blob_id
stringlengths
40
40
language
stringclasses
1 value
repo_name
stringlengths
5
133
path
stringlengths
2
333
src_encoding
stringclasses
30 values
length_bytes
int64
18
5.47M
score
float64
2.52
5.81
int_score
int64
3
5
detected_licenses
listlengths
0
67
license_type
stringclasses
2 values
text
stringlengths
12
5.47M
download_success
bool
1 class
e09c7099fa358b374bb80eac3b6f80d611f99860
Python
josephdouce/alexa-find-any-film
/aws lambda deployment package/yaep/yaep.py
UTF-8
1,568
3.078125
3
[]
no_license
""" YAEP - Yet Another Environment Package """ import os import ConfigParser from .utils import SectionHeader, str_to_bool from .exceptions import UnsetException def env(key, default=None, convert_booleans=True, boolean_map=None, sticky=False, type_class=unicode): """ Retrieves key from the environment. """ value = os.getenv(key, default) if value == default and default == UnsetException: raise UnsetException('{} was unset, but is required.'.format( key )) if sticky and value == default: os.environ[key] = str(value) if convert_booleans and isinstance(value, str): value = str_to_bool(value, boolean_map) # This is sort of a weird situation - if we've autoconverted # a boolean, we don't want to change its type. If somebody # doesn't want this behavior they should set convert_booleans # to false. if isinstance(value, bool): type_class = bool # If we've just used the default or if it's None, just return that if value is None or value == default: return value else: return type_class(value) def populate_env(env_file='.env'): env_file = os.getenv('ENV_FILE', env_file) if os.path.exists(env_file): with open(env_file) as ef: env_data = ConfigParser.SafeConfigParser() env_data.optionxform = str env_data.readfp(SectionHeader(ef)) for key, value in env_data.items(SectionHeader.header): os.environ[key] = str(value)
true
7a681d83606749261aff6fd3b394998f0f22b311
Python
martinferianc/SentimentAnalysis-EIE3
/src/test.py
UTF-8
861
3
3
[ "MIT" ]
permissive
from exceptions import NonExistantDataType, OutofBoundsError from decision_forest import DecisionForest def testTrees(T, X, mode="var"): return T.test(X, mode) def loadTrees(dataType="clean", split=None): """Returns a DecisionForest according to the datatype and split that was input. If the split is None, the full decision forest is returned. The dataType can be 'clean' and 'noisy'.""" if dataType not in ["clean", "noisy"]: raise NonExistantDataType("'"+dataType+"' is not a valid data type") df = DecisionForest() if split is None: df.load("forests/decision_forest_{}.forest".format(dataType)) else: if split < 0 or split > 9: raise OutofBoundsError("split '"+split+"' is not available.") df.load("forests/decision_forest_{}_{}.forest".format(dataType, split)) return df
true
a54bfa51068b337a7900f694c4cac9766d6b8704
Python
jier/DL_assignments_2019
/assignment_2/part1/vanilla_rnn.py
UTF-8
2,816
2.671875
3
[]
no_license
################################################################################ # MIT License # # Copyright (c) 2019 # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to conditions. # # Author: Deep Learning Course | Fall 2019 # Date Created: 2019-09-06 ################################################################################ from __future__ import absolute_import from __future__ import division from __future__ import print_function import torch import torch.nn as nn import numpy as np import sys ################################################################################ class VanillaRNN(nn.Module): def __init__(self, seq_length, input_dim, num_hidden, num_classes, batch_size,gradient_check, device): super(VanillaRNN, self).__init__() # Initialization here ... self.seq_length = seq_length self.device = device self.num_classes = num_classes self.input_dim = input_dim self.batch_size = batch_size self.num_hidden = num_hidden self.gradient_check = gradient_check self.W_hx = nn.Parameter(torch.Tensor(num_hidden, input_dim), requires_grad=True) self.W_hh = nn.Parameter(torch.Tensor(num_hidden, num_hidden), requires_grad=True) self.W_hy = nn.Parameter(torch.Tensor(num_hidden, num_classes), requires_grad=True) if self.gradient_check: self.grad_hidden_list = [] # Xavier bound bound = np.sqrt(1 / num_hidden) # print('bound for xavier: ', bound) for param in self.parameters(): nn.init.uniform_(param, -bound, bound) self.b_h = nn.Parameter(torch.zeros(num_hidden, 1), requires_grad=True) self.b_p = nn.Parameter(torch.zeros(num_classes, 1), requires_grad=True) self.tanh = nn.Tanh() def forward(self, x): # Implementation here ... hidden = torch.zeros((self.num_hidden, x.shape[0]), requires_grad=True).to(self.device) for step in range(self.seq_length): hidden = self.tanh(self.W_hx @ x[:,step].reshape(1, -1) + self.W_hh @ hidden + self.b_h) if self.gradient_check: h = torch.zeros((self.num_hidden, x.shape[0]), requires_grad=True).to(self.device) hidden = h + hidden self.grad_hidden_list.append(h) out = self.W_hy.t() @ hidden + self.b_p return out.t()
true
399f83c02d99c17c639037da3b50323ea29f8674
Python
deckerego/hack-clock
/lib/hackclock/runapp/Libs/Clock.py
UTF-8
1,980
3.078125
3
[ "Apache-2.0", "LicenseRef-scancode-public-domain" ]
permissive
import threading import datetime import time class Clock(threading.Thread): __RESOLUTION = 1000 __running = True __waitLock = threading.Lock() def __init__(self): threading.Thread.__init__(self) self.daemon = False self.tickFunc = None self.additionalWait = 0 self.timedEvents = [] self.timedEventsIdx = -1 self.atTime(0, 0, None) # The EOF event self.start() def __del__(self): self.__running = False def __executeEvents(self): if self.timedEventsIdx > -1: now = datetime.datetime.now() currentHash = (now.hour * 60) + now.minute (timeHash, action) = self.timedEvents[self.timedEventsIdx] if timeHash == currentHash: self.timedEventsIdx = (self.timedEventsIdx + 1) % len(self.timedEvents) if action: action() def run(self): while self.__running: self.__waitLock.acquire() totalWait = self.__RESOLUTION + self.additionalWait self.additionalWait = 0 self.__waitLock.release() if self.tickFunc: self.tickFunc() self.__executeEvents() time.sleep(totalWait / 1000.0) def atTime(self, hour, minute, action): timeHash = (hour * 60) + minute event = (timeHash, action) self.timedEvents.append(event) self.timedEvents = sorted(self.timedEvents) now = datetime.datetime.now() currentHash = (now.hour * 60) + now.minute # Find the index of the next event that should fire based on the tuple's time key self.timedEventsIdx = next((self.timedEvents.index(evt) for evt in self.timedEvents if evt[0] >= currentHash), 0) def onTick(self, tickFunc): self.tickFunc = tickFunc def waitAbout(self, seconds): self.__waitLock.acquire() self.additionalWait = seconds * 1000 self.__waitLock.release()
true
8a8e67659328b0adb763dd8984e16a0147f9feff
Python
MGoglio2212/StreamLit
/ProveDurata.py
UTF-8
4,248
2.734375
3
[]
no_license
# -*- coding: utf-8 -*- """ Created on Sun Dec 6 12:35:21 2020 @author: gogliom """ ''' Doc = convert_pdf_to_txt( r"D:\Altro\RPA\Energy\IREN\TEST CTE\CTE\esempi cte\EnelLuce30.pdf") Doc = Doc.upper() ''' ##### BISOGNA IMPORTARE FUNZIONE CONVERT_PDF_TO_TEXT DA ALTRO PROGRAMMA! import pandas as pd import re from ProvePDF import convert_pdf_to_txt import numpy as np def Durata(Doc): PossiblePrice = [] Base = [] #Doc = convert_pdf_to_txt(Doc) #Doc = Doc.upper() #le inserisco come regular expression perchè mettendo . come any character (spezi,"E", a capo..) r1 = 'DURATA' r2 = 'VALIDIT' r3 = 'RINNOV' r4 = 'PER.{,5}MESI' r5 = 'PER.{,5}ANN' regex = [r1,r2,r3,r4,r5] regex = re.compile('|'.join(regex)) Base = [m.start() for m in regex.finditer(Doc)] Base = pd.DataFrame(Base, columns = ['PositionBase']) #prendo numeri interi (mesi o anni) d1 = r'\s\d{1,2}\s' d = [d1] #le regex potrebbero essere sovrapposte,metto prima #le più lunghe così se prende quelle si ferma a quella --> SI DOVREBBE GESTIRE MEGLIO regexNum = re.compile('|'.join(d)) NumberPos = [m.start() for m in regexNum.finditer(Doc)] NumberValue = regexNum.findall(Doc) NumberTuples = list(zip(NumberValue,NumberPos)) PossiblePrice = pd.DataFrame(NumberTuples, columns=['Price', 'Position']) PossiblePrice['Price'] = PossiblePrice['Price'].str.extract('(\d+)').astype(int) PossiblePrice = PossiblePrice[PossiblePrice['Price'].isin(['1', '2', '3', '4', '6','12','18','24','36'])] ''' APPROCCIO IN BASE AL QUALE CERCO €/KWH E PRENDO PAROLA PRECEDENTE, MA IN ALCUNI CASI NELLE TABELLE NON E ESPLICITATA EURO/KWH VICINO AL NUMERO ii = 0 for ww in Doc.split(): if "€/KWH" in ww or "EURO/KWH" in ww: pw = Doc.split()[ii-1] po = Doc.find(Doc.split()[ii-1]+" "+Doc.split()[ii]) nn = pd.DataFrame({'Price': [pw], 'Position': [po]}) PossiblePrice = PossiblePrice.append(nn) #Positions = Positions + list(ii-1) ii = ii + 1 #estraggo i numeri PossiblePrice['Price'] = PossiblePrice.apply(lambda row: re.findall('-?\d*\,.?\d+', str(row.Price)), axis=1) #elimino eventuali stringe vuote PossiblePrice = PossiblePrice[PossiblePrice['Price'].apply(lambda row: len(row)) > 0] ''' Base['key'] = 0 PossiblePrice['key'] = 0 Durata = Base.merge(PossiblePrice, how='outer') Durata['dist'] = Durata.apply(lambda row: row.Position - row.PositionBase, axis = 1) #FILTRO PER LE DISTANZE POSITIVE (IL NUMERO VIENE DOPO LA PAROLA, OPPURE NEGATIVE MOLTO PICCOLE DOVE QUINDI LA BASE VIENE IMMEDIATAMENTE DOPO ) Durata = Durata[(Durata['dist'] > - 30) & (Durata['dist'] < 300)] #verifico se nei 40 caratteri prima o dopo c'è riferimento a mese o anno dur1_m = r'\bMESE\b' dur2_m = r'\bMESI\b' dur_m = [dur1_m, dur2_m] regexDur_m = re.compile('|'.join(dur_m)) dur1_a = r'\bANNO\b' dur2_a = r'\bANNI\b' dur_a = [dur1_a, dur2_a] regexDur_a = re.compile('|'.join(dur_a)) Durata['Intorno'] = Durata.apply(lambda row: Doc[row.Position-40:row.Position+40], axis = 1) Durata['Mese'] = np.where(Durata['Intorno'].str.contains(regexDur_m),1,0) Durata['Anno'] = np.where(Durata['Intorno'].str.contains(regexDur_a),1,0) #filtro per le durata possibili (6, 12, 18, 24 mesi -- 1, 2 anni) Dm = Durata[(Durata['Mese'] == 1) & (Durata['Price'].isin(['6','12','18','24']))] Da = Durata[(Durata['Anno'] == 1) & (Durata['Price'].isin(['1','2']))] Durata = Dm.append(Da) Durata = Durata.nsmallest(1, 'dist') if Durata['Anno'].all() == 1: Durata['Price'] = Durata['Price'].apply(str) + ' anno' elif Durata['Mese'].all() == 1: Durata['Price'] = Durata['Price'].apply(str) + ' mesi' else: Durata['Price'] = Durata['Price'].apply(str) + ' anno' #print(Prezzo) return Durata['Price']
true
51d636f222b9273ca4b049b70834dcef7eb7d04e
Python
yuanxu00/Image-recognition-trash-can
/test_camera.py
UTF-8
599
2.578125
3
[]
no_license
import cv2 print("test start") camera = cv2.VideoCapture(1) print("test open") camera.set(cv2.CAP_PROP_FRAME_WIDTH,1280) camera.set(cv2.CAP_PROP_FRAME_HEIGHT,720) print("test1") while True: ret, image = camera.read() print("test2") # 这一步根据实际需要来 # 由于摄像头是定焦摄像头 # 而模型的接口是[228,228] # 所以这一步就是让读取到的图片也是[A,A]型 image = image[0:780,150:1050] cv2.imshow('Webcam', image) print("test3") if cv2.waitKey(0): pass print("test3") camera.release() cv2.destroyAllWindows()
true
a3618cd48ad08024b48f9304ece96c74b1039815
Python
kevin-kretz/Park-University
/CS 152 - Introduction to Python Programming/Unit 6/Assignment 2/programming_assignment_2.py
UTF-8
2,855
4.1875
4
[]
no_license
""" Unit 6 - Programming Assignment (2) By Kevin Kretz | 20 July 2019 Using the data provided from the file "health-no-head.csv", print the values of the appropriate states according the filters provided by the user. Also print the states with the lowest and highest number of effected people. """ def main(): #get filter information filter_state = input("Enter state (Empty means all): ") filter_disease = input("Enter disease (Empty means all): ") filter_year = input("Enter year (Empty means all): ") #declare variables for future use lowest = [] highest = [] total = 0 #print header print("{:21} {:12} {:12} {:4}\n".format('State', 'Disease', 'Number', 'Year')) #open file file = open("health-no-head.csv", "r") # Process each line of the file for aline in file: values = aline.rstrip('\n').split(',') #rename values for easier readability state = values[2] disease = values[0] number = int(values[3]) year = values[5] #declare variables for filtering state_matches = False disease_matches = False year_matches = False line_matches = False #filter information #if state filter is empty or current state matches state in filter if (filter_state == "" or filter_state.lower() == state.lower()): state_matches = True #if disease filter is empty or current disease matches disease in filter if (filter_disease == "" or filter_disease.lower() == disease.lower()): disease_matches = True #if year filter is empty or current year matches year in filter if (filter_year == "" or filter_year.lower() == year.lower()): year_matches = True #if state, disease and year all match the filter infomation, set line matches to true if state_matches & disease_matches & year_matches: line_matches = True #if current line matches filter information provided by user if line_matches: #print line print ("{:21} {:12} {:6,} {:>9}".format(state, disease, number, year)) #add number to total total += number #if number is the new lowest number, change lowest if len(lowest) == 0 or number < lowest[1]: lowest = [state, number] #if number is the new highest, change highest if len(highest) == 0 or number > highest[1]: highest = [state, number] # Close file file.close() #print total print("{:21} {:12} {:6,}".format('', 'Total', total)) #if there was at least one found in the filter, print highest and lowest states. if len(lowest) != 0: print("\nLowest") print("{:21} {:12} {:6,}".format(lowest[0], '', lowest[1])) if len(highest) != 0: print("\nHighest") print("{:21} {:12} {:6,}".format(highest[0], '', highest[1])) main()
true
7b42360d0430843f69adcb8edef8c47f061cbe01
Python
jrzmnt/ActionRecognitionSmallDatasets
/codes/utils/svm.py
UTF-8
2,366
2.796875
3
[ "MIT" ]
permissive
#!/usr/bin/python #-*- coding: utf-8 -*- import sys sys.path.insert(0, '..') import warnings warnings.filterwarnings("ignore") import logging logger = logging.getLogger(__name__) logging.basicConfig(format='%(asctime)s : %(levelname)s : %(message)s', level=logging.INFO) import os import argparse from os.path import join, realpath, dirname, exists, basename, splitext from sklearn import svm import numpy as np import pathfile import progressbar def classifier_svm(ftrain, ftest, fileout=None, **kwargs): """ Using features from `ftrain`, train a SVM classifier and uses `ftest` to predict its labels. Parameters: ----------- ftrain : string path to the file containing the frame, the true label and the list of features ftest : string path to the file containing the frame, the true label and the list of features fileout : string path to the output file **kwargs : dict contains the parameters of the SVM classifier to SKlearn (C, cache_size, class_weight, coef0, decision_function_shape, degree, gamma, kernel, max_iter, probability, random_state, shrinking, tol, verbose) """ ftrain = realpath(ftrain) ftest = realpath(ftest) if not fileout: dirout = dirname(ftrain) fname, ext = splitext(basename(ftrain)) fileout = join(dirout, fname+'.svm.txt') # training phase _, y, X = pathfile.extract_vectors(ftrain, with_paths=False) logger.info('feeding SVM with data in training phase') clf = svm.SVC(**kwargs) clf.fit(X, y) # testing phase paths, y_test, X_test = pathfile.extract_vectors(ftest, with_paths=True) logger.info('predicting classes for testing vector') pred = clf.predict(X_test) logger.info('saving output file as: %s' % fileout) with open(fileout, 'w') as fout: for path, label, p in zip(paths, y_test, pred): fout.write('%s %d %d\n' % (path, label, p)) if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument('filetrain', metavar='file_train', help='file containing training examples') parser.add_argument('filetest', metavar='file_test', help='file containing test examples') args = parser.parse_args() classifier_svm(args.filetrain, args.filetest)
true
d61b8b4662108a65ac5710d0e2899901b1e4b1c5
Python
thonny/thonny
/thonny/plugins/micropython/base_api_stubs/usocket.pyi
UTF-8
18,366
2.734375
3
[ "LicenseRef-scancode-warranty-disclaimer", "MIT" ]
permissive
