d6eaa38e959
Python
anishsujanani/Beanstalk-Reporter
/beanstalk_reporter.py
UTF-8
10,272
2.515625
3
[]
no_license
''' Beanstalk-Reporter ------------------- Reqs: boto3, python3.x Usage: python3 beanstalk_report.py --profile <aws_cli_profile_name> --env <beanstalk_env_name> Output: JSON to stdout Author: Anish Sujanani Date: November, 2021 ''' import boto3 import sys import argparse import json session = None def get_resource_info(environment_name): eb = session.client('elasticbeanstalk') try: env_resources = eb.describe_environment_resources(EnvironmentName=environment_name) except Exception as _: print('Something went wrong when trying to get Beanstalk Environment information.') sys.exit(0) resources = {} if len(env_resources['EnvironmentResources']['LoadBalancers']) > 0: resources['LoadBalancers'] = get_load_balancer_info(env_resources['EnvironmentResources']['LoadBalancers']) if len(env_resources['EnvironmentResources']['AutoScalingGroups']) > 0: resources['AutoScalingGroups'] = get_auto_scaling_group_info(env_resources['EnvironmentResources']['AutoScalingGroups']) if len(env_resources['EnvironmentResources']['Instances']) > 0: resources['Instances'] = get_ec2_instance_info(env_resources['EnvironmentResources']['Instances']) return resources def get_load_balancer_info(env_resources_lb_chunk): boto3_lb = session.client('elbv2') all_lb_info = {} for lb in env_resources_lb_chunk: sec_groups = [] try: lb_info = boto3_lb.describe_load_balancers(LoadBalancerArns=[lb['Name']]) except Exception as _: print('Something went wrong when trying to get LoadBalancer information.') sys.exit(0) try: for i in lb_info['LoadBalancers']: lb_json = {} lb_json['DNSName'] = i['DNSName'] lb_json['LoadBalancerName'] = i['LoadBalancerName'] lb_json['AvailabilityZones'] = [] for _ in i['AvailabilityZones']: lb_json['AvailabilityZones'].append({'ZoneName': _['ZoneName'], 'SubnetId': _['SubnetId']}) sec_groups.extend(i['SecurityGroups']) lb_json['SecurityGroups'] = sec_groups lb_json['VpcId'] = i['VpcId'] all_lb_info['Details'] = lb_json except Exception as _: print('Something went wrong when trying to parse LoadBalancer information.') sys.exit(0) all_lb_info['Attributes'] = {} try: lb_attr = boto3_lb.describe_load_balancer_attributes(LoadBalancerArn=lb['Name']) except Exception as _: print('Something went wrong when trying to get LoadBalancer attributes.') sys.exit(0) for i in lb_attr['Attributes']: all_lb_info['Attributes'][i['Key']] = i['Value'] try: lb_lstn = boto3_lb.describe_listeners(LoadBalancerArn=lb['Name']) except Exception as _: print('Something went wrong when trying to get LoadBalancer listeners.') sys.exit(0) try: all_lb_info['Listeners'] = [] for i in lb_lstn['Listeners']: listener = {} listener['Protocol'] = i['Protocol'] listener['Port'] = i['Port'] listener['TargetGroupStickiness'] = i['DefaultActions'][0]['ForwardConfig']['TargetGroupStickinessConfig']['Enabled'] all_lb_info['Listeners'].append(listener) except Exception as _: print('Something went wrong when trying to parse LoadBalancer listener information.') sys.exit(0) all_lb_info['SecurityGroups'] = [] if len(sec_groups) > 0: for sg in sec_groups: all_lb_info['SecurityGroups'].append(get_security_group_info(sg)) return all_lb_info def get_auto_scaling_group_info(env_resources_asg_chunk): boto3_asg = session.client('autoscaling') all_asg_info = {} for asg in env_resources_asg_chunk: try: asg_info = boto3_asg.describe_auto_scaling_groups(AutoScalingGroupNames=[asg['Name']]) except Exception as _: print('Something went wrong when trying to get Autoscaling Group information.') sys.exit(0) try: for i in asg_info['AutoScalingGroups']: all_asg_info['AutoScalingGroupName'] = i['AutoScalingGroupName'] all_asg_info['AvailabilityZones'] = i['AvailabilityZones'] all_asg_info['DesiredCapacity'] = i['DesiredCapacity'] all_asg_info['MaxSize'] = i['MaxSize'] all_asg_info['MinSize'] = i['MinSize'] all_asg_info['NewInstancesProtectedFromScaleIn'] = i['NewInstancesProtectedFromScaleIn'] all_asg_info['Instances'] = [] for