""" socket. Descriptions taken from: https://raw.githubusercontent.com/micropython/micropython/master/docs/library/socket.rst. ****************************** .. module:: socket :synopsis: socket module |see_cpython_module| :mod:`python:socket`. This module provides access to the BSD socket interface. .. admonition:: Difference to CPython :class: attention For efficiency and consistency, socket objects in MicroPython implement a `stream` (file-like) interface directly. In CPython, you need to convert a socket to a file-like object using `makefile()` method. This method is still supported by MicroPython (but is a no-op), so where compatibility with CPython matters, be sure to use it. Socket address format(s) ------------------------ The native socket address format of the ``socket`` module is an opaque data type returned by `getaddrinfo` function, which must be used to resolve textual address (including numeric addresses):: sockaddr = socket.getaddrinfo('www.micropython.org', 80)[0][-1] # You must use getaddrinfo() even for numeric addresses sockaddr = socket.getaddrinfo('127.0.0.1', 80)[0][-1] # Now you can use that address sock.connect(addr) Using `getaddrinfo` is the most efficient (both in terms of memory and processing power) and portable way to work with addresses. However, ``socket`` module (note the difference with native MicroPython ``socket`` module described here) provides CPython-compatible way to specify addresses using tuples, as described below. Note that depending on a :term:`MicroPython port`, ``socket`` module can be builtin or need to be installed from `micropython-lib` (as in the case of :term:`MicroPython Unix port`), and some ports still accept only numeric addresses in the tuple format, and require to use `getaddrinfo` function to resolve domain names. Summing up: * Always use `getaddrinfo` when writing portable applications. * Tuple addresses described below can be used as a shortcut for quick hacks and interactive use, if your port supports them. Tuple address format for ``socket`` module: * IPv4: *(ipv4_address, port)*, where *ipv4_address* is a string with dot-notation numeric IPv4 address, e.g. ``"8.8.8.8"``, and *port* is and integer port number in the range 1-65535. Note the domain names are not accepted as *ipv4_address*, they should be resolved first using `socket.getaddrinfo()`. * IPv6: *(ipv6_address, port, flowinfo, scopeid)*, where *ipv6_address* is a string with colon-notation numeric IPv6 address, e.g. ``"2001:db8::1"``, and *port* is an integer port number in the range 1-65535. *flowinfo* must be 0. *scopeid* is the interface scope identifier for link-local addresses. Note the domain names are not accepted as *ipv6_address*, they should be resolved first using `socket.getaddrinfo()`. Availability of IPv6 support depends on a :term:`MicroPython port`. .. exception:: socket.error MicroPython does NOT have this exception. .. admonition:: Difference to CPython :class: attention CPython used to have a ``socket.error`` exception which is now deprecated, and is an alias of `OSError`. In MicroPython, use `OSError` directly. """ __author__ = "Howard C Lovatt" __copyright__ = "Howard C Lovatt, 2020 onwards." __license__ = "MIT https://opensource.org/licenses/MIT (as used by MicroPython)." __version__ = "7.3.9" # Version set by https://github.com/hlovatt/tag2ver from typing import Final, Any, Literal, overload from uio import AnyReadableBuf, AnyWritableBuf _Address: Final = tuple[str, int] | tuple[str, int, int, int] | str def socket( af: int = "AF_INET", type: int = "SOCK_STREAM", proto: int = "IPPROTO_TCP", /, ) -> "Socket": """ Create a new socket using the given address family, socket type and protocol number. Note that specifying *proto* in most cases is not required (and not recommended, as some MicroPython ports may omit ``IPPROTO_*`` constants). Instead, *type* argument will select needed protocol automatically:: # Create STREAM TCP socket socket(AF_INET, SOCK_STREAM) # Create DGRAM UDP socket socket(AF_INET, SOCK_DGRAM) """ def getaddrinfo( host: str, port: int, af: int = 0, type: int = 0, proto: int = 0, flags: int = 0, /, ) -> list[tuple[int, int, int, str, tuple[str, int] | tuple[str, int, int, int]]]: """ Translate the host/port argument into a sequence of 5-tuples that contain all the necessary arguments for creating a socket connected to that service. Arguments *af*, *type*, and *proto* (which have the same meaning as for the `socket()` function) can be used to filter which kind of addresses are returned. If a parameter is not specified or zero, all combinations of addresses can be returned (requiring filtering on the user side). The resulting list of 5-tuples has the following structure:: (family, type, proto, canonname, sockaddr) The following example shows how to connect to a given url:: s = socket.socket() # This assumes that if "type" is not specified, an address for # SOCK_STREAM will be returned, which may be not true s.connect(socket.getaddrinfo('www.micropython.org', 80)[0][-1]) Recommended use of filtering params:: s = socket.socket() # Guaranteed to return an address which can be connect'ed to for # stream operation. s.connect(socket.getaddrinfo('www.micropython.org', 80, 0, SOCK_STREAM)[0][-1]) .. admonition:: Difference to CPython :class: attention CPython raises a ``socket.gaierror`` exception (`OSError` subclass) in case of error in this function. MicroPython doesn't have ``socket.gaierror`` and raises OSError directly. Note that error numbers of `getaddrinfo()` form a separate namespace and may not match error numbers from the :mod:`errno` module. To distinguish `getaddrinfo()` errors, they are represented by negative numbers, whereas standard system errors are positive numbers (error numbers are accessible using ``e.args[0]`` property from an exception object). The use of negative values is a provisional detail which may change in the future. """ def inet_ntop(af: int, bin_addr: bytes, /) -> str: """ Convert a binary network address *bin_addr* of the given address family *af* to a textual representation:: >>> socket.inet_ntop(socket.AF_INET, b"\x7f\0\0\1") '127.0.0.1' """ def inet_pton(af: int, txt_addr: str, /) -> bytes: """ Convert a textual network address *txt_addr* of the given address family *af* to a binary representation:: >>> socket.inet_pton(socket.AF_INET, "1.2.3.4") b'\x01\x02\x03\x04' """ AF_INET: Final[int] = ... """ Address family types. Availability depends on a particular :term:`MicroPython port`. """ AF_INET6: Final[int] = ... """ Address family types. Availability depends on a particular :term:`MicroPython port`. """ SOCK_STREAM: Final[int] = ... """ Socket types. """ SOCK_DGRAM: Final[int] = ... """ Socket types. """ IPPROTO_UDP: Final[int] = ... """ IP protocol numbers. Availability depends on a particular :term:`MicroPython port`. Note that you don't need to specify these in a call to `socket.socket()`, because `SOCK_STREAM` socket type automatically selects `IPPROTO_TCP`, and `SOCK_DGRAM` - `IPPROTO_UDP`. Thus, the only real use of these constants is as an argument to `setsockopt()`. """ IPPROTO_TCP: Final[int] = ... """ IP protocol numbers. Availability depends on a particular :term:`MicroPython port`. Note that you don't need to specify these in a call to `socket.socket()`, because `SOCK_STREAM` socket type automatically selects `IPPROTO_TCP`, and `SOCK_DGRAM` - `IPPROTO_UDP`. Thus, the only real use of these constants is as an argument to `setsockopt()`. """ SOL_SOCKET: Final[int] = ... """ Socket option levels (an argument to `setsockopt()`). The exact inventory depends on a :term:`MicroPython port`. """ SO_REUSEADDR: Final[int] = ... """ Socket options (an argument to `setsockopt()`). The exact inventory depends on a :term:`MicroPython port`. """ IPPROTO_SEC: Final[int] = ... """ Special protocol value to create SSL-compatible socket. Constants specific to WiPy: """ class Socket: """ A unix like socket, for more information see module ``socket``'s description. The name, `Socket`, used for typing is not the same as the runtime name, `socket` (note lowercase `s`). The reason for this difference is that the runtime uses `socket` as both a class name and as a method name and this is not possible within code written entirely in Python and therefore not possible within typing code. """ def close(self) -> None: """ Mark the socket closed and release all resources. Once that happens, all future operations on the socket object will fail. The remote end will receive EOF indication if supported by protocol. Sockets are automatically closed when they are garbage-collected, but it is recommended to `close()` them explicitly as soon you finished working with them. """ def bind(self, address: _Address | bytes, /) -> None: """ Bind the socket to *address*. The socket must not already be bound. """ def listen(self, backlog: int = ..., /) -> None: """ Enable a server to accept connections. If *backlog* is specified, it must be at least 0 (if it's lower, it will be set to 0); and specifies the number of unaccepted connections that the system will allow before refusing new connections. If not specified, a default reasonable value is chosen. """ def accept(self) -> None: """ Accept a connection. The socket must be bound to an address and listening for connections. The return value is a pair (conn, address) where conn is a new socket object usable to send and receive data on the connection, and address is the address bound to the socket on the other end of the connection. """ def connect(self, address: _Address | bytes, /) -> None: """ Connect to a remote socket at *address*. """ def send(self, bytes: AnyReadableBuf, /) -> int: """ Send data to the socket. The socket must be connected to a remote socket. Returns number of bytes sent, which may be smaller than the length of data ("short write"). """ def sendall(self, bytes: AnyReadableBuf, /) -> None: """ Send all data to the socket. The socket must be connected to a remote socket. Unlike `send()`, this method will try to send all of data, by sending data chunk by chunk consecutively. The behaviour of this method on non-blocking sockets is undefined. Due to this, on MicroPython, it's recommended to use `write()` method instead, which has the same "no short writes" policy for blocking sockets, and will return number of bytes sent on non-blocking sockets. """ def recv(self, bufsize: int, /) -> bytes: """ Receive data from the socket. The return value is a bytes object representing the data received. The maximum amount of data to be received at once is specified by bufsize. """ def sendto(self, bytes: AnyReadableBuf, address: _Address, /) -> int: """ Send data to the socket. The socket should not be connected to a remote socket, since the destination socket is specified by *address*. """ def recvfrom(self, bufsize: int, /) -> tuple[bytes, Any]: """ Receive data from the socket. The return value is a pair *(bytes, address)* where *bytes* is a bytes object representing the data received and *address* is the address of the socket sending the data. """ def setsockopt( self, level: int, optname: int, value: AnyReadableBuf | int, / ) -> None: """ Set the value of the given socket option. The needed symbolic constants are defined in the socket module (SO_* etc.). The *value* can be an integer or a bytes-like object representing a buffer. """ def settimeout(self, value: float | None, /) -> None: """ **Note**: Not every port supports this method, see below. Set a timeout on blocking socket operations. The value argument can be a nonnegative floating point number expressing seconds, or None. If a non-zero value is given, subsequent socket operations will raise an `OSError` exception if the timeout period value has elapsed before the operation has completed. If zero is given, the socket is put in non-blocking mode. If None is given, the socket is put in blocking mode. Not every :term:`MicroPython port` supports this method. A more portable and generic solution is to use `select.poll` object. This allows to wait on multiple objects at the same time (and not just on sockets, but on generic `stream` objects which support polling). Example:: # Instead of: s.settimeout(1.0) # time in seconds s.read(10) # may timeout # Use: poller = select.poll() poller.register(s, select.POLLIN) res = poller.poll(1000) # time in milliseconds if not res: # s is still not ready for input, i.e. operation timed out .. admonition:: Difference to CPython :class: attention CPython raises a ``socket.timeout`` exception in case of timeout, which is an `OSError` subclass. MicroPython raises an OSError directly instead. If you use ``except OSError:`` to catch the exception, your code will work both in MicroPython and CPython. """ def setblocking(self, value: bool, /) -> None: """ Set blocking or non-blocking mode of the socket: if flag is false, the socket is set to non-blocking, else to blocking mode. This method is a shorthand for certain `settimeout()` calls: * ``sock.setblocking(True)`` is equivalent to ``sock.settimeout(None)`` * ``sock.setblocking(False)`` is equivalent to ``sock.settimeout(0)`` """ @overload def makefile( self, mode: Literal["rb", "wb", "rwb"] = "rb", buffering: int = 0, / ) -> Socket: """ Return a file object associated with the socket. The exact returned type depends on the arguments given to makefile(). The support is limited to binary modes only ('rb', 'wb', and 'rwb'). CPython's arguments: *encoding*, *errors* and *newline* are not supported. .. admonition:: Difference to CPython :class: attention As MicroPython doesn't support buffered streams, values of *buffering* parameter is ignored and treated as if it was 0 (unbuffered). .. admonition:: Difference to CPython :class: attention Closing the file object returned by makefile() WILL close the original socket as well. """ @overload def makefile(self, mode: str, buffering: int = 0, /) -> Socket: """ Return a file object associated with the socket. The exact returned type depends on the arguments given to makefile(). The support is limited to binary modes only ('rb', 'wb', and 'rwb'). CPython's arguments: *encoding*, *errors* and *newline* are not supported. .. admonition:: Difference to CPython :class: attention As MicroPython doesn't support buffered streams, values of *buffering* parameter is ignored and treated as if it was 0 (unbuffered). .. admonition:: Difference to CPython :class: attention Closing the file object returned by makefile() WILL close the original socket as well. """ @overload def read(self) -> bytes: """ Read up to size bytes from the socket. Return a bytes object. If *size* is not given, it reads all data available from the socket until EOF; as such the method will not return until the socket is closed. This function tries to read as much data as requested (no "short reads"). This may be not possible with non-blocking socket though, and then less data will be returned. """ @overload def read(self, size: int, /) -> bytes: """ Read up to size bytes from the socket. Return a bytes object. If *size* is not given, it reads all data available from the socket until EOF; as such the method will not return until the socket is closed. This function tries to read as much data as requested (no "short reads"). This may be not possible with non-blocking socket though, and then less data will be returned. """ @overload def readinto(self, buf: AnyWritableBuf, /) -> int | None: """ Read bytes into the *buf*. If *nbytes* is specified then read at most that many bytes. Otherwise, read at most *len(buf)* bytes. Just as `read()`, this method follows "no short reads" policy. Return value: number of bytes read and stored into *buf*. """ @overload def readinto(self, buf: AnyWritableBuf, nbytes: int, /) -> int | None: """ Read bytes into the *buf*. If *nbytes* is specified then read at most that many bytes. Otherwise, read at most *len(buf)* bytes. Just as `read()`, this method follows "no short reads" policy. Return value: number of bytes read and stored into *buf*. """ def readline(self) -> bytes: """ Read a line, ending in a newline character. Return value: the line read. """ def write(self, buf: AnyReadableBuf, /) -> int | None: """ Write the buffer of bytes to the socket. This function will try to write all data to a socket (no "short writes"). This may be not possible with a non-blocking socket though, and returned value will be less than the length of *buf*. Return value: number of bytes written. """
true
bdf4b9700d6e8f0a3920e2452e75b1d4f7b485f4
Python
jeevanmore/MyPythonPrograms
/py01_HR_Jumping_on_the_Cloud.py
UTF-8
128
3.03125
3
[]
no_license
n = 6 s = ['0','0','0','0','1','0'] jumps = 0 for cloud in s: if cloud == 0: jumps += 1 print(jumps)
true
6326416590f9691eaceca6a7230dc2074ce9b10b
Python
OctopusHugz/holbertonschool-interview
/0x10-rain/0-rain.py
UTF-8
620
3.84375
4
[]
no_license
#!/usr/bin/python3 """ This module creates a rain function """ def rain(walls): """ Calculates how much rain water is retained """ total_rain = 0 for i in range(len(walls)): index = walls[i] if i > 0: left_list = walls[0:i] left_wall_height = max(left_list) else: left_wall_height = index if i < len(walls): right_list = walls[i:] right_wall_height = max(right_list) else: right_wall_height = index total_rain += (min(left_wall_height, right_wall_height) - index) return total_rain
true
f2f3d3ba1c7463b4fa67d2bc464d30f89787f06a
Python
HarikaSatyaPreethi/opencv_programms
/videoplayback.py
UTF-8
764
2.640625
3
[]
no_license
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Fri Mar 22 01:08:14 2019 @author: preethi """ import cv2 def main(): windowName = "video play back" cv2.namedWindow(windowName) filename = '/home/preethi/Documents/opencv/output/videorecord.avi' cap = cv2.VideoCapture(filename) while(cap.isOpened()): ret,frame=cap.read() print(ret) if ret: cv2.imshow(windowName, frame) if cv2.waitKey(133) == 27: break else: break cv2.destroyAllWindows() cap.release() if __name__ == "__main__": main()
true
4a942cf9efd64421ebd1f50523c7355368dcd679
Python
JJong-Min/Baekjoon-Online-Judge-Algorithm
/Data Structure(자료구조)/Data_Structure_6번.py
UTF-8
419
3.109375
3
[]
no_license
import sys inputVal = sys.stdin.readline() values = [] while (inputVal != "고무오리 디버깅 끝"): inputVal = sys.stdin.readline().rstrip() if inputVal == "문제": values.append(1) if inputVal == "고무오리": if len(values) == 0: values.append(1) values.append(1) else: values.pop() print("고무오리야 사랑해") if len(values) == 0 else print("힝구")
true
d63161ce0f6116d37bb30dc5ed9ab7147f890e16
Python
MichaelTrzaskoma/CSCI380_Nutrifetch
/backend/flask_app.py
UTF-8
4,809
2.828125
3
[]
no_license
from flask import Flask from flask import request, jsonify # import the things that Michael has coded from Nutrifetch import * app = Flask(__name__) app.config["DEBUG"] = True allergy_profile = { 'Email': "", 'Allergy': [], } profileInput = {} @app.route('/api/v1/CSCI380/profileInput', methods=['POST']) def assignProfile(): # post user allergy profile to the server # INPUT: (inside request header) user email and allergy item(s) <-- array # OUTPUT: json format allergy_profile && code 202 data = request.json global allergy_profile response = "" if data['email'] != "": email = data['email'] first_name = data['fname'] last_name = data['lname'] gender = data['gender'] age = data['age'] weight = data['weight'] allergy_profile = data['allergens'] profileInput[email] = (first_name, last_name, gender, age, weight, allergy_profile) userProfile(email, first_name, last_name, gender, age, weight, userallergens=allergy_profile) # set the info to FireStore response = jsonify("Data captured!") response.status_code = 202 else: response = jsonify("An error occured!") response.status_code = 500 return response @app.route('/api/v1/CSCI380/getUPCinfo', methods=['GET']) def getUPCinfo(): # get the nutriction info from the server # INPUT: UPC code and user email # OUTPUT: food nutrition info and food allergy status response = "" # check if the upc and email is in the URL if 'upc' in request.args and 'email' in request.args: upc = request.args['upc'] email = request.args['email'] if upcCheck(upc): nutrition = upcNutrition(upc) nutrition.append(allergyCheck(upc, email)) response = jsonify(nutrition) # response.allery = allergyCheck(upc, email) response.status_code = 202 else: response = "product not found" response = jsonify(response) response.status_code = 404 else: response = jsonify("Error code: AX002") response.status_code = 500 return response # =========================== TEST =========================== # REST API test sample # Create some test data for our catalog in the form of a list of dictionaries. books = [{ 'id': 0, 'title': 'A Fire Upon the Deep', 'author': 'Vernor Vinge', 'first_sentence': 'The coldsleep itself was dreamless.', 'year_published': '1992' }, { 'id': 1, 'title': 'The Ones Who Walk Away From Omelas', 'author': 'Ursula K. Le Guin', 'first_sentence': 'With a clamor of bells that set the swallows soaring, the Festival of Summer came to the city Omelas, bright-towered by the sea.', 'published': '1973' }, { 'id': 2, 'title': 'Dhalgren', 'author': 'Samuel R. Delany', 'first_sentence': 'to wound the autumnal city.', 'published': '1975' }] userAcc = { 'signedIn': False, 'full_name': "", 'last_name': "", 'first_name': "", 'email': "", 'photoUrl': "", } @app.route('/api/v1/csci426/test', methods=['POST']) def assignUsrAcc(): global userAcc data = request.json userAcc = data return jsonify(userAcc) @app.route('/', methods=['GET']) def home(): return ''' <h1>Distant Reading Archive</h1> <p>A prototype API for distant reading of science fiction novels.</p> ''' # A route to return all of the available entries in our catalog. @app.route('/api/v1/resources/books/all', methods=['GET']) def api_all(): response = jsonify(books) response.status_code = 202 return response @app.route('/api/v1/resources/books', methods=['GET']) def api_bookID(): # Check if an ID was provided as part of the URL. # If ID is provided, assign it to a variable. # If no ID is provided, display an error in the browser. if 'id' in request.args: id = int(request.args['id']) else: response = "Error: No id field provided. Please specify an id." response.statue_code = 204 return response # Create an empty list for our results results = [] # Loop through the data and match results that fit the requested ID. # IDs are unique, but other fields might return many results for book in books: if book['id'] == id: results.append(book) # Use the jsonify function from Flask to convert our list of # Python dictionaries to the JSON format. response = jsonify(results) response.status_code = 202 return response if __name__ == '__main__': app.run()
true
9170a44e2219ab020c615a365fb126d61dc08fd7
Python
sumanth-nirmal/SpeedPrediction
/extract_images.py
UTF-8
1,988
2.703125
3
[]
no_license
#!/usr/bin/python ## Author: sumanth ## Date: March 23, 2017 #extract images from video # Python 2/3 compatibility from __future__ import print_function import cv2 import json import argparse import subprocess # no.of images extracted count=0 # extracted images path data_extracted_path='./data_extracted/' def main(video_path, data_json_path): # if data json file is not avilable if data_json_path != "no": #load the json data with open(data_json_path) as data_file: data = json.load(data_file) # load the data cap = cv2.VideoCapture(video_path) # check if the video is opened sucessfully if cap.isOpened() == True: global count # frames per sec fps = cap.get(cv2.cv.CV_CAP_PROP_FPS) print("Frames per second in the input video: {0}".format(fps)) while cap.isOpened(): ret,frame = cap.read() cv2.imshow('video',frame) if data_json_path != "no": cv2.imwrite(data_extracted_path+"%f.jpg" % data[count][0], frame) else: cv2.imwrite(data_extracted_path+"%f.jpg" % count, frame) count = count + 1 if cv2.waitKey(10) & 0xFF == ord('q'): break cap.release() else: print("the video can not be opened\ncheck the video or use different opencv version\nusing opencv version: ",cv2.__version__) if __name__ == '__main__': parser = argparse.ArgumentParser(description='extract images from the video and labels if avialable') parser.add_argument( '--video', type=str, help='path for the video, usage: --video "./speed_challenge/drive.mp4"' ) parser.add_argument( '--data_json', type=str, help='path for the json file if available, usage: --data_json "./speed_challenge/drive.json" or --data_json "no" if not avialable' ) args = parser.parse_args() main(args.video, args.data_json)
true
1396b2ba5463064ab879c70584d4a0ca10b5eda7
Python
MayankMaheshwar/DS-and-Algo-solving
/microsoft1.py
UTF-8
349
3.0625
3
[]
no_license
from itertools import groupby def solution(S): # write your code in Python 3.6 if len(S) == 1: return 0 mx = -2**32 group = groupby(S) for k, v in group: mx = max(mx, len(list(v))) print(group, "yes") for j, l in group: print(j, l) print(group) return 0 print(solution("babaa"))
true
af2d558c3be84a098832e0fd65864ec3ddfe8a48
Python
starkizard/CrudeCode
/Codeforces/Practice/A2oJ Ladders/Ladder #14/presentFromLena.py
UTF-8
461
3.640625
4
[]
no_license
# author: starkizard # implementation problem. function string computes what actually has to be printed, for n=5 i print from 0 to 4 store in a list , print 5 and print reverse of the list def string(i): s="" for j in range(i): s+=str(j)+" " r=s[::-1] s+=str(i) s+=r return s n=int(input()) spaces=2*n l=[] for i in range(n): l.append(" "*spaces + string(i)) spaces-=2 l+=[string(n)]+l[::-1] for i in l: print(i)
true
f6d6a5439e9a6779c1d27f5d225be9b150147fd6
Python
simonr0204/twitch_plays
/main.py
UTF-8
897
2.8125
3
[]
no_license
import twitch from keyholder import holdForSeconds as Press from secrets import username, key from collections import Counter def collect_messages(t): new_messages = t.twitch_recieve_messages() if not new_messages: return else: msgs = [message['message'].lower() for message in new_messages] inputs = [char for message in msgs for char in message] return inputs def most_frequent(commands): occurrences = Counter(commands) return occurrences.most_common(1)[0][0] def main(): t = twitch.Twitch() t.twitch_connect(username, key) while True: inputs = collect_messages(t) if inputs is None: continue command = most_frequent(inputs) print('Executing : {}'.format(command)) Press(command, 0.1) if __name__ == '__main__': main()
true
dd8af3ae8a63861fd13c9557f70698b5f36cdd8e
Python
oVirt/ovirt-scheduler-proxy
/doc/plugin_samples/ksm_same_os_score.py
UTF-8
1,987
2.609375
3
[ "Apache-2.0" ]
permissive
from __future__ import print_function, division from ovirtsdk.api import API import sys class ksm_same_os_score(): """rank hosts higher the more vms they have with similar os to the scored vm""" properties_validation = '' def _get_connection(self): # open a connection to the rest api connection = None try: connection = API(url='http://localhost:8080', username='admin@internal', password='1') except BaseException as ex: # letting the external proxy know there was an error print(ex, file=sys.stderr) return None return connection def _get_hosts(self, host_ids, connection): # get all the hosts with the given ids engine_hosts = connection.hosts.list( query=" or ".join(["id=%s" % u for u in host_ids])) return engine_hosts def _get_vms(self, host_name, connection): # get all the vms with the given host host_vms = connection.vms.list('host='+host_name) return host_vms def score_host(self, vm, host, connection): score = 0 host_vms = self._get_vms(host.name, connection) if not host_vms: return (host.id, 0) for host_vm in host_vms: if vm.get_os().get_type() == host_vm.get_os().get_type(): if vm.get_os().get_version() == \ host_vm.get_os().get_version(): score += 100 else: score += 20 return (host.id, score / len(host_vms)) def do_score(self, hosts_ids, vm_id, args_map): conn = self._get_connection() if conn is None: return engine_hosts = self._get_hosts(hosts_ids, conn) vm = conn.vms.get(id=vm_id) host_scores = [] for host in engine_hosts: host_scores.append(self.score_host(vm, host, conn)) print(host_scores)
true
377467355d16b6e093d9374da180434ab41591fa
Python
skailasa/practice
/ctc/ch04-trees-and-graphs/9-bst-sequences.py
UTF-8
2,362
4.25
4
[]
no_license
""" A BST is created by traversing through an array left to right and inserting each element. Given a BST with distinct elements, print all possible arrays that could have led to this tree. Strategy: - root node always first, a different first element would make a different BST - need to 'weave' together possible arrays and prepend root node to find final sequence. - Have to make sure that relative order is maintained, can do this recursively - Have to then implement a second recursive function to do this on each branch of a given root. """ import copy class TreeNode: """Simple node class for binary tree""" def __init__(self, data): self.data = data self.left = None self.right = None self.parent = None def weave(first, second, results, prefix): # if one list is empty add remainder to cloned prefix, and store if not first or not second: result = copy.deepcopy(prefix) result.extend(first) result.extend(second) results.append(result) return # recurse with head of first added to the prefix. Removing the head # will damage first, so we'll need to replace it head_first = first[0] prefix.append(head_first) first = first[1:] weave(first, second, results, prefix) first = [head_first] + first prefix.pop() head_second = second[0] prefix.append(head_second) second = second[1:] weave(first, second, results, prefix) prefix.pop() def all_sequences(node): result = [] if not node: return result prefix = list() prefix.append(node.data) result.append(prefix) left_sequences = all_sequences(node.left) right_sequences = all_sequences(node.right) # weave together each list from left and right sides for left in left_sequences: for right in right_sequences: weaved = [] weave(left, right, weaved, prefix) result.extend(weaved) return result if __name__ == "__main__": a = TreeNode(4) b = TreeNode(2) c = TreeNode(6) #d = TreeNode(1) #e = TreeNode(3) #f = TreeNode(5) #g = TreeNode(7) # construct simple BST a.left = b a.right = c #b.left = d #b.right = e #c.left = f #c.right = g print(all_sequences(a))
true
e5f8998e8eb045c5a7e485f65c2b95c014a70481
Python
lxxue/TorchSeg
/model/pspnet2/cil.pspnet2.R50/split_train_val.py
UTF-8
1,933
2.609375
3
[ "MIT" ]
permissive
import os import numpy as np import argparse import glob parser = argparse.ArgumentParser() parser.add_argument('--trainall', default=False, action='store_true') parser.add_argument('-v', '--verbose', default=True, action='store_true') parser.add_argument('-s', '--size', default=0.9, action='store', type=int) args = parser.parse_args() dataset_path = os.path.dirname(os.path.abspath(__file__)) gt = [] img = [] test = [] # get img for name in glob.glob('training/images/satImage*'): img.append(name) # get gt for name in glob.glob('training/groundtruth/satImage*'): gt.append(name) # get test for name in glob.glob('test_images/*'): test.append(name) img.sort() gt.sort() test.sort() train_size = args.size assert len(img) == len(gt) idx = np.arange(len(img)) train_idx = np.random.choice(idx, int(train_size * len(img)), replace=False) val_idx = list(set(idx) - set(train_idx)) train_idx.sort() val_idx.sort() if args.trainall: train_idx = idx if args.verbose: print("Writing images from {}".format(dataset_path)) print("{:<10d} images {:<10d} groundtruth".format(len(img), len(gt))) print("training size: {0:.0%}".format(train_size)) print("validation size: {0:.0%}".format(1 - train_size)) with open('train.txt', 'w') as f: for i in train_idx: line = img[i] + '\t' + gt[i] + '\n' f.write(line) if args.verbose: print("Writing training {:3} images to {}".format(len(train_idx), f.name)) f.close() with open('val.txt', 'w') as f: for i in val_idx: line = img[i] + '\t' + gt[i] + '\n' f.write(line) if args.verbose: print("Writing validation {:3} images to {}".format(len(val_idx), f.name)) f.close() with open('test.txt', 'w') as f: for i in range(len(test)): line = test[i] + '\t' + test[i] + '\n' f.write(line) if args.verbose: print("Writing test {:3} images to {}".format(len(test), f.name)) f.close()
true
afcc5ae9597a1f37b177086f4eed386b787b33ae
Python
ED2589/gesture_classify
/Preprocessing/LoopForAllParticipant_Preproc.py
UTF-8
18,521
2.796875
3
[]
no_license