inst in i['Instances']: all_asg_info['Instances'].append({ 'InstanceId': inst['InstanceId'], 'AvailabilityZone': inst['AvailabilityZone'], 'HealthStatus': inst['HealthStatus'] }) except Exception as _: print('Something went wrong when trying to parse Autoscaling Group information.') sys.exit(0) return all_asg_info def get_ec2_instance_info(env_resources_ec2_instance_chunk): boto3_ec2 = session.client('ec2') all_ec2_info = [] for inst in env_resources_ec2_instance_chunk: try: inst_info = boto3_ec2.describe_instances(InstanceIds=[inst['Id']]) except Exception as _: print('Something went wrong when trying to get EC2 instance information.') sys.exit(0) try: for i in inst_info['Reservations'][0]['Instances']: instance = {} instance['InstanceId'] = i['InstanceId'] instance['InstanceType'] = i['InstanceType'] instance['ImageId'] = i['ImageId'] instance['PlatformDetails'] = i['PlatformDetails'] instance['AvailabilityZone'] = i['Placement']['AvailabilityZone'] instance['InstanceRole'] = i['IamInstanceProfile']['Arn'] instance['Monitoring'] = i['Monitoring']['State'] instance['NetworkInterfaces'] = [] for ni in i['NetworkInterfaces']: netint_json = {} netint_json['PrivateIPAddress'] = ni['PrivateIpAddress'] netint_json['PrivateDnsName'] = ni['PrivateDnsName'] netint_json['PublicIpAddress'] = ni['Association']['PublicIp'] netint_json['PublicDnsName'] = ni['Association']['PublicDnsName'] netint_json['MacAddress'] = ni['MacAddress'] netint_json['IPv6Address'] = ni['Ipv6Addresses'] instance['NetworkInterfaces'].append(netint_json) instance['SecurityGroups'] = [] for sg in i['SecurityGroups']: instance['SecurityGroups'].append(get_security_group_info(sg['GroupId'])) all_ec2_info.append(instance) except Exception as _: print('Something went wrong when trying to parse EC2 instance information.') sys.exit(0) return all_ec2_info def get_security_group_info(security_group_id): boto3_ec2 = session.client('ec2') try: sg_info = boto3_ec2.describe_security_groups(GroupIds=[security_group_id]) except Exception as _: print('Something went wrong when trying to get security groups.') sys.exit(0) try: sg = {} for i in sg_info['SecurityGroups']: sg['GroupId'] = i['GroupId'] sg['Description'] = i['Description'] sg['InboundRules'] = [] sg['OutboundRules'] = [] for rule in i['IpPermissions']: rule_json = {} if rule['IpProtocol'] != '-1': rule_json['IpProtocol'] = rule['IpProtocol'] rule_json['ToPort'] = rule['ToPort'] else: rule_json['IpProtocol'] = 'ALL TRAFFIC' rule_json['ToPort'] = 'ALL PORTS' if len(rule['IpRanges']) != 0: rule_json['From'] = rule['IpRanges'][0]['CidrIp'] else: rule_json['From'] = rule['UserIdGroupPairs'][0]['GroupId'] sg['InboundRules'].append(rule_json) for rule in i['IpPermissionsEgress']: rule_json = {} if rule['IpProtocol'] != '-1': rule_json['IpProtocol'] = rule['IpProtocol'] rule_json['ToPort'] = rule['ToPort'] else: rule_json['IpProtocol'] = 'ALL TRAFFIC' rule_json['ToPort'] = 'ALL PORTS' if len(rule['IpRanges']) != 0: rule_json['To'] = rule['IpRanges'][0]['CidrIp'] else: rule_json['To'] = rule['UserIdGroupPairs'][0]['GroupId'] sg['OutboundRules'].append(rule_json) except Exception as _: print('Something went wrong when trying to parse security groups.') sys.exit(0) return sg if __name__ == '__main__': argparser = argparse.ArgumentParser(description='Beanstalk Reporter') argparser.add_argument('--profile', '-p', metavar='<profile_name>', type=str, help='AWS CLI Profile Name', required=True) argparser.add_argument('--envname', '-e', metavar='<env_name>', type=str, help='Beanstalk Environment Name', required=True) args = argparser.parse_args() try: session = boto3.session.Session(profile_name = args.profile) except Exception as _: print('Something went wrong when trying to create a boto3 session. Check your profile.') sys.exit(0) resources = get_resource_info(environment_name=args.envname) print(json.dumps(resources, indent=4, sort_keys=False)) sys.exit(0)
true