# Created May 24,2019 # # Overview: # takes each of the 19 EMG files + each of the 19 IMU files, # and returns ,mat files of binned data (in Python it's 3D array) ########## # Step 1 # ########## # import raw data (.csv) into Python import pandas as pd import matplotlib.pyplot as plt import numpy as np from scipy import signal import itertools import scipy.io def import_data(csv_file): """ :param csv_file: a string i.e. name of .csv file csv_file is the raw data (uniqueID, date, pods columns) - for 1 participant :return: pandas data frame of imported data """ return pd.read_csv(csv_file) emg_csv_list = ['F01_emg.csv','F02_emg.csv','F03_emg.csv', 'F04_emg.csv','F05_emg.csv','F06_emg.csv','F07_emg.csv', 'F08_emg.csv', 'F09_emg.csv','F10_emg.csv','P12_emg.csv','P43_emg.csv','P52_emg.csv','P63_emg.csv','P81_emg.csv','P84_emg.csv', 'P96_emg.csv','P97_emg.csv','P98_emg.csv'] imu_csv_list = ['F01_imu.csv','F02_imu.csv','F03_imu.csv', 'F04_imu.csv','F05_imu.csv','F06_imu.csv','F07_imu.csv', 'F08_imu.csv', 'F09_imu.csv','F10_imu.csv','P12_imu.csv','P43_imu.csv','P52_imu.csv','P63_imu.csv','P81_imu.csv','P84_imu.csv', 'P96_imu.csv','P97_imu.csv','P98_imu.csv'] emg_rawDF_list = [] imu_rawDF_list = [] # creates a list of 19 dataframes, by reading in the 19 emg raw files for i in emg_csv_list: # import all 19 EMG datasets emg_rawDF_list.append(import_data(i)) # creates a list of 19 dataframes, by reading in the 19 imu raw files for i in imu_csv_list: # import all 19 IMU datasets imu_rawDF_list.append(import_data(i)) # extract each df from list - IS THIS NECESSARY? #F01EmgRaw = emg_rawDF_list[0] #F02EmgRaw = emg_rawDF_list[1] #F03EmgRaw = emg_rawDF_list[2] #F04EmgRaw = emg_rawDF_list[3] # DO THIS FOR ALL 19 PARTICIPANTS #F01ImuRaw = imu_rawDF_list[0] # DO THIS FOR ALL 19 PARTICIPANTS ########## # Step 2 # ########## # Normalize each channel column in EMG to range (0,1) def normalize_emg(df): ''' :param df: Raw emg df :return: Emg df with each of pod0 columns normalized to range(0,1) ''' ncol = df.shape[1] df1 = df.iloc[ :, 7: ncol-1] # all pod columns df2 = df.iloc[:,0] # uniqueID column df1 = abs(df1) absEMG = pd.concat([df2,df1],axis=1) groupEMG = absEMG.groupby(['uniqueID']) def norm_func(g): return ((g - g.min()) / (g.max() - g.min())) dfnorm = groupEMG.apply(norm_func) # normalizing step! subs_1 = df[['uniqueID', 'participant', 'phase', 'trial', 'date', 'structName','Timestr']] subs_2 = df[['TrueLabel']] return pd.concat([subs_1, dfnorm, subs_2], axis=1) emg_normDF_list = [] # create empty list to store normalized EMG dfs for df in emg_rawDF_list: emg_normDF_list.append(normalize_emg(df)) ########## # Step 3 # ########## # Low - pass filter def lowpass_filt(df , sf, order,cutoff): ''' :param df: normalized Emg df OR Raw Imu df :param sf: sampling freq (200 Hz for Emg ; 40 Hz for Imu) :param order: order of low pass filter :param cutoff: cutoff freq in Hz :return: lowpass filtered df ''' ncol = df.shape[1] df_a = df.iloc[:, 7: ncol - 1] # all numeric columns excluding 'TrueLabel' column df_b = df.iloc[:, 0] # uniqueID column df2 = pd.concat([df_b, df_a], axis=1) df2_gp = df2.groupby(['uniqueID']) # do new filter for each different trial df3_gp = [x for _, x in df2_gp] # list of data frames, each consisting of a different trial for group in df3_gp: group.drop('uniqueID', axis=1, inplace=True) norm_param = cutoff / (sf/2) d, c = signal.butter(order,norm_param,'low') for group in df3_gp: ncol = group.shape[1] for j in range(ncol): group.iloc[:, j] = signal.filtfilt(d, c, group.iloc[:, j], axis=0) # butterworth for each dataframe in the df3_gp (which is a list) df3_conc = pd.concat(df3_gp) # put the data back together, after the numerical pod columns are all low pass filtered subs_1 = df[['uniqueID', 'participant', 'phase', 'trial', 'date', 'structName', 'Timestr']] subs_2 = df[['TrueLabel']] df4 = pd.concat([subs_1, df3_conc, subs_2], axis=1) # this is the LOW-PASS FILTERED EMG Data return df4 emg_LowFiltNormDF_list = [] # create empty list to store lowpass filtered, normalized EMG dfs # low pass for all 19 for df_emg in emg_normDF_list: emg_LowFiltNormDF_list.append(lowpass_filt(df_emg , 200, 4,10)) imu_LowFiltDF_list = [] # create empty list to store lowpass filtered IMU dfs for df_imu in imu_rawDF_list: imu_LowFiltDF_list.append(lowpass_filt(df_imu , 50, 4,10)) ####### ## pod4 plot check for F02 Trial 1 #FakeT_Emg_F02T1_list = FakeTimeArray(emg_normDF_list[1],0.005)[0].tolist() #EmgF02T1pod4_Nofilt_list = list(emg_normDF_list[1].pod4[0:RowNum(emg_normDF_list[1])[0]]) #EmgF02T1pod4_filt_list = list(emg_LowFiltNormDF_list[1].pod4[0:RowNum(emg_LowFiltNormDF_list[1])[0]]) #testdf_F02T1_pod4_fakeT = pd.DataFrame({'pod4_norm':EmgF02T1pod4_Nofilt_list,'pod4_norm_lowfilt': EmgF02T1pod4_filt_list}, #index=FakeT_Emg_F02T1_list) #LinePlot_Emg_F02T1_pod4 = testdf_F02T1_pod4_fakeT.plot.line() #LinePlot_Emg_F02T1_pod4.set(xlabel='Time elapsed(s)', ylabel = 'Pod 4 Channel (V)') #SepLinePlot_Emg_F02T1_pod4 = testdf_F02T1_pod4_fakeT.plot.line(subplots=True) ########## # Step 4 # ########## # REMOVE all rows where TrueLabel!=0 for both EMG and IMU def RemoveZeroTrueLabel(df_filt): ''' :param df_filt: filtered EMG or IMU df :return: same input df but with 'TrueLabel == 0 ' rows removed ''' return df_filt[df_filt.TrueLabel != 0] ## EMG ## emg_Subs_NoFiltDF_list =[] # create empty list to store subsetted, NON-filtered, normalized EMG dfs for df_emg in emg_normDF_list: emg_Subs_NoFiltDF_list.append(RemoveZeroTrueLabel(df_emg)) emg_Subs_LowFiltNormDF_list = [] # create empty list to store subsetted, lowpass filt, normalized EMG dfs for df_filt_emg in emg_LowFiltNormDF_list: emg_Subs_LowFiltNormDF_list.append(RemoveZeroTrueLabel(df_filt_emg)) ## IMU ## imu_Subs_NoFiltDF_list =[] # create empty list to store subsetted, NON-filtered filt IMU dfs for df_imu in imu_rawDF_list: imu_Subs_NoFiltDF_list.append(RemoveZeroTrueLabel(df_imu)) imu_Subs_LowFiltNormDF_list = [] # create empty list to store subsetted, lowpass filt IMU dfs for df_filt_imu in imu_LowFiltDF_list: imu_Subs_LowFiltNormDF_list.append(RemoveZeroTrueLabel(df_filt_imu)) ########## # Step 5 # ########## #### binning after subsetting ###### # Step 1: delete rows from EMG and IMU to ensure SAME starting time for EACH uniqueID group # For detailed algorithm of function 'start_time_same' -> see 'PreprocStep1to4_F01.py' Line 375 def start_time_same(dfEMG,dfIMU): dfEMG["Timestr"] = pd.to_datetime(dfEMG["Timestr"]) dfIMU["Timestr"] = pd.to_datetime(dfIMU["Timestr"]) df_g_EMG = dfEMG.groupby('uniqueID') df_gp_EMG = [x for _, x in df_g_EMG] df_g_IMU = dfIMU.groupby('uniqueID') df_gp_IMU = [x for _, x in df_g_IMU] list_EMG = [] list_IMU = [] for i in range(len(df_gp_EMG)): EMG_1st_time = df_gp_EMG[i]['Timestr'].iloc[0] IMU_1st_time = df_gp_IMU[i]['Timestr'].iloc[0] # Case 1: if EMG earlier if EMG_1st_time < IMU_1st_time: # if any of the first 5 EMG time elements MATCHES IMU[0] original: if len( df_gp_EMG[i]['Timestr'].head(5) [ df_gp_EMG[i]['Timestr'].head(5) == IMU_1st_time ] ) != 0: # then remove all Emg[Emg < Imu[0]] i.e. keep ALL later times in EMG + last earlier element df_gp_EMG[i] = df_gp_EMG[i] [ df_gp_EMG[i]['Timestr'] >= IMU_1st_time ] list_EMG.append(df_gp_EMG[i]) list_IMU.append(df_gp_IMU[i]) # if not, remove all EMG < IMU[0] except for last earlier EMG Time (ensures output EMG time[0] still earlier) elif len( df_gp_EMG[i]['Timestr'].head(5) [ df_gp_EMG[i]['Timestr'].head(5) == IMU_1st_time ] ) == 0: last_earlier_EMG = df_gp_EMG[i]['Timestr'][df_gp_EMG[i]['Timestr'] < IMU_1st_time].max() # extract the last EARLIER element from EMG time df_gp_EMG[i] = df_gp_EMG[i][ df_gp_EMG[i]['Timestr'] >= last_earlier_EMG] # keep last EARLIER EMG time + all other times greater than IMU[0] list_EMG.append(df_gp_EMG[i]) list_IMU.append(df_gp_IMU[i]) # Case 2: if IMU earlier -> remove from IMU all earlier times (so 1st time in output IMU STILL later than 1st EMG time orig) elif EMG_1st_time > IMU_1st_time: df_gp_IMU[i] = df_gp_IMU[i] [ df_gp_IMU[i]['Timestr'] > EMG_1st_time ] list_EMG.append(df_gp_EMG[i]) list_IMU.append(df_gp_IMU[i]) else: list_EMG.append(df_gp_EMG[i]) list_IMU.append(df_gp_IMU[i]) return [pd.concat(list_EMG), pd.concat(list_IMU)] emg_SameT_NoFiltDF_list =[] # create empty list to store SameTime, no tl==0 rows,NON-filtered, normalized EMG dfs imu_SameT_NoFiltDF_list =[] # create empty list to store SameTime,no tl==0 rows,NON-filtered IMU dfs #start_time_same(emg_Subs_NoFiltDF_list[1],imu_Subs_NoFiltDF_list[1])[0] for (df_emg, df_imu) in itertools.zip_longest(emg_Subs_NoFiltDF_list,imu_Subs_NoFiltDF_list): emg_SameT_NoFiltDF_list.append(start_time_same(df_emg, df_imu)[0]) imu_SameT_NoFiltDF_list.append(start_time_same(df_emg, df_imu)[1]) emg_SameT_LowFiltNormDF_list = [] # create empty list to store SameTime, subsetted,lowpass filt, normalized EMG dfs imu_SameT_LowFiltNormDF_list = [] # create empty list to store SameTime, subsetted, lowpass filt, IMU dfs #start_time_same(emg_Subs_LowFiltNormDF_list[1],imu_Subs_LowFiltNormDF_list[1])[1] for (df_filt_emg,df_filt_imu) in itertools.zip_longest(emg_Subs_LowFiltNormDF_list,imu_Subs_LowFiltNormDF_list): emg_SameT_LowFiltNormDF_list.append(start_time_same(df_filt_emg,df_filt_imu)[0]) imu_SameT_LowFiltNormDF_list.append(start_time_same(df_filt_emg,df_filt_imu)[1]) ## check ## #emg_a = emg_Subs_LowFiltNormDF_list[1].groupby('uniqueID') #emg_b = [x for _, x in emg_a] #imu_a = imu_Subs_LowFiltNormDF_list[1].groupby('uniqueID') #imu_b = [x for _, x in imu_a] #emg_b[0].Timestr.head(15) #imu_b[0].Timestr.head(20) #emg_a_t = emg_SameT_LowFiltNormDF_list[1].groupby('uniqueID') #emg_b_t = [x for _, x in emg_a_t] #imu_a_t = imu_SameT_LowFiltNormDF_list[1].groupby('uniqueID') #imu_b_t = [x for _, x in imu_a_t] #emg_b_t[0].Timestr.head(10) #imu_b_t[0].Timestr.head(10) ##################################### # Step 2: Binning def binning(dfEmg, dfImu, winEmg , winImu): ''' :param dfEmg , dfImu: EMG or IMU data (whether filtered or unfiltered) :param winEmg, winImu: # of rows of data frame per bin : EMG -> 40 ; IMU -> 10 :return: 2 3D data frames (one of EMG , one of IMU) with 3rd dimension being # of bins ''' df.drop('Timestr' , axis = 1 , inplace= True) # CONFIRM W ALEX - drop 'Timestr' column ? Yes, won't be needing for feature table. Emg_Array_List = [] Imu_Array_List = [] df_Emg = dfEmg.groupby('uniqueID') df_gp_Emg = [x for _ , x in df_Emg] df_Imu = dfImu.groupby('uniqueID') df_gp_Imu = [x for _, x in df_Imu] for group in df_gp_Emg: remEmg = group.shape[0] % winEmg # number of rows to remove (mod operation) group.drop(group.tail(remEmg).index, inplace=True) group = group.values.reshape(group.size // winEmg // group.shape[1], winEmg, group.shape[1]) # (number of bins, num row aka winbin, num col) Emg_Array_List.append(group) for group in df_gp_Imu: remImu = group.shape[0] % winEmg # number of rows to remove (mod operation) group.drop(group.tail(remImu).index, inplace=True) group = group.values.reshape(group.size // winImu // group.shape[1], winImu, group.shape[1]) # (number of bins, num row aka winbin, num col) Imu_Array_List.append(group) for i in range(len(Emg_Array_List)): diff_bins = Emg_Array_List[i].shape[0] - Imu_Array_List[i].shape[0] if diff_bins > 0: Emg_Array_List[i] = np.delete(Emg_Array_List[i] ,np.s_[-abs(diff_bins):] , axis=0) elif diff_bins < 0: Imu_Array_List[i] = np.delete(Imu_Array_List[i], np.s_[-abs(diff_bins):], axis=0) else: Emg_Array_List[i] = Emg_Array_List[i] Imu_Array_List[i] = Imu_Array_List[i] Emg_df = np.concatenate(Emg_Array_List , axis = 0 ) Imu_df = np.concatenate(Imu_Array_List , axis = 0) return [Emg_df , Imu_df] # return [ pd.Panel(Emg_df) , pd.Panel(Imu_df)] emg_bin_NoFiltDF_list =[] # create empty list to store binned, SameTime, subsetted,NON-filtered, normalized EMG dfs imu_bin_NoFiltDF_list =[] # create empty list to store binned, SameTime,subsetted,NON-filtered IMU dfs for (df_emg,df_imu) in itertools.zip_longest(emg_SameT_NoFiltDF_list,imu_SameT_NoFiltDF_list): emg_bin_NoFiltDF_list.append(binning(df_emg,df_imu,40,10)[0]) imu_bin_NoFiltDF_list.append(binning(df_emg,df_imu,40,10)[1]) emg_bin_LowFiltNormDF_list = [] # create empty list to store binned,SameTime, subsetted,lowpass filt, normalized EMG dfs imu_bin_LowFiltNormDF_list = [] # create empty list to store binned,SameTime, subsetted, lowpass filt, IMU dfs for (df_filt_emg,df_filt_imu) in itertools.zip_longest(emg_SameT_LowFiltNormDF_list,imu_SameT_LowFiltNormDF_list): emg_bin_LowFiltNormDF_list.append(binning(df_filt_emg,df_filt_imu,40,10)[0]) imu_bin_LowFiltNormDF_list.append(binning(df_filt_emg,df_filt_imu,40,10)[1]) ## check ## # emg_a_t = emg_SameT_LowFiltNormDF_list[1].groupby('uniqueID') # emg_b_t = [x for _, x in emg_a_t] # imu_a_t = imu_SameT_LowFiltNormDF_list[1].groupby('uniqueID') # imu_b_t = [x for _, x in imu_a_t] # emg_b_t[5].shape[0] // 40 # imu_b_t[5].shape[0] // 10 # # versus # emg_bin_NoFiltDF_list[1].shape # imu_bin_NoFiltDF_list[1].shape # emg_bin_LowFiltNormDF_list[1].shape # imu_bin_LowFiltNormDF_list[1].shape ########### ## Step 6 # ########### # export to Matlab (cell array format) ## P12 ## P12_Emg_NoFilt_Fin =emg_bin_NoFiltDF_list[0] numcol_emg = P12_Emg_NoFilt_Fin.shape[2] P12_Emg_NoFilt_Fin2 = np.array(P12_Emg_NoFilt_Fin[:,:,7:numcol_emg],dtype = np.float64) P12_Emg_LowFilt_Fin =emg_bin_LowFiltNormDF_list[0] P12_Emg_LowFilt_Fin2 = np.array(P12_Emg_LowFilt_Fin[:,:,7:numcol_emg],dtype = np.float64) P12_Imu_NoFilt_Fin = imu_bin_NoFiltDF_list[0] numcol_imu = P12_Imu_NoFilt_Fin.shape[2] P12_Imu_NoFilt_Fin2 = np.array(P12_Imu_NoFilt_Fin[:,:,7:numcol_imu],dtype = np.float64) P12_Imu_LowFilt_Fin =imu_bin_LowFiltNormDF_list[0] P12_Imu_LowFilt_Fin2 = np.array(P12_Imu_LowFilt_Fin[:,:,7:numcol_imu],dtype = np.float64) scipy.io.savemat('P97.mat', dict(P97Emg_NoFilt = P12_Emg_NoFilt_Fin2 , P97Imu_NoFilt = P12_Imu_NoFilt_Fin2, P97Emg_LowFilt = P12_Emg_LowFilt_Fin2, P97Imu_LowFilt = P12_Imu_LowFilt_Fin2)) ## P63 ## P43_Emg_NoFilt_Fin =emg_bin_NoFiltDF_list[1] numcol_emg2 = P43_Emg_NoFilt_Fin.shape[2] P43_Emg_NoFilt_Fin2 = np.array(P43_Emg_NoFilt_Fin[:,:,7:numcol_emg2],dtype = np.float64) P43_Emg_LowFilt_Fin =emg_bin_LowFiltNormDF_list[1] P43_Emg_LowFilt_Fin2 = np.array(P43_Emg_LowFilt_Fin[:,:,7:numcol_emg2],dtype = np.float64) P43_Imu_NoFilt_Fin = imu_bin_NoFiltDF_list[1] numcol_imu2 = P43_Imu_NoFilt_Fin.shape[2] P43_Imu_NoFilt_Fin2 = np.array(P43_Imu_NoFilt_Fin[:,:,7:numcol_imu2],dtype = np.float64) P43_Imu_LowFilt_Fin =imu_bin_LowFiltNormDF_list[1] P43_Imu_LowFilt_Fin2 = np.array(P43_Imu_LowFilt_Fin[:,:,7:numcol_imu2],dtype = np.float64) scipy.io.savemat('P98.mat', dict(P98Emg_NoFilt = P43_Emg_NoFilt_Fin2 , P98Imu_NoFilt = P43_Imu_NoFilt_Fin2, P98Emg_LowFilt = P43_Emg_LowFilt_Fin2, P98Imu_LowFilt = P43_Imu_LowFilt_Fin2)) ## P52 ## P52_Emg_NoFilt_Fin =emg_bin_NoFiltDF_list[2] numcol_emg3 = P52_Emg_NoFilt_Fin.shape[2] P52_Emg_NoFilt_Fin2 = np.array(P52_Emg_NoFilt_Fin[:,:,7:numcol_emg3],dtype = np.float64) P52_Emg_LowFilt_Fin =emg_bin_LowFiltNormDF_list[2] P52_Emg_LowFilt_Fin2 = np.array(P52_Emg_LowFilt_Fin[:,:,7:numcol_emg3],dtype = np.float64) P52_Imu_NoFilt_Fin = imu_bin_NoFiltDF_list[2] P52_Imu_NoFilt_Fin2 = np.array(P52_Imu_NoFilt_Fin[:,:,7:19],dtype = np.float64) P52_Imu_LowFilt_Fin =imu_bin_LowFiltNormDF_list[2] P52_Imu_LowFilt_Fin2 = np.array(P52_Imu_LowFilt_Fin[:,:,7:19],dtype = np.float64) scipy.io.savemat('P96.mat', dict(P96Emg_NoFilt = P52_Emg_NoFilt_Fin2 , P96Imu_NoFilt = P52_Imu_NoFilt_Fin2, P96Emg_LowFilt = P52_Emg_LowFilt_Fin2, P96Imu_LowFilt = P52_Imu_LowFilt_Fin2)) ## P63 ## F10_Emg_NoFilt_Fin =emg_bin_NoFiltDF_list[3] numcol_emg4 = F10_Emg_NoFilt_Fin.shape[2] P63_Emg_NoFilt_Fin2 = np.array(F10_Emg_NoFilt_Fin[:,:,7:numcol_emg4],dtype = np.float64) F10_Emg_LowFilt_Fin =emg_bin_LowFiltNormDF_list[3] P63_Emg_LowFilt_Fin2 = np.array(F10_Emg_LowFilt_Fin[:,:,7:numcol_emg4],dtype = np.float64) F10_Imu_NoFilt_Fin = imu_bin_NoFiltDF_list[3] P63_Imu_NoFilt_Fin2 = np.array(F10_Imu_NoFilt_Fin[:,:,7:19],dtype = np.float64) F10_Imu_LowFilt_Fin =imu_bin_LowFiltNormDF_list[3] P63_Imu_LowFilt_Fin2 = np.array(F10_Imu_LowFilt_Fin[:,:,7:19],dtype = np.float64) scipy.io.savemat('F09.mat', dict(F09Emg_NoFilt = P63_Emg_NoFilt_Fin2 , F09Imu_NoFilt = P63_Imu_NoFilt_Fin2, F09Emg_LowFilt = P63_Emg_LowFilt_Fin2, F09Imu_LowFilt = P63_Imu_LowFilt_Fin2)) ## P63 ## F10_Emg_NoFilt_Fin =emg_bin_NoFiltDF_list[4] numcol_emg4 = F10_Emg_NoFilt_Fin.shape[2] P63_Emg_NoFilt_Fin2 = np.array(F10_Emg_NoFilt_Fin[:,:,7:numcol_emg4],dtype = np.float64) F10_Emg_LowFilt_Fin =emg_bin_LowFiltNormDF_list[4] P63_Emg_LowFilt_Fin2 = np.array(F10_Emg_LowFilt_Fin[:,:,7:numcol_emg4],dtype = np.float64) F10_Imu_NoFilt_Fin = imu_bin_NoFiltDF_list[4] P63_Imu_NoFilt_Fin2 = np.array(F10_Imu_NoFilt_Fin[:,:,7:19],dtype = np.float64) F10_Imu_LowFilt_Fin =imu_bin_LowFiltNormDF_list[4] P63_Imu_LowFilt_Fin2 = np.array(F10_Imu_LowFilt_Fin[:,:,7:19],dtype = np.float64) scipy.io.savemat('F10.mat', dict(F10Emg_NoFilt = P63_Emg_NoFilt_Fin2 , F10Imu_NoFilt = P63_Imu_NoFilt_Fin2, F10Emg_LowFilt = P63_Emg_LowFilt_Fin2, F10Imu_LowFilt = P63_Imu_LowFilt_Fin2)) # check # P43_Emg_NoFilt_Fin2[0,:,:] # P63_Emg_LowFilt_Fin2[0,:,:] # P63_Imu_NoFilt_Fin2[0,:,:] # P63_Imu_LowFilt_Fin2[0,:,:] # Line 128 from 'classifycalib_Rndfrst - gived parametrs of Random Forest
true
daf9d0d5f44080cdc3e8ae121acd60681f1e3ece
Python
shendrix07/tide_station_info
/make_station_info.py
UTF-8
1,737
3.0625
3
[ "MIT" ]
permissive
import pandas as pd import csv import geopy station_info = pd.read_csv('station_web_info.csv') station_info['Timezone'] = '***' # initialize stations_by_state = station_info.groupby('State') with open('timezones_by_state.csv') as f: f_csv = csv.DictReader(f) for row in f_csv: rows_to_change = stations_by_state.get_group(row['STATE']).index station_info.loc[rows_to_change, 'Timezone'] = row['TIMEZONE'] # now have all the timezones that can be looked up by state # next, have to look up individual station timezones with geocoding # for unknown timezones ('***') stations_by_timezone = station_info.groupby('Timezone') rows_to_geocode = stations_by_timezone.get_group('***').index print('{} rows to geocode.'.format(len(rows_to_geocode))) from geopy.geocoders import GoogleV3 for i in rows_to_geocode: lat = station_info.loc[i, 'Latitude'] lon = station_info.loc[i, 'Longitude'] try: st_timezone = GoogleV3().timezone((lat, lon)).zone except: print('ERROR: Could not get timezone for {}, {}'.format( station_info.loc[i, 'StationName'], station_info.loc[i, 'State'])) station_info.loc[i, 'Timezone'] = 'UNKNOWN' else: station_info.loc[i, 'Timezone'] = st_timezone print('Geocoded {}, {} to timezone {}'.format( station_info.loc[i, 'StationName'], station_info.loc[i, 'State'], st_timezone)) station_info.to_csv('station_info.csv', index=False) stations_by_timezone = station_info.groupby('Timezone') print('Done, with the following missing timezones:') print(repr(stations_by_timezone.get_group('UNKNOWN'))) # Will go through the csv output by hand and fill in UNKNOWN values
true
9334896f1e1441525ebdee3c4465a0b2005f2704
Python
StefanoBelli/foi1819
/changebrightness.py
UTF-8
213
2.890625
3
[]
no_license
def changeBrightness(pict, x): # @param pict : Picture # @param x : float for pix in getPixels(pict): origColor = makeColor( getRed(pix) + x, getGreen(pix) + x, getBlue(pix) + x) setColor(pix, origColor)
true
d8a395c904098043f361f46bacf4e97710e2aaca
Python
Skvidvardin/project_s
/vocab.py
UTF-8
2,045
2.984375
3
[]
no_license
from collections import Counter, OrderedDict import numpy as np class OrderedCounter(Counter, OrderedDict): """Counter that remembers the order elements are first seen""" def __repr__(self): return '%s(%r)' % (self.__class__.__name__, OrderedDict(self)) def __reduce__(self): return self.__class__, (OrderedDict(self),) class Vocabulary: """A vocabulary, assigns IDs to tokens""" def __init__(self): self.freqs = OrderedCounter() self.w2i = {} self.i2w = [] def count_token(self, t): self.freqs[t] += 1 def add_token(self, t): self.w2i[t] = len(self.w2i) self.i2w.append(t) def build(self, min_freq=0): self.add_token("<unk>") self.add_token("<pad>") tok_freq = list(self.freqs.items()) tok_freq.sort(key=lambda x: x[1], reverse=True) for tok, freq in tok_freq: if freq >= min_freq: self.add_token(tok) def load_glove(glove_path, vocab, glove_dim=300): """ Load Glove embeddings and update vocab. :param glove_path: :param vocab: :param glove_dim: :return: """ vectors = [] w2i = {} i2w = [] # Random embedding vector for unknown words vectors.append(np.random.uniform( -0.05, 0.05, glove_dim).astype(np.float32)) w2i["<unk>"] = 0 i2w.append("<unk>") # Zero vector for padding vectors.append(np.zeros(glove_dim).astype(np.float32)) w2i["<pad>"] = 1 i2w.append("<pad>") with open(glove_path, mode="r", encoding="utf-8") as f: for line in f: word, vec = line.split(u' ', 1) w2i[word] = len(vectors) i2w.append(word) vectors.append(np.array(vec.split(), dtype=np.float32)) # fix brackets w2i[u'-LRB-'] = w2i.pop(u'(') w2i[u'-RRB-'] = w2i.pop(u')') i2w[w2i[u'-LRB-']] = u'-LRB-' i2w[w2i[u'-RRB-']] = u'-RRB-' vocab.w2i = w2i vocab.i2w = i2w return np.stack(vectors)
true
2dab948a46427783e9ea126404ec01d97d1630bf
Python
RicardoHernandezVarela/GradingStudents-
/gradingStudents.py
UTF-8
1,510
4
4
[]
no_license
def getMultiplesOfFive(num): numToString = str(num) if len(numToString) < 2: numToString = '0' + numToString zeros = len(numToString) - 1 times = int('1' + '0' * zeros) multiple_1 = (int(numToString[0]) + 1) * times multiple_2 = multiple_1 - 5 return [multiple_2, multiple_1] def getRoundedGrade(multiple, grade): rounded = grade diff = multiple - grade if diff < 3: rounded = multiple else: rounded = grade return rounded def gradingStudents(grades): roundedGrades = [] for grade in grades: if grade % 5 == 0 or grade < 38: roundedGrades.append(grade) else: multiples = getMultiplesOfFive(grade) roundedNum = 0 if grade > multiples[0]: roundedNum = getRoundedGrade(multiples[1], grade) else: roundedNum = getRoundedGrade(multiples[0], grade) roundedGrades.append(roundedNum) return roundedGrades def main(): print('Grading Students script') totalGrades = int(input('Enter the total grades tha will be rounded: ')) gradesToRound = [] for _ in range(0, totalGrades): newGrade = int(input('Enter a grade between 0 and 100: ')) gradesToRound.append(newGrade) print('INPUT GRADES: ', gradesToRound) result = gradingStudents(gradesToRound) print('OUTPUT GRADES: ', result) # Call main() function. if __name__ == '__main__': main()
true
5f063bfeac1be4bc4411e3e86b135000ca1a5632
Python
kennycaiguo/glglue
/src/glglue/sample/samplecontroller.py
UTF-8
2,506
2.5625
3
[ "MIT" ]
permissive
# encoding: utf-8 import re import sys import math from OpenGL.GL import * from ..basecontroller import BaseController from . import targetview from . import triangle from . import cube from . import coord from logging import getLogger logger = getLogger(__name__) DELEGATE_PATTERN=re.compile('^on[A-Z]') VELOCITY=0.1 def to_radian(degree): return degree/180.0*math.pi class Scene(object): def __init__(self): self.coord=coord.Coord(1.0) self.cube=cube.Cube(0.3) self.xrot=0 self.yrot=0 def onUpdate(self, ms): self.yrot+=ms * VELOCITY while self.yrot>360.0: self.yrot-=360.0 self.xrot+=ms * VELOCITY * 0.5 while self.xrot>360.0: self.xrot-=360.0 def draw(self): self.coord.draw() glRotate(math.sin(to_radian(self.yrot))*180, 0, 1, 0) glRotate(math.sin(to_radian(self.xrot))*180, 1, 0, 0) self.cube.draw() class SampleController(object): ''' OpenGL1.5 ''' def __init__(self, view=None, root=None): view=view or targetview.TargetView() self.view=view self.root=root or Scene() self.isInitialized=False self.delegate(view) self.delegate(root) def delegate(self, to): for name in dir(to): if DELEGATE_PATTERN.match(name): method = getattr(to, name) setattr(self, name, method) def onUpdate(self, ms): self.root.onUpdate(ms) def onKeyDown(self, key): logger.debug("onKeyDown: %x", key) if key==ord('\033'): # Escape sys.exit() if key==ord('q'): # q sys.exit() def onInitialize(*args): pass def initilaize(self): self.view.onResize() glEnable(GL_DEPTH_TEST) glClearColor(0.6, 0.6, 0.4, 0.0) # 初期化時の呼び出し self.onInitialize() def draw(self): if not self.isInitialized: self.initilaize() self.isInitialized=True # OpenGLバッファのクリア glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT) # 投影行列のクリア glMatrixMode(GL_PROJECTION) glLoadIdentity() self.view.updateProjection() # モデルビュー行列のクリア glMatrixMode(GL_MODELVIEW) glLoadIdentity() self.view.updateView() # 描画 self.root.draw() glFlush()
true
3b80831e17fd5da1328b43847fe3dbf17b08f988
Python
etnpce/PhysLab2
/autoErr.py
UTF-8
3,774
3.5625
4
[]
no_license
class autoErr: __slots__ = ("val","err") # Root of all evil def __init__(self, val, err): self.val = val # INVARIANT: self.err >= 0 self.err = abs(err) # Python has to ways to print a value: # str(x) calls __str__ if it exists, and is meant to be "pretty" # repr(x) calls __repr__ if it exists, # and is supposed to be a valid expression for reproducing the value def __repr__(self): # Python f(ormat)-strings are nice # { ... } escapes an f-string, and puts in a value. return f"autoErr{(self.val,self.err)}" def __str__(self): return f"{self.val}±{self.err}" # Python uses "dunder methods" to implement operator overloading def __abs__(self):#abs(x) = x.__abs__ return autoErr(abs(self.val), self.err) def __neg__(self): # (-x) = x.__neg__ return autoErr(-self.val, self.err) def __add__(self, oth): # a+b = a.__add__(b) # I use this if pattern constantly to allow interaction with normal numbers if isinstance(oth, autoErr): return autoErr(self.val+oth.val, (self.err**2 + oth.err**2)**0.5) else: return autoErr(self.val+oth, self.err) def __sub__(self, oth): # a-b = a.__minus__(b) if isinstance(oth, autoErr): return autoErr(self.val-oth.val, (self.err**2 + oth.err**2)**0.5) else: return autoErr(self.val-oth, self.err) def __mul__(self, oth): # a*b = a.__mul__(b) if isinstance(oth, autoErr): val = self.val * oth.val return autoErr(val, val*((self.err/self.val)**2 + (oth.err/oth.val)**2)**0.5) else: return autoErr(self.val*oth, abs(self.err*oth)) # abs to maintain invariant def __truediv__(self, oth): # a/b = a.__truediv__(b) # __div__ is deprecated, and exists purely for python 2 compatibility if isinstance(oth, autoErr): val = self.val / oth.val return autoErr(val, val*((self.err/self.val)**2 + (oth.err/oth.val)**2)**0.5) else: return autoErr(self.val/oth, abs(self.err/oth)) def __pow__(self, oth): # a^b = a.__pow__(b) if isinstance(oth, autoErr): return NotImplemented # Let's not do this #l,u = oth.split() #l = self**l #u = self**u #ll, lu = l.split() #ul, uu = u.split() #return autoErr((uu+ll)/2, (uu-ll)/2) else: val = self.val**oth return autoErr(val, abs(val*oth*self.err/self.val)) # When python tries to do a binary operation, such as a+b, # it checks both a.__add__(b) and b.__radd(a), and # takes the first one to succeed. This allows you to make # custom types compatible with a base type on both sides. # Otherwise, 2*autoErr(...) would be an error. def __radd__(self, oth): # a+b = b.__radd__(a) return self + oth def __rsub__(self, oth): # a-b = b.__rsub__(a) return -self + oth def __rmul__(self, oth): # a*b = b.__rmul__(a) return self * oth def __rtruediv__(self, oth): # a/b = b.__rtruediv__(a) return self**-1 * oth #def __rpow__(self, oth): # These methods allow you to convert a autoErr into normal number types def __float__(self): # float(x) = x.__float__() return float(self.val) def __int__(self): # int(x) = x.__int__() return int(self.val) def __long__(self): # long(x) = x.__long__() return long(self.val) # The only non-dunder method, used for convenience def split(self): return (self.val - self.err, self.val + self.err)
true
2c3474930d5dbbcb11abd69a54cd36a8acedb39a
Python
Psyborrg/Baka-Bot
/Music.py
UTF-8
3,934
2.6875
3
[]
no_license
import asyncio import time import discord from discord.ext import commands from discord import FFmpegPCMAudio from youtube_dl import YoutubeDL ytdl_format_options = { 'format': 'bestaudio/best', 'outtmpl': '%(extractor)s-%(id)s-%(title)s.%(ext)s', 'restrictfilenames': True, 'noplaylist': True, 'nocheckcertificate': True, 'ignoreerrors': False, 'logtostderr': False, 'quiet': False, 'no_warnings': True, 'default_search': 'auto', 'source_address': '0.0.0.0' # bind to ipv4 since ipv6 addresses cause issues sometimes } ffmpeg_options = { 'options': '-vn' } # List variable to hold the player objects for music music_queue = [] class Music(commands.Cog, description="music"): def __init__(self, bot): self.bot = bot #Leave command to have the bot disconnect from the channel @commands.command(name='leave', help='Disconnect the bot from its current voice channel') async def leave(self, ctx): #If the bot is in a voice channel if ctx.voice_client: await ctx.voice_client.disconnect() await ctx.send("Bye Bye!") #If not in a voice channel else: await ctx.send("I'm not in a voice channel silly!") # # Suppress noise about console usage from errors # youtube_dl.utils.bug_reports_message = lambda: '' @commands.command(name='stop', help='stops the music') async def stop(self, ctx): if ctx.voice_client.is_playing(): ctx.voice_client.stop() await ctx.send('stopped the music') @commands.command() async def play(self, ctx, url : str): if ctx.voice_client is None: if ctx.author.voice: #Connect to the message author's voice channel channel = ctx.message.author.voice.channel await channel.connect() else: await ctx.send("I'm not sure which channel to join. Do you think you could join a voice channel for me?") with YoutubeDL(ytdl_format_options) as ydl: info = ydl.extract_info(url, download=False) URL = info['formats'][0]['url'] if not ctx.voice_client.is_playing(): ctx.voice_client.play(FFmpegPCMAudio(URL, **ffmpeg_options), after=lambda x: self.play_next(ctx)) ctx.voice_client.is_playing() await ctx.send(f"Playing: {info['title']}") print(f"playing {info['title']}") else: music_queue.append(URL) await ctx.send(f"Added {info['title']} to the queue") print(f"Added {info['title']} to the queue") def play_next(self, ctx): # wait until there is nothing playing while ctx.voice_client.is_playing(): print("I'm playing right now, stop it") time.sleep(2) # If there is a song in the queue, get it and then pop it from the queue if (len(music_queue) >= 1): url = music_queue[0] music_queue.pop(0) # Play the popped player, and then repeat this function after the source has ended with YoutubeDL(ytdl_format_options) as ydl: info = ydl.extract_info(url, download=False) URL = info['formats'][0]['url'] ctx.voice_client.play(FFmpegPCMAudio(URL, **ffmpeg_options), after=lambda x: self.play_next(ctx)) ctx.voice_client.is_playing() asyncio.run_coroutine_threadsafe(ctx.send(f"playing {info['title']}"), self.bot.loop) print(f"playing {info['title']}") else: asyncio.run_coroutine_threadsafe(ctx.send("No more songs in the queue"), self.bot.loop) time.sleep(5) asyncio.run_coroutine_threadsafe(ctx.voice_client.disconnect(), self.bot.loop)
true
4c31db1025e984d406ebf400088d4ff824f3a323
Python
swagatk/Raspi_codes
/Edukit3/pwm_motors.py
UTF-8
2,170
3.1875
3
[]
no_license
# CamJam Edukit 3 - robotics # Worksheet - 7: controlling motors with PWM import RPi.GPIO as GPIO import time #set GPIO modes GPIO.setmode(GPIO.BCM) GPIO.setwarnings(False) # set variables for GPIO motor Pins pinMotorAForward = 10 pinMotorABackward = 9 pinMotorBForward = 8 pinMotorBBackward = 7 # PWM parameters Frequency = 20 DutyCycleA = 30 DutyCycleB = 30 Stop = 0 # Set the GPIO Pin Mode GPIO.setup(pinMotorAForward, GPIO.OUT) GPIO.setup(pinMotorABackward, GPIO.OUT) GPIO.setup(pinMotorBForward, GPIO.OUT) GPIO.setup(pinMotorBBackward, GPIO.OUT) # Set the GPIO to Software PWM at 'Frequency' Hertz pwmMotorAForward = GPIO.PWM(pinMotorAForward, Frequency) pwmMotorABackward = GPIO.PWM(pinMotorABackward, Frequency) pwmMotorBForward = GPIO.PWM(pinMotorBForward, Frequency) pwmMotorBBackward = GPIO.PWM(pinMotorBBackward, Frequency) # set the duty cycle for software PWM - initially to 0 pwmMotorAForward.start(Stop) pwmMotorABackward.start(Stop) pwmMotorBForward.start(Stop) pwmMotorBBackward.start(Stop) def stopmotors(): pwmMotorAForward.ChangeDutyCycle(Stop) pwmMotorABackward.ChangeDutyCycle(Stop) pwmMotorBForward.ChangeDutyCycle(Stop) pwmMotorBBackward.ChangeDutyCycle(Stop) def forward(): pwmMotorAForward.ChangeDutyCycle(DutyCycleA) pwmMotorABackward.ChangeDutyCycle(Stop) pwmMotorBForward.ChangeDutyCycle(DutyCycleB) pwmMotorBBackward.ChangeDutyCycle(Stop) def backward(): pwmMotorAForward.ChangeDutyCycle(Stop) pwmMotorABackward.ChangeDutyCycle(DutyCycleA) pwmMotorBForward.ChangeDutyCycle(Stop) pwmMotorBBackward.ChangeDutyCycle(DutyCycleB) def turnleft(): pwmMotorAForward.ChangeDutyCycle(Stop) pwmMotorABackward.ChangeDutyCycle(DutyCycleA) pwmMotorBForward.ChangeDutyCycle(DutyCycleB) pwmMotorBBackward.ChangeDutyCycle(Stop) def turnright(): pwmMotorAForward.ChangeDutyCycle(DutyCycleA) pwmMotorABackward.ChangeDutyCycle(Stop) pwmMotorBForward.ChangeDutyCycle(Stop) pwmMotorBBackward.ChangeDutyCycle(DutyCycleB) ###### forward() time.sleep(1) turnleft() time.sleep(0.5) forward() time.sleep(1) turnright() time.sleep(0.5) stopmotors() GPIO.cleanup()
true
9335e57aa2ce5a8bad6b582c4a28a63b808bd118
Python
yann021/PythonAN21
/Jour1/Exo/Tst1.py
UTF-8
98
3.640625
4
[]
no_license
a = 3 b = 12 c = 4 result = (b-a)//c print("Le resultat de l'opération est " + str(result))
true
ef0e41dccb633376c0d52796bbd1a9aa80b539d1
Python
ScholarIndex/LinkedBooks
/disambiguation/primary/model_dev/supporting_functions.py
UTF-8
553
3.046875
3
[ "MIT" ]
permissive
# -*- coding: utf-8 -*- """ Loads checked and correct disambiguations AND a sample of references which are NOT checked- """ __author__ = """Giovanni Colavizza""" import string,re def cleanup(text): """ remove punctuation except . and numbers :param text: a string :return: a string """ RE_D = re.compile('\d') tokens = text.split() new_tokens = list() for t in tokens: if RE_D.search(t): continue for p in string.punctuation: if p == ".": continue t=t.replace(p,"") new_tokens.append(t.lower().strip()) return " ".join(new_tokens)
true
f6f9dc6c06adcc69d61b69cebdc4d522a8325205
Python
abubakarsiddik1221/SiddikR151530_DSP
/linearity_dtft.py
UTF-8
1,022
3.03125
3
[]
no_license
from pylab import * import matplotlib.pyplot as plt import numpy as np import cmath as cm k=int(input("enter number of samples for x[n]:")) x=[] print("enter samples for x[n]:") for i in range(0,k): y=int(input()) x=np.append(x,y) print("x[n]=",x) N=1000 j=cm.sqrt(-1) X=[] w=np.linspace(-np.pi,np.pi,N) for i in range(0,N): s=0 for n in range(0,len(x)): s=s+(x[n]*np.exp(-n*w[i]*j)) X.append(s) print("X[n]=",np.abs(X)) plt.subplot(411) plt.plot(w,np.abs(X)) plt.xlabel("freq(w/pi)") plt.ylabel("magnitude") plt.title("magnitude spectrum") plt.grid() plt.subplot(412) plt.plot(w,angle(X)/np.pi) plt.xlabel("freq(w/pi)") plt.ylabel("phase angle in radian") plt.title("phase spectrum") plt.grid() plt.subplot(413) plt.plot(w,real(X)) plt.xlabel("freq(w/pi)") plt.ylabel("real part") plt.title("real values of X") plt.grid() plt.subplot(414) plt.plot(w,imag(X)) plt.xlabel("freq(w/pi)") plt.ylabel("imaginary part") plt.title("imaginary values of X") plt.grid() plt.show()
true
671b1f2e7960e8bcc394d17de9ba2f7f9d86310c
Python
nbearman/city-scrapers
/city_scrapers/spiders/det_entertainment_commission.py
UTF-8
2,784
2.78125
3
[ "MIT" ]
permissive
# -*- coding: utf-8 -*- import re from datetime import time from dateutil.parser import parse from city_scrapers.constants import COMMISSION from city_scrapers.spider import Spider class DetEntertainmentCommissionSpider(Spider): name = 'det_entertainment_commission' agency_name = 'Detroit Entertainment Commission' timezone = 'America/Detroit' allowed_domains = ['www.detroitsentertainmentcommission.com'] start_urls = ['https://www.detroitsentertainmentcommission.com/services'] def parse(self, response): """ `parse` should always `yield` a dict that follows the Event Schema <https://city-bureau.github.io/city-scrapers/06_event_schema.html>. Change the `_parse_id`, `_parse_name`, etc methods to fit your scraping needs. """ location = { 'name': 'Coleman A. Young Municipal Center', 'address': '2 Woodward Avenue, Detroit, MI 48226', 'neighborhood': '', } for item in self._parse_entries(response): data = { '_type': 'event', 'name': 'Entertainment Commission', 'event_description': '', 'classification': COMMISSION, 'start': self._parse_start(item, response), 'end': { 'date': None, 'time': None, 'note': '' }, 'all_day': False, 'location': location, 'documents': [], 'sources': [{ 'url': response.url, 'note': '' }], } data['status'] = self._generate_status(data) data['id'] = self._generate_id(data) yield data def _parse_entries(self, response): entries_list = [] month_day_xpath = response.xpath( '//p[span[contains(string(), "Next Meeting Date")]]/following-sibling::p[span]//text()' ).extract() for item in month_day_xpath: valid_entry = re.match(r"\w+ \d{1,2}$", item) if valid_entry: entries_list.append(item) return entries_list def _parse_start(self, item, response): """ Parse start date and time. """ year_text = response.xpath('//p//span[contains(string(), "Meeting Dates")]/text()' ).extract_first() year_regex = re.search(r"(\d+){4}", year_text).group(0) try: start_date = parse(item + ', ' + year_regex) return {'date': start_date.date(), 'time': time(17, 00), 'note': ''} except ValueError: return {'date': None, 'time': None, 'note': item}
true
12680f7077b4d0dda117697d5e36bc0fc735f29a
Python
Yushgoel/Python
/oddeven.py
UTF-8
155
3.96875
4
[]
no_license
number = raw_input("Please enter a positive number.") number = float(number) remainder = number % 2.0 if remainder == 0: print "Even" else: print "Odd"
true
b4e359fce4b5e0af6118bac4390b003e86eb3c96
Python
andresrv94/zerotomastery-twitterbot
/search.py
UTF-8
2,491
3.125
3
[]
no_license
# This file will use the Tweepy Cursor API to reply to mentions, follow users that follow us, and a backup like and retweet # imports tweepy, time, and the create_api function from config.py import tweepy import time from config import create_api # Define a follow_followers function that accepts api and check if they are not followed, then follow them # Define a check_mentions function that accepts api, keywords, and since_id, follow and reply to the user if user has mentioned us def check_mentions(api, keywords, since_id): new_since_id = since_id for tweet in tweepy.Cursor(api.mentions_timeline, since_id=since_id).items(100): new_since_id = max(tweet.id, new_since_id) if tweet.in_reply_to_status_id is not None: continue if any(keyword in tweet.text.lower() for keyword in keywords): if not tweet.user.following: tweet.user.follow() api.update_status(status="\"while(!( succeed = try_again() ) )\" \nZero To Mastery, ZTMBot to the rescue! \nhttps://zerotomastery.io/", in_reply_to_status_id=tweet.id) return new_since_id # Define a fav_retweet function that accepts api, create terms string to search for and use the tweepy.Cursor object to search those terms 100 times def fav_retweet(api): ''' This function search for tweets in the with a search criteria and automatic like the tweet if the tweet has not been liked and retweet the tweet if the tweet has not been retweeted ''' search = ["#ZTM", "#Zerotomastery"] for tweet in tweepy.Cursor(api.search, search).items(100): try: if not tweet.favorite(): tweet.favorite() print("I have liked the tweet") if not tweet.retweet(): tweet.retweet() print('Retweeted the tweet') except tweepy.TweepError as e: print(e.reason) except StopIteration: break # Define a main function to connect to the api and create a since_id counter, call all above functions def main(): api = create_api() since_id = 1 keywords = ["#ZTM", "#Zerotomastery", "#ztm", "zerotomastery", "ZeroToMastery"] while True: since_id = check_mentions(api, keywords, since_id) fav_retweet(api) time.sleep(60) # if __name__ main, call the main function if __name__ == "__main__": main()
true
b0bc8dc7a9c96845803d99c41b3cd75baf391552
Python
Godaday/pythonDemo
/mergeExcel/main.py
UTF-8
2,075
2.921875
3
[]
no_license
#pip3 install xlrd #pip3 install xlsxwriter import os import xlrd import xlsxwriter import datetime,time Target_Folder_Path="mergeData/" #合并Excel目标文件夹默认程序当前目录下 Sheet_Index=0#数据在Excel的第几个Sheet中,默认第一个0 First_Data_row=5#数据开始的第一行(排除表头) mergeDoneData=[]#存储读取数据 def MergeFiles(folderPath): for root ,dirs,files in os.walk(folderPath): for name in files: fileFullPath =os.path.join(root,name) finalData=ReadExcelRow(fileFullPath) WriteMargeDataInNewFile(finalData) #读取文件内容 def ReadExcelRow(filePath): filedata =xlrd.open_workbook(filePath) sheets = filedata.sheets() if len(sheets)>0: print("reading file- :",filePath) tragetSheet =sheets[Sheet_Index] rowCount=0 for rownum in range(tragetSheet.nrows): if rownum<First_Data_row-1: continue currentRow=tragetSheet.row_values(rownum) if len(currentRow[1].strip())!=0 and len(currentRow[2].strip())!=0: currentRow.insert(0,filePath.replace(Target_Folder_Path,""))#增加一列文件名 mergeDoneData.append(currentRow) rowCount+=1 print("Rows Count:",rowCount) else: print(filePath,"has 0 sheet") return mergeDoneData def WriteMargeDataInNewFile(mergeDoneData): newfileName= "合并结果"+time.strftime("%Y-%m-%d-%H-%M-%S",time.localtime(time.time()))+".xlsx" merageDoneFile=xlsxwriter.Workbook(newfileName) merageDoneFile_Sheet = merageDoneFile.add_worksheet() for row in range(len(mergeDoneData)): for cell in range(len(mergeDoneData[row])): value=mergeDoneData[row][cell] merageDoneFile_Sheet.write(row,cell,value) merageDoneFile.close() print('merage excel is done file name is',newfileName) os.system("start explorer %s" % os.getcwd()) if __name__=='__main__': MergeFiles(Target_Folder_Path)
true
a643b53e755277aa450f0ef97e3bdc56392f6e54
Python
c0deTang/lintCode
/140_fast-power/fast-power.py
UTF-8
578
3.1875
3
[]
no_license
# coding:utf-8 ''' @Copyright:LintCode @Author: CodeWTKH @Problem: http://www.lintcode.com/problem/fast-power @Language: Python @Datetime: 17-06-01 15:07 ''' class Solution: """ @param a, b, n: 32bit integers @return: An integer """ def fastPower(self, a, b, n): # write your code here if n == 0: return 1 % b elif n == 1: return a % b else: i = n // 2 s = self.fastPower(a, b, i) ** 2 if n % 2: s = s * a return s % b
true
fd53c2cbd6aee3426cd501e520576f754c1de955
Python
james-claar/Python-Projects
/email_checker.py
UTF-8
2,434
2.984375
3
[]
no_license
""" A Project I created to check my email without opening a Gmail tab. """ import time from googleapiclient.discovery import build from httplib2 import Http from oauth2client import file, client, tools from blink1.blink1 import blink1 SCOPES = 'https://www.googleapis.com/auth/gmail.readonly' LIGHT_COLOR_RGB = "#CC0000" # Flash this color upon receiving emails. Should be bright and noticeable. OLD_EMAIL_COLOR = "#330000" # Fade to this color if there are emails but they are not new. LONG_FADE_LENGTH_MS = 5 * 1000 FLASH_TIMES = 5 FLASH_LENGTH = 0.15 WAIT_LENGTH = 0.15 CHECK_WAIT_LENGTH = 3 # Wait this many seconds before checking emails again def authenticate(): store = file.Storage('token.json') creds = store.get() if not creds or creds.invalid: flow = client.flow_from_clientsecrets('credentials.json', SCOPES) creds = tools.run_flow(flow, store) return build('gmail', 'v1', http=creds.authorize(Http())) def get_message_number(service): # Call the Gmail API to fetch INBOX, and return the amount of unread messages in the INBOX results = service.users().messages().list(userId='me', labelIds=['UNREAD', 'INBOX']).execute() messages = results.get('messages', []) return len(messages) def b1_flash(b1_object): for _ in range(FLASH_TIMES - 1): b1_object.fade_to_color(100, LIGHT_COLOR_RGB) time.sleep(FLASH_LENGTH) b1_object.off() # Fadeout time.sleep(WAIT_LENGTH) b1_object.fade_to_color(100, LIGHT_COLOR_RGB) time.sleep(FLASH_LENGTH) b1_object.fade_to_color(LONG_FADE_LENGTH_MS, OLD_EMAIL_COLOR) time.sleep(LONG_FADE_LENGTH_MS / 1000) # Give the blink1 time to fade def main(): service = authenticate() old_message_num = 0 with blink1() as b1: # Let user know it is working b1.fade_to_color(100, "#005500") time.sleep(2) b1.off() time.sleep(1) while True: message_num = get_message_number(service) if message_num == 0: b1.off() elif message_num > old_message_num: # We have new messages b1_flash(b1) elif message_num > 0: b1.fade_to_color(100, OLD_EMAIL_COLOR) old_message_num = message_num time.sleep(CHECK_WAIT_LENGTH) if __name__ == '__main__': main()
true
1525b6591117eaee608fefe3bcf9e1cdcfed9de6
Python
damlassugur/KohenenNetwork
/number.py
UTF-8
1,403
3.140625
3
[]
no_license
import numpy as np import random import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D #3 sınıftan 200er nokta oluşturabilmek amacıyla farklı ortalama ve varyans değerlerine sahip gauss dağılımlarından faydalanılmıştır mu1=1000 sigma1=500 mu2=2 sigma2=6 mu3=3 sigma3=7 #noktalar npy noktasına kaydedildi #dosyadan çekilen nokta kümeleri kullanıldı. def nokta(mu, sigma,x0,y0,z0): n1=[1 for i in range(200)] n2=[1 for i in range(200)] n3=[1 for i in range(200)] for i in range(200): #birinci nokta kümesi x=x0+random.gauss(mu,sigma) y=y0+random.gauss(mu,sigma) z=z0+random.gauss(mu,sigma) n1[i]=[x,y,z] return np.array(n1) n1=nokta(mu1,sigma1,10,10,-10) n2=nokta(mu2,sigma2,-40,10,-10) n3=nokta(mu3,sigma3,10,-20,10) #np.save('n1.npy',n1) #np.save('n2.npy',n2) #np.save('n3.npy',n3) train=[] train.extend(n1[0:130]) train.extend(n2[0:130]) train.extend(n3[0:130]) test=[] test.extend(n1[130:200]) test.extend(n2[130:200]) test.extend(n3[130:200]) #np.save('train1.npy', train) #np.save('test1.npy', test) fig = plt.figure() ax = fig.add_subplot(111,projection='3d') ax.scatter(n1[:,0],n1[:,1],n1[:,2],c='r') ax.scatter(n2[:,0],n2[:,1],n2[:,2],c='blue') ax.scatter(n3[:,0],n3[:,1],n3[:,2],c='purple') plt.title('Belirlenmiş Nokta Kümesi') plt.show()
true
262ec8a9fc2241422d79720605e903e873c25d4e
Python
BLOODMAGEBURT/exercise100
/data-structure/sort-search/5.9.插入排序.py
UTF-8
1,522
4.40625
4
[]
no_license
# -*- coding: utf-8 -*- """ ------------------------------------------------- File Name: 5.9.插入排序 Description : Author : Administrator date: 2019/10/12 0012 ------------------------------------------------- Change Activity: 2019/10/12 0012: ------------------------------------------------- """ def insertion_sort(alist): size = len(alist) # 先循环获取从第二项到最后一项 for i in range(1, size): current_value = alist[i] for j in range(i - 1, -1, -1): # 将值依次与前方的数字做比较, 如果比前一项小,则前一项往后移一位,直到比前一项大为止 if alist[j] > current_value: alist[j + 1] = alist[j] # 需要注意如果比第一项大的时候 if j == 0: alist[0] = current_value else: alist[j + 1] = current_value break return alist def insertion_sort2(alist): """ 使用while的方式 :param alist: :return: """ for index in range(1, len(alist)): current_value = alist[index] position = index while position > 0 and alist[position - 1] > current_value: alist[position] = alist[position - 1] position -= 1 alist[position] = current_value return alist if __name__ == '__main__': alist = [45, 20, 15, 30, 25, 10] print(insertion_sort2(alist))
true
62122b8a006e3bedd738fb04afa2e0ac85ac63a5
Python
m1m0r1/galgo
/galgo/samutil.py
UTF-8
25,411
2.53125
3
[]
no_license
# -*- coding: utf-8 -*- import logging from operator import attrgetter from .interval import Interval, IntervalMixin import pysam from .utils import fill_text, cached_property, attrdict from . import csamutil from builtins import zip import re # deprecated def _parse_region_old(region): """ Args: region: 1-based region Returns: (contig, start, end) 0-based coordinate """ sp = region.split(':') contig = sp[0] if len(sp) == 1: return (contig, None, None) sp = sp[1].split('-') start = int(sp[0].replace(',', '')) if len(sp) == 1: return (contig, start - 1, None) return (contig, start - 1, int(sp[1].replace(',', ''))) _region_pat2 = re.compile('^([\w*:]+):(\d+)-(\d+)$') _region_pat1 = re.compile('^([\w*:]+):(\d+)$') _region_pat0 = re.compile('^([\w*:]+)$') def parse_region(region): """ Args: region: 1-based region Returns: (contig, start, end) 0-based coordinate >>> parse_region('abc*011') ('abc*011', None, None) >>> parse_region('abc:abc00001') ('abc:abc00001', None, None) >>> parse_region('abc:abc00001:1001') ('abc:abc00001', 1000, None) >>> parse_region('abc00001:1001') ('abc00001', 1000, None) >>> parse_region('abc:abc00001:1001-2000') ('abc:abc00001', 1000, 2000) >>> parse_region('1:1001-2000') ('1', 1000, 2000) >>> parse_region('1:1001') ('1', 1000, None) >>> parse_region('1') ('1', None, None) """ m = _region_pat2.match(region) if m: c, s, e = m.groups() return (c, int(s) - 1, int(e)) m = _region_pat1.match(region) if m: c, s = m.groups() return (c, int(s) - 1, None) m = _region_pat0.match(region) if m: c, = m.groups() return (c, None, None) raise ValueError(region) def sam_intervals(sam, regions=None): """ sam: pysam.Samfile """ ref_lens = dict(zip(sam.references, sam.lengths)) if regions is None: # ':' can be accidentally contained in refenrece names (e.g. HLA:HLA00001) for contig in sam.references: start = 0 end = ref_lens[contig] yield Interval(contig, start, end, None) else: for r in regions: contig, start, end = parse_region(r) if start is None: start = 0 if end is None: end = ref_lens[contig] yield Interval(contig, start, end, None) import re _blank_pat1 = re.compile('^\s+$') def _is_blank(st): return bool(_blank_pat1.match(st)) # This does not work for multimapped records class LocalInfo: def __init__(self, sam, iv, fasta=None, skip_flags=0x004): self.contig = iv.contig self.start = iv.start self.end = iv.end if fasta: fasta = pysam.Fastafile(fasta) ref_bases = fasta.fetch(reference=iv.contig, start=iv.start, end=iv.end).upper() else: ref_bases = '?' * (iv.end - iv.start) self._ref_bases = ref_bases self._reads = [Read(rec) for rec in sam.fetch(reference=iv.contig, start=iv.start, end=iv.end) if not rec.flag & skip_flags] self._bases_liss = bases_liss = [] # e.g. [['A', 'GC', '-', ...]] for read in self._reads: bases_lis = read.get_bases_list(iv.start, iv.end) if bases_lis is None: # is it ok? continue bases_liss.append(bases_lis) self._pos_infos = pos_infos = [] #logging.info(bases_liss[56]) for bases_lis in zip(*bases_liss): length = max(1, max(len(b) for b in bases_lis)) pos_infos.append({'length': length, 'bases': bases_lis}) self._max_lens = lens = [r['length'] for r in pos_infos] self.align_length = sum(lens) def iter_column_info(self): """ Yields: { 'bases': ['A', 'T', 'A', '-', '-', '-', ...], # all the bases should have 1 bp width } """ #logging.info(self._max_lens) #logging.info(self._bases_liss) assert len(self._max_lens) == len(self._pos_infos) for l, pos_info in zip(self._max_lens, self._pos_infos): base_bundles = [fill_text(bs, l, char='-') for bs in pos_info['bases']] # TODO distinguish empty and padding #logging.info((l, bases_lis)) for base_column in zip(*base_bundles): yield {'bases': list(base_column)} def get_left_offset(self, pos): # pos0 assert self.start <= pos < self.end offset = pos - self.start return sum(self._max_lens[:offset], 0) def get_ref_seq(self): return ''.join(self._ref_bases) def get_ref_align(self): filled = [fill_text(bs, l, char='-') for l, bs in zip(self._max_lens, self._ref_bases)] # fill missing bases return filled def iter_read_aligns(self): # TODO sorted by position bases for read, bases_lis in zip(self._reads, self._bases_liss): if bases_lis is None: continue filled = [fill_text(bs, l, char=(' ' if _is_blank(bs) else '-')) for l, bs in zip(self._max_lens, bases_lis)] # fill missing bases yield (read, filled) def iter_align_pairs(self): """ Yields: (Read, (aln, ref_aln)) """ ref_bases = self._ref_bases for read, bases_lis in zip(self._reads, self._bases_liss): if bases_lis is None: continue b1s = [] b2s = [] for b1, b2 in zip(bases_lis, ref_bases): fill_len = max(len(b1), len(b2)) #b1 = fill_text(b1, fill_len, char=(' ' if _is_blank(b1) else '-')) #b2 = fill_text(b2, fill_len, char=(' ' if _is_blank(b2) else '-')) b1 = fill_text(b1, fill_len, char=(' ' if _is_blank(b1) else '-')) b2 = fill_text(b2, fill_len, char=(' ' if _is_blank(b2) else '-')) b1s.append(b1) b2s.append(b2) seq1 = ''.join(b1s) seq2 = ''.join(b2s) yield read, (seq1, seq2) class Cigar(csamutil.Cigar): """ >>> Cigar.parse('2I3M3D3M').values == [(Cigar.I, 2), (Cigar.M, 3), (Cigar.D, 3), (Cigar.M, 3)] True >>> Cigar.parse('3M2I3M2S').values == [(Cigar.M, 3), (Cigar.I, 2), (Cigar.M, 3), (Cigar.S, 2)] True >>> Cigar([(Cigar.I, 2), (Cigar.M, 3), (Cigar.D, 3), (Cigar.M, 3)]).to_str() '2I3M3D3M' >>> Cigar([(Cigar.M, 3), (Cigar.I, 2), (Cigar.M, 3), (Cigar.S, 2)]).to_str() '3M2I3M2S' >>> ' '.join(Cigar([(Cigar.I, 2), (Cigar.M, 3), (Cigar.D, 3), (Cigar.M, 3)]).to_str_tuple()) '2I 3M 3D 3M' >>> ' '.join(Cigar([(Cigar.M, 3), (Cigar.I, 2), (Cigar.M, 3), (Cigar.S, 2)]).to_str_tuple()) '3M 2I 3M 2S' >>> Cigar.parse('1I1I3M2D1D3M').contract().to_str() '2I3M3D3M' >>> Cigar.parse('3M2I3M2S').contract().to_str() '3M2I3M2S' Without hard clip length >>> Cigar().read_length 0 >>> Cigar.parse('4S3M').read_length 7 >>> Cigar.parse('10H3D3M').read_length 13 >>> Cigar.parse('3M3D2M').read_length 5 >>> Cigar.parse('15M2D3I4M').read_length 22 With hard clip length >>> Cigar().query_length 0 >>> Cigar.parse('4S3M').query_length 7 >>> Cigar.parse('10H3D3M').query_length 3 >>> Cigar.parse('3M3D2M').query_length 5 >>> Cigar.parse('15M2D3I4M').query_length 22 Reference length >>> Cigar().ref_length 0 >>> Cigar.parse('4S3M').ref_length 3 >>> Cigar.parse('10H3D3M').ref_length 6 >>> Cigar.parse('3M3D2M').ref_length 8 >>> Cigar.parse('15M2D3I4M').ref_length 21 >>> c = Cigar() >>> for op, l in reversed(list(Cigar.parse('1I1I3M2D1D3M'))): ... c.prepend((op, l)) >>> str(c) '1I1I3M2D1D3M' >>> c = Cigar() >>> for op, l in Cigar.parse('1I1I3M2D1D3M'): ... c.append((op, l)) >>> str(c) '1I1I3M2D1D3M' >>> c = Cigar() >>> for op, l in Cigar.parse('1I1I3M2D1D3M'): ... c.add((op, l)) >>> str(c) '2I3M3D3M' >>> Cigar.parse('101M').clips (0, 0) >>> Cigar.parse('10M1I90M').clips (0, 0) >>> Cigar.parse('10H100M10S').clips (10, 10) >>> Cigar.parse('62H39M').clips (62, 0) >>> Cigar.parse('39M62H').clips (0, 62) >>> Cigar.parse('20S61M20H').clips (20, 20) >>> Cigar.parse('10M1I90M').has_clip() False >>> Cigar.parse('10H100M10S').has_clip() True >>> Cigar.parse('62H39M').has_clip() True >>> Cigar.parse('2M4I2M').hard_clip_seq('ATCGATCG') 'ATCGATCG' >>> Cigar.parse('2S4I2S').hard_clip_seq('ATCGATCG') 'ATCGATCG' >>> Cigar.parse('2H4I2H').hard_clip_seq('ATCGATCG') # only clip when hard clip 'CGAT' >>> Cigar.parse('2H4I2H').hard_clip_seq([0, 1, 2, 3, 4, 5, 6, 7]) # quality scores [2, 3, 4, 5] # >>> Cigar.parse('2H' '4I' '2H').is_consistent_with(Cigar.parse('2S' '4I' '2S')) """ _re_del = re.compile('-+') def aln2cigar(aln, ref_aln=None): """ >>> assert aln2cigar('NNN') == Cigar.parse('3M') >>> assert aln2cigar('NNN') != Cigar.parse('4M') >>> assert aln2cigar('---') == Cigar.parse('3D') >>> assert aln2cigar('---NNN') == Cigar.parse('3D3M') >>> assert aln2cigar('NNN---') == Cigar.parse('3M3D') >>> assert aln2cigar('---NNN--') == Cigar.parse('3D3M2D') >>> assert aln2cigar('NNN---NN') == Cigar.parse('3M3D2M') >>> aln1 = '--------ATATGGGCCATCT' >>> assert aln2cigar(aln1) == Cigar.parse('8D13M') >>> aln2 = 'ATATATATATACGGG--ATAT' >>> assert aln2cigar(aln2) == Cigar.parse('15M2D4M') >>> aln2cigar(aln1, aln2).to_str() '8D7M2I4M' >>> aln2cigar(aln2, aln1).to_str() '8I7M2D4M' """ if ref_aln is None: return _aln2cigar1(aln) return _aln2cigar2(aln, ref_aln) def _aln2cigar1(aln): cigar = Cigar() s = 0 e = len(aln) for m in _re_del.finditer(aln): s1 = m.start() e1 = m.end() #print (m, s1, e1) if s < s1: cigar.append((Cigar.M, s1 - s)) cigar.append((Cigar.D, e1 - s1)) s = e1 if s < e: cigar.append((Cigar.M, e - s)) return cigar def _aln2cigar2(aln, ref_aln): cigar = Cigar() op = None l = 0 for a1, a2 in zip(aln, ref_aln): if a1 == '-': if op == Cigar.D: l += 1 continue if op is not None: cigar.append((op, l)) op = Cigar.D l = 1 elif a2 == '-': if op == Cigar.I: l += 1 continue if op is not None: cigar.append((op, l)) op = Cigar.I l = 1 else: if op == Cigar.M: l += 1 continue if op is not None: cigar.append((op, l)) op = Cigar.M l = 1 cigar.append((op, l)) return cigar class SamInfo(csamutil.SamInfo): """ >>> sam_info = SamInfo(attrdict(references=['chr1'], lengths=[1000], get_tid=lambda x: 1)) >>> rec_tmpl = dict(tid=1, qname='1', pos=10, aend=110, is_unmapped=0) >>> sam_info.get_length('chr1') 1000 >>> sam_info.get_length_tid(1) 1000 >>> r1 = sam_info.get_read_info(attrdict(rec_tmpl, cigartuples=Cigar.parse('100M').values)) >>> r1.left_overhang, r1.right_overhang, r1.overhang (0, 0, 0) >>> r2 = sam_info.get_read_info(attrdict(rec_tmpl, cigartuples=Cigar.parse('5S100M').values)) >>> r2.left_overhang, r2.right_overhang, r2.overhang (5, 0, 5) >>> r3 = sam_info.get_read_info(attrdict(rec_tmpl, cigartuples=Cigar.parse('11S100M').values)) >>> r3.left_overhang, r3.right_overhang, r3.overhang (10, 0, 10) >>> r4 = sam_info.get_read_info(attrdict(rec_tmpl, cigartuples=Cigar.parse('11S100M12H').values)) >>> r4.left_overhang, r4.right_overhang, r4.overhang (10, 12, 12) """ class Read(IntervalMixin): has_lclip = None has_rclip = None lclip = None rclip = None qlen = None qalen = None def __init__(self, rec): self._rec = rec self.name = rec.qname self.start = rec.pos self.end = rec.pos if rec.aend is None else rec.aend self.rec = rec # pysam.AlignedRead self._seq = rec.seq self.unmapped = int(rec.is_unmapped) self.nins = 0 self.ndel = 0 if not self.unmapped: seq_len = rec.query_length # previously rec.rlen qstart = rec.query_alignment_start # previously rec.qstart qend = rec.query_alignment_end # previously rec.qend self.qlen = rec.query_alignment_length # aligned length of query sequence self.cigar = Cigar(rec.cigar) self.lclip, self.rclip = self.cigar.clips # soft clip or hard clip self.has_lclip = self.lclip > 0 self.has_rclip = self.rclip > 0 #self.has_lclip = (qstart > 0) #self.has_rclip = (qend < seq_len) for op, length in self.cigar: if op == Cigar.D: self.ndel += length elif op == Cigar.I: self.nins += length self.mapq = rec.mapq self.alen = 0 if self.end is None else self.end - self.start # aligned length of reference reference sequence self.tags = dict(rec.get_tags()) self.edit = self.tags.get('NM', None) #self.mismatches = 0 self.reverse = int(rec.is_reverse) self.suppl = int(rec.is_supplementary) self.read1 = int(rec.is_read1) self.contig = self.rname = self._rec.reference_name # set mate pattern # ----------> .... # right unmapped # ... <---------- # left unmapped self.is_left = int(not rec.is_reverse) # mate is expected to be in opposite side self.mate_miss = int(rec.mate_is_unmapped) self.mate_tid = rec.next_reference_id self.mate_pos = rec.next_reference_start self.tlen = tlen = rec.tlen # whether mate is far is determined from tlen and deviation of tlen distribution #self.mate_end = rec.pos + tlen if tlen > 0 else (rec.pos is rec.end is None else rec.aend) - tlen # is ok? self.mate_invert = 0 self.mate_back = 0 self.mate_jump = 0 if self.mate_miss: return self.mate_jump = int(rec.tid != self.mate_tid) self.mate_invert = int(rec.mate_is_reverse == rec.is_reverse) if not rec.is_reverse: self.mate_back = int(rec.pnext < rec.pos) else: self.mate_back = int(rec.pos < rec.pnext) @property def mate_rname(self): return rec.next_reference_name @property def both_clipped(self): return self.has_lclip and self.has_rclip @cached_property def _bases(self): return _get_aln_columns(self._seq, self.rec.cigar) @cached_property def _quals(self): return _get_aln_columns(tuple(self.rec.query_qualities), self.rec.cigar, is_qual=True) @cached_property def fragmented(self): return self.suppl or 'SA' in self.tags @cached_property def num_frags(self): sa = self.tags.get('SA') if sa is None: return 1 else: return 1 + sa.count(';') @cached_property def edit_ratio(self): return 1. * self.edit / self.alen def _get_sublist(self, lis, start, end, missing=' '): start_offset = start - self.start end_offset = end - self.end if not lis: return None if start_offset > 0: lis = lis[start_offset:] else: lis = [missing] * (-start_offset) + lis if end_offset < 0: lis = lis[:end_offset] else: lis = lis + [missing] * end_offset return lis def get_bases_list(self, start, end, missing=' '): return self._get_sublist(self._bases, start, end, missing=missing) def get_quals_list(self, start, end, missing=None): return self._get_sublist(self._quals, start, end, missing=missing) def _get_aln_columns(seq, cigar, is_qual=False, del_char=None, n_char=None): ''' Returns: [(A|T|C|G|-|*)+] at each columns >>> _get_aln_columns('AATCAGTA', Cigar.parse('2I3M3D3M').values) ['T', 'C', 'A', '-', '-', '-', 'G', 'T', 'A'] >>> _get_aln_columns('AATCAGTACC', Cigar.parse('3M2I3M2S').values) ['A', 'A', 'TCA', 'G', 'T', 'A'] >>> _get_aln_columns([1, 2, 3, 4, 5, 6, 7, 8, 9, 10], Cigar.parse('3M2I3M2S').values, is_qual=True) [(1,), (2,), (3, 4, 5), (6,), (7,), (8,)] ''' if is_qual: del_char = del_char or (20,) n_char = n_char or (20,) else: del_char = del_char or '-' n_char = n_char or '*' if seq is None: return None # mask low qualities #seq = ''.join(s if q >= 10 else '.' for (s, q) in zip(seq, rec.qual)) offset = 0 bases = [] for (op, length) in cigar: # TODO (show clip?) if op in (0, 7, 8): # M, X, = if is_qual: bases.extend([(x,) for x in seq[offset:offset + length]]) else: bases.extend(list(seq[offset:offset + length])) offset += length elif op == 1: # I if bases: # inserted seq. at start position will be ignored if is_qual: bases[-1] = bases[-1] + tuple(seq[offset:offset + length]) # add to prev sequence else: bases[-1] = bases[-1] + seq[offset:offset + length] # add to prev sequence offset += length elif op == 2: # D bases.extend([del_char] * length) elif op == 3: # N bases.extend([n_char] * length) # TODO this is rare case, but need revision elif op == 4: # S offset += length elif op == 5: # H pass elif op == 6: # P raise NotImplementedError return bases class ReadCounterBase(object): __slots__ = ('start', 'end', 'window',) def __init__(self, start, window=1): self.start = start self.end = start + window def add(self, rec): """ Add SAM Record """ raise NotImplementedError class ReadCounter(ReadCounterBase): def __init__(self, start, window): super(ReadCounter, self).__init__(start, window=window) self.count = 0 # qstart is contained self.clip = 0 self.lclip = 0 self.rclip = 0 self.bclip = 0 self.reverse = 0 self.mapq1 = 0 self.mate = MateInfoCounter() self.covlen = 0 # covered length within the bin self.covlen_mapq1 = 0 def add(self, rec): self.count += 1 is_lclip = (rec.qstart > 0) is_rclip = (rec.qend < rec.rlen) is_mapq1 = (rec.mapq <= 1) covlen = min(self.end, rec.aend) - max(self.start, rec.pos) self.clip += int(is_lclip or is_rclip) self.lclip += int(is_lclip) self.rclip += int(is_rclip) self.bclip += int(is_lclip and is_rclip) self.reverse += rec.is_reverse self.mapq1 += int(is_mapq1) self.mate.add(rec) self.covlen += covlen if is_mapq1: self.covlen_mapq1 += covlen def __str__(self): return '\t'.join((str(self.start), str(self.end), str(self.__dict__))) class MateInfoCounter(ReadCounterBase): """ Count mate info """ __slots__ = ('_tlen_far', 'unmapped', 'jumped', 'far', 'overlap', 'penetrate', 'rr', 'ff') attrs = tuple(filter(lambda x: not x.startswith('_'), __slots__)) _getter = attrgetter(*attrs) def values(self): return self._getter(self) def items(self): return dict(zip(self.attrs, self.values())) def __init__(self, tlen_far=700): self._tlen_far = tlen_far self.unmapped = self.jumped = self.far = self.overlap = self.penetrate = self.rr = self.ff = 0 def add(self, rec): if rec.mate_is_unmapped: self.unmapped += 1 return if rec.rnext != rec.tid: self.jumped += 1 return # check orientation if not rec.is_reverse: if not rec.mate_is_reverse: self.ff += 1 elif rec.tlen > self._tlen_far: self.far += 1 elif rec.pnext < rec.aend: self.overlap += 1 elif rec.tlen < 0: self.penetrate += 1 else: if rec.mate_is_reverse: self.rr += 1 elif - rec.tlen > self._tlen_far: self.far += 1 elif rec.aend - rec.pnext < - 2 * rec.tlen: # adhoc self.overlap += 1 elif rec.aend < rec.pnext: self.penetrate += 1 def __str__(self): return str(self.items()) class BreakPointCounter(ReadCounterBase): def __init__(self, start, window): self.start = start self.end = start + window self.lclips = [] def add(self, rec): self.count += 1 is_lclip = (rec.qstart > 0) is_rclip = (rec.qend < rec.rlen) is_clip = is_lclip or is_rclip is_mapq1 = (rec.mapq <= 1) if is_lclip and self.start <= rec.pos < self.end: lclips.append() self.lclip += int(is_lclip) self.rclip += int(is_rclip) self.bclip += int(is_lclip and is_rclip) self.reverse += rec.is_reverse self.mapq1 += int(is_mapq1) self.mate.add(rec) self.covlen += covlen if is_mapq1: self.covlen_mapq1 += covlen def __str__(self): return '\t'.join((str(self.start), str(self.end), str(self.__dict__))) class ReadCountGenerator(object): def __init__(self, sam, rname, start=0, end=None, window=50, mass='middle', skip_flag=0x904, counter_cls=ReadCounter): #self._samit = samit if end is None: rlens = dict(zip(sam.references, sam.lengths)) end = rlens[rname] self._samit = sam.fetch(reference=rname, start=start, end=end) self.counters = [] self.wstart = start if start % window == 0 else start // window * window # 110 -> 100, 100 -> 100, 149 -> 100 # window: 50 self.wend = end if end % window == 0 else (end // window + 1) * window # 110 -> 150, 100 -> 100, 149 -> 150 # window: 50 self.cstart = self.wstart self.cend = self.wstart self.window = window self.skip_count = 0 self.skip_flag = skip_flag # unmapped, secondary or supplementary get_read_masses = { 'start': lambda rec: (rec.pos,), 'end': lambda rec: (rec.aend - 1,), # end position of the alignment (note that aend points one past the last aligned residue) 'middle': lambda rec: ((rec.pos + rec.aend - 1) / 2.,), # middle point of the alignment 'overlap': lambda rec: range(rec.pos, rec.aend, window), # one point per window overlaped for each alignment } self.get_read_masses = get_read_masses[mass] self._bulk_size = 200 self._counter_cls = counter_cls def _flush(self): while self.counters: yield self._dequeue() def _enqueue(self): if self.wend is None: enque_size = self._bulk_size else: enque_size = min(self._bulk_size, (self.wend - self.cend) // self.window) self.counters.extend([self._counter_cls(self.cend + self.window * i, self.window) for i in xrange(enque_size)]) self.cend += self.window * enque_size def _dequeue(self): self.cstart += self.window return self.counters.pop(0) def _should_skip(self, rec): if rec.flag & self.skip_flag: self.skip_count += 1 return True def __iter__(self): try: while 1: rec = next(self._samit) if self._should_skip(rec): continue start = rec.pos # 0-based end = rec.aend while self.cend < start: for counter in self._flush(): yield counter self._enqueue() #yield self._dequeue() while self.cend < end and self.cend < self.wend: self._enqueue() while self.counters and self.counters[0].end < start: yield self._dequeue() masses = self.get_read_masses(rec) for mass in masses: rec_index = int(mass - self.cstart) // self.window if 0 <= rec_index < len(self.counters): self.counters[rec_index].add(rec) except StopIteration: pass except AssertionError as e: logging.error('Invalid record was found: (pos: %s, aend: %s)', rec.pos, rec.aend) logging.info(rec) raise for counter in self._flush(): yield counter
true
4229e94b6d8e0c586fcd93e50229589b800b7fd8
Python
lagerone/advent-of-code-2020
/src/day4/day4.py
UTF-8
4,523
2.75
3
[]
no_license
import logging import os import re from typing import List, Optional logging.basicConfig(level=logging.DEBUG) def read_input(input_path: str): input_file = open(input_path, "r") lines = input_file.readlines() result: List[str] = [] for line in lines: result.append(line.strip()) return result _VALID_HCL_PATTERN = re.compile(r"^#[0-9a-f]{6}$") _VALID_PID_PATTERN = re.compile(r"^[0-9]{9}$") class Passport: def __init__( self, byr: Optional[str] = "", iyr: Optional[str] = "", eyr: Optional[str] = "", hgt: Optional[str] = "", hcl: Optional[str] = "", ecl: Optional[str] = "", pid: Optional[str] = "", cid: Optional[str] = "", ): """""" self._byr = byr self._iyr = iyr self._eyr = eyr self._hgt = hgt self._hcl = hcl self._ecl = ecl self._pid = pid self._cid = cid def is_valid_hgt(self) -> bool: if "cm" in self._hgt: return 150 <= int(self._hgt.replace("cm", "")) <= 193 if "in" in self._hgt: return 59 <= int(self._hgt.replace("in", "")) <= 76 return False def is_valid_hcl(self) -> bool: return bool(re.match(_VALID_HCL_PATTERN, self._hcl)) def is_valid_pid(self) -> bool: return bool(re.match(_VALID_PID_PATTERN, self._pid)) def has_valid_props(self) -> bool: req_props = [ self._byr, self._iyr, self._eyr, self._hgt, self._hcl, self._ecl, self._pid, ] for p in req_props: if not bool(p): return False return True def has_valid_prop_values(self) -> bool: if not 1920 <= int(self._byr) <= 2002: logging.debug(f"invalid byr {self._byr}") return False if not 2010 <= int(self._iyr) <= 2020: logging.debug(f"invalid iyr {self._iyr}") return False if not 2020 <= int(self._eyr) <= 2030: logging.debug(f"invalid eyr {self._eyr}") return False if not self.is_valid_hgt(): logging.debug(f"invalid hgt {self._hgt}") return False if not self.is_valid_hcl(): logging.debug(f"invalid hcl {self._hcl}") return False if not self._ecl in ["amb", "blu", "brn", "gry", "grn", "hzl", "oth"]: logging.debug(f"invalid ecl {self._ecl}") return False if not self.is_valid_pid(): logging.debug(f"invalid pid {self._pid}") return False return True def parse_rows(rows: List[str]) -> List[List[str]]: """""" parsed: List[List[str]] = [] current: List[str] = [] for row in rows: if row == "": parsed.append(current) current = [] continue current.append(row) parsed.append(current) return parsed def parse_passport(rows: List[str]) -> Passport: """""" res = dict() for row in rows: try: split_res = row.split(" ") for sr in split_res: key, value = sr.split(":") res[key] = value except ValueError as e: logging.error(f"{e}") return Passport( byr=res.get("byr", ""), iyr=res.get("iyr", ""), eyr=res.get("eyr", ""), hgt=res.get("hgt", ""), hcl=res.get("hcl", ""), ecl=res.get("ecl", ""), pid=res.get("pid", ""), cid=res.get("cid", ""), ) def run_1(): input_filepath = input_filepath = os.path.join( os.path.dirname(__file__), "input.txt" ) entries = read_input(input_filepath) raw_pps = parse_rows(entries) passports = [parse_passport(pp_raw) for pp_raw in raw_pps] valid_passports = [pp for pp in passports if pp.has_valid_props()] logging.debug(f"{len(valid_passports)} valid passports of {len(passports)}.") def run_2(): input_filepath = input_filepath = os.path.join( os.path.dirname(__file__), "input.txt" ) entries = read_input(input_filepath) raw_pps = parse_rows(entries) passports = [parse_passport(pp_raw) for pp_raw in raw_pps] valid_passports = [ pp for pp in passports if pp.has_valid_props() and pp.has_valid_prop_values() ] logging.debug(f"{len(valid_passports)} valid passports of {len(passports)}.") if __name__ == "__main__": run_2()
true
91fa324d4550e6681d77b15f4b50fd2e3368ac1b
Python
AhosanuzzamanRoni/python-basic-a2z
/p-6.py
UTF-8
217
2.84375
3
[]
no_license
name="roni" age="23" gpa="3.50" name=input ("enter your name :") name=input ("enter your age :") name=input ("enter your gpa:") print("student information") print("name:"+ name) print("age:" +age) print("gpa :" +gpa)
true
472c077040d5e436a9d0b7d8e3ad13ebf4ae6d6c
Python
BTAutist/meme-generator
/quote_engine/docx_ingestor.py
UTF-8
866
2.921875
3
[]
no_license
from .ingestor_interface import IngestorInterface from .quote_model import QuoteModel import docx class DocxImporter(IngestorInterface): allowed_extensions = ['docx'] @classmethod def parse(cls, path): """ Parses text from file, returns quote models """ if not cls.can_ingest(path): raise Exception(f'Problem ingesting .docx file.' f'Please check for correct format/corrupt file.') try: doc = docx.Document(path) quote_models = [] for p in doc.paragraphs: if p.text != "": parsed = p.text.split(cls.delimiter) quote_models.append(QuoteModel(parsed[0], parsed[1])) return quote_models except BaseException: raise Exception('Error in ingesting .docx filetype')
true
faeaa75c9113dd53d1d426804d9d14c436cec68b
Python
bwjubrother/Algorithms
/Learn_advanced/5204_mergeSort.py
UTF-8
849
3.125
3
[]
no_license
import sys sys.stdin = open('5204.txt', 'r') def mergeSort(arr): if len(arr) <= 1: return arr else: mid = len(arr) // 2 left = arr[:mid] right = arr[mid:] left = mergeSort(left) right = mergeSort(right) return merge(left, right) def merge(left, right): global cnt result = [] if left[-1] > right[-1]: cnt += 1 while left and right: if left[0] <= right[0]: result.append(left.pop(0)) else: result.append(right.pop(0)) if left: result.extend(left) if right: result.extend(right) return result T = int(input()) for tc in range(T): n = int(input()) arr = list(map(int, input().split())) cnt = 0 arr = mergeSort(arr) mid = arr[n//2] print('#%d %d %d' % (tc+1, mid, cnt))
true
9b03b641978e4933b49b7ecc2918f66ae034b69b
Python
mrtbld/practice
/leetcode/238-product-of-array-except-self/238.py
UTF-8
953
3.75
4
[]
no_license
class Solution: # t:O(n), s:O(1 + output) def productExceptSelf(self, nums): """For each element in nums, return the product of every other elements. >>> _ = Solution() >>> _.productExceptSelf([1,2,3,4]) [24, 12, 8, 6] >>> _.productExceptSelf([1,2,3,4,0]) [0, 0, 0, 0, 24] >>> _.productExceptSelf([2,2,2,2]) [8, 8, 8, 8] >>> _.productExceptSelf([1]*10000)[:10] [1, 1, 1, 1, 1, 1, 1, 1, 1, 1] """ products = [1] * len(nums) # t:O(n), s:O(output) left_product = 1 right_product = 1 for i, (n, m) in enumerate(zip(nums, reversed(nums))): # t:O(n), s:O(1) # Build products of all elements to the left of nums[i]. products[i] *= left_product # t:O(1), s:O(1) left_product *= n products[-i-1] *= right_product # t:O(1), s:O(1) right_product *= m return products
true
8e2d2f6d69b53c4d23a0c6afaaa1dfe20e5d3b97
Python
jmvalente/PathPlanning
/src/entities/robot.py
UTF-8
6,721
3.28125
3
[]
no_license
from random import randint from grid import Grid import logging #Create the robot objects class Robot: population = 0 #Keep track of how many robots exist, useful for assigning ID. #We should keep a list of occupied start and end nodes so we don't give two robots the same point startNodes = () goalNodes = () def __init__(self, start, goal): self.start = start self.goal = goal self.color = self.genColor() self.ID = 'R_' + str(Robot.population) self.paths = [] self.bestPath = '' Robot.population += 1 def __str__(self): #Tell me about your mother. return "ID : {id!s}\nStart: {st!s}\nGoal: {gl!s}\nColor: {cl!s}\nBest Path: {bp}\n" \ .format(id=self.ID, st=self.start, gl=self.goal, cl=self.color, bp=self.bestPath) def findPaths(self, graph, start, goal, path=[]): path = path + [start] paths = [] if start == goal: return [path] if not graph.has_key(str(start)): return [] for node in graph[str(start)]: if node not in path: newpaths = self.findPaths(graph, node, goal, path) for newpath in newpaths: paths.append(newpath) if len(paths) > 9: return paths return paths @staticmethod def genColor(): r = randint(0, 255) g = randint(0, 255) b = randint(0, 255) return str((r, g, b)) @staticmethod def genWaypoints(obstacles): start = Robot.genWaypoint("start", obstacles) goal = Robot.genWaypoint("goal", obstacles) return start, goal @staticmethod def genWaypoint(kind, obstacles): height, width = Grid.size p = (randint(1, height) - 1, randint(1, width) - 1) if kind == "start": if p in Robot.startNodes or p in obstacles: return Robot.genWaypoint("start", obstacles) else: return p elif kind == "goal": if p in Robot.goalNodes or p in obstacles: return Robot.genWaypoint("goal", obstacles) else: return p @staticmethod def pathToDirection(path): directions = '' for step in range(len(path) - 1): if path[step][0] > path[step + 1][0]: directions += "N" elif path[step][0] < path[step + 1][0]: directions += "S" elif path[step][0] == path[step + 1][0]: if path[step][1] > path[step + 1][1]: directions += "W" elif path[step][1] < path[step + 1][1]: directions += "E" elif path[step][1] == path[step + 1][1]: directions += "H" return directions @staticmethod def getCollisionPoint(pathA, pathB, kind=1): if kind == 1: if len(pathA) > len(pathB): for iNode in range(len(pathB)): if pathA[iNode] == pathB[iNode]: return iNode else: for iNode in range(len(pathA)): if pathA[iNode] == pathB[iNode]: return iNode return False #If there are no collisions, return False to let us know things are OK. if kind == 2: if len(pathA) > len(pathB): for iNode in range(len(pathB) - 1): if pathA[iNode] == pathB[iNode + 1] and pathA[iNode + 1] == pathB[iNode]: return iNode + 1 else: for iNode in range(len(pathA) - 1): if pathA[iNode] == pathB[iNode + 1] and pathA[iNode + 1] == pathB[iNode]: return iNode + 1 return False @staticmethod def getBestPath(robotList): robotPathPairs = set([(0, 0)]) #Initialize the set of pairs with Robot 0, Path 0 robotIndex = 1 pathIndex = 0 while robotIndex < len(robotList): badPath = False while True: badPath = False for pair in robotPathPairs: try: collisionPoint = Robot.getCollisionPoint(robotList[pair[0]].paths[pair[1]], robotList[robotIndex].paths[pathIndex]) except IndexError: pathIndex = 0 badPath = False break else: if collisionPoint: logging.warning(Robot.collisionDetails(pair, (robotIndex, pathIndex), collisionPoint)) Robot.addWait(robotList[robotIndex], pathIndex, collisionPoint) pathIndex += 1 badPath = True break if not badPath: logging.info("No collision, adding Robot {0}, Path {1} to set".format(robotIndex, pathIndex)) robotPathPairs.add((robotIndex, pathIndex)) pathIndex = 0 robotIndex += 1 badPath = False break #Now to update each robot with the best path for pair in robotPathPairs: r, p = pair robotList[r].bestPath = Robot.pathToDirection(robotList[r].paths[p]) @staticmethod def collisionDetails(pathA, pathB, point): aR, aP = pathA #First robot, path bR, bP = pathB #Second robot,path message = "***Collision found at step {0} between R_{1}.path[{2}] and R_{3}.path[{4}]. Incrementing path index!***" return message.format(point, aR, aP, bR, bP) @staticmethod def addWait(robot, path, index): value = robot.paths[path][index - 1] robot.paths[path].insert(index, value) @staticmethod ###Walk Around function that will probably never be implemented def addWalkAround(robot, path, index): value = robot.paths[path][index - 1] prev = robot.paths[path][index - 2] direction = Robot.pathToDirection([prev, value]) if direction == "N" or direction == "S": #Add east or west wait pass elif direction == "E" or direction == "W": #Add North or South wait pass elif direction == "H": #Try to move one direction pass
true
dc68fe3acb6cdb3d3717b7a29300c9f8b956e6fa
Python
henryeleonu/time_series_queue_model
/arrival_queue.py
UTF-8
11,245
3.375
3
[ "MIT" ]
permissive
from math import sin, cos, sqrt, atan2, radians import pandas as pd import datetime from matplotlib import pyplot as plt from geopy.distance import geodesic """ Code developed by Henry Eleonu """ def get_distance_between_point(test_long, test_lat, lab_long, lab_lat): """ Calculates the distance between two points on the earth Parameters: test_long: float Longitude of test locatation test_lat: float Latitude of test locatation lab_long: float Longitude of lab locatation lab_lat: float Latitude of lab locatation Returns: Distance: float Disitance between two locations """ test = (test_lat, test_long) lab = (lab_lat, lab_long) return geodesic(test, lab).miles def add_new_column(dataframe, column_name): """ Adds a new column to a dataframe Parameters: dataframe: DataFrame pandas dataframe object column_name: str name of column to add Returns: dataframe: DataFrame dataframe object with new column """ dataframe[column_name] = "" return dataframe def update_lab_name_with_closest_lab(tests_dataframe, labs_dataframe): """ Update lab_name column with name of lab closest to test location Parameters: tests_dataframe: DataFrame pandas dataframe object labs_dataframe: DataFrame pandas dataframe object Returns: tests_dataframe: DataFrame dataframe object with updated lab_name column """ tests_dataframe['lab_name'] = tests_dataframe.apply(lambda x: get_closest_lab_to_test(x['long'], x['lat'], labs_dataframe)[0], axis=1) return tests_dataframe def update_distance_from_closest_lab(tests_dataframe, labs_dataframe): """ Update distance_from_lab column Parameters: tests_dataframe: DataFrame pandas dataframe object labs_dataframe: DataFrame pandas dataframe object Returns: tests_dataframe: DataFrame dataframe object with updated distance_from_lab column """ tests_dataframe['distance_from_lab'] = tests_dataframe.apply(lambda x: get_closest_lab_to_test(x['long'], x['lat'], labs_dataframe)[1], axis=1) return tests_dataframe def update_time_test_arrives_lab(tests_dataframe, speed): """ Update time_test_arrives_lab column Parameters: tests_dataframe: DataFrame pandas dataframe object speed: Float the speed of movement of test form test location to closest lab Returns: tests_dataframe: DataFrame dataframe object with updated time_test_arrives_lab column """ tests_dataframe['time_test_arrives_lab'] = tests_dataframe.apply(lambda x: get_time_test_arrives_lab(x['distance_from_lab'], speed, x['time']), axis=1) return tests_dataframe def update_completion_time(tests_dataframe): """ Creates a new column, completion time, set all values to arrival time + 5hours. Parameters: tests_dataframe: DataFrame pandas dataframe object Returns: tests_dataframe: DataFrame dataframe object with completion_time column """ tests_dataframe['time_test_arrives_lab'] = pd.to_datetime(tests_dataframe['time_test_arrives_lab']) hours = 5 processing_time = datetime.timedelta(hours = hours) tests_dataframe['completion_time'] = tests_dataframe['time_test_arrives_lab'] + processing_time return tests_dataframe def update_server_size(tests_dataframe): """ Creates a new column, server_size, set all values to 0. Parameters: tests_dataframe: DataFrame pandas dataframe object Returns: tests_dataframe: DataFrame dataframe object with server_size column """ tests_dataframe['server_size'] = 0 return tests_dataframe def get_closest_lab_to_test(test_long, test_lat, labs_dataframe): """ This function will find the closet lab to each test Parameters: test_long: Float longitude of test location test_lat: Float latitude of test location labs_dataframe: DataFrame dataframe object holding lab data Returns: lab_name: str name of closest lab to test location distance: Float distance of closest lab to test location """ closest_lab = {"lab_name": "", "distance": 0} for i in range(len(labs_dataframe)) : distance = get_distance_between_point(test_long, test_lat, labs_dataframe.loc[i, "long"], labs_dataframe.loc[i, "lat"]) if closest_lab['lab_name'] == "" or distance < closest_lab['distance']: closest_lab['distance'] = distance closest_lab['lab_name'] = labs_dataframe.loc[i, "lab_name"] return closest_lab['lab_name'], closest_lab['distance'] def get_time_test_arrives_lab(distance, speed, date_time_of_test): """ This function gets the date and time test arrives lab Parameters: distance: Float distance between test location and lab speed: Float speed test moves from test location to lab location date_time_of_test: Datetime date and time test was taken Returns: future_date_and_time: Datetime date and time test arrives lab """ travel_time = distance/speed hours_added = datetime.timedelta(hours = travel_time) future_date_and_time = pd.to_datetime(date_time_of_test) + hours_added return future_date_and_time def create_dataframe_from_csv(path_to_csv_file): """ This function transforms a csv file to a pandas dataframe Parameters: path_to_csv_file: str path to csv file Returns: df: DataFrame dataframe object """ df = pd.read_csv(path_to_csv_file) return df def drop_missing_values_in_dataframe(dataframe): """ This function deletes rows with missing values Parameters: dataframe: DataFrame dataframe object Returns: dataframe: DataFrame dataframe object without missing values """ return dataframe.dropna() def merge_arrival_and_completion_time(tests_dataframe): """ This function merges the arrival time and complesion time vertically and create a new row, 'add' which 1 for arrival and -1 for completion. Arrival increments the server_size by 1 and completion decrements it by 1. Parameters: dataframe: DataFrame dataframe object Returns: union: DataFrame dataframe object """ arrival_time_df = tests_dataframe[['time_test_arrives_lab', 'server_size']] completion_time_df = tests_dataframe[['completion_time', 'server_size']] arrival_time_df['add'] = 1 completion_time_df['add'] = -1 arrival_time_df = arrival_time_df.rename(columns={"time_test_arrives_lab":"time"}) completion_time_df = completion_time_df.rename(columns={"completion_time":"time"}) union = pd.concat([arrival_time_df, completion_time_df]) union = union.sort_values(by="time") prev_server_size = 0 for index, row in union.iterrows(): if index == 0: current_server_size= row['server_size'] + row['add'] prev_server_size = current_server_size #union['server_size'] = union['server_size'] + union['add'] else: current_server_size = prev_server_size + row['add'] prev_server_size = current_server_size union.at[index,'server_size'] = current_server_size #union.to_csv('union.csv') return union def visualise_hourly_arrivals_at_each_lab(tests_dataframe): """ This function visualises the hourly arrivals of tests at each lab with respect to time Parameters: tests_dataframe: DataFrame dataframe object """ labs_df = create_dataframe_from_csv('labs.csv') labs_df = drop_missing_values_in_dataframe(labs_df) list_of_labs = labs_df['lab_name'].to_list() for lab_name in list_of_labs: df = tests_dataframe.loc[tests_dataframe['lab_name'] == lab_name] df.time_test_arrives_lab = pd.to_datetime(df.time_test_arrives_lab) df = df.sort_values(by="time_test_arrives_lab") df = df[['time_test_arrives_lab']] df = df.reset_index().set_index('time_test_arrives_lab') df = df.resample('H').count() df.plot(title = 'hourly arrivals at ' + lab_name) plt.show() def visualise_number_of_tests_simultaneously_processed_at_each_lab(tests_dataframe): """ This function visualises the number of tests simultaneously prodessed at each lab with respect to time Parameters: tests_dataframe: DataFrame dataframe object """ labs_df = create_dataframe_from_csv('labs.csv') labs_df = drop_missing_values_in_dataframe(labs_df) list_of_labs = labs_df['lab_name'].to_list() for index in range(len(list_of_labs)): df = tests_dataframe.loc[tests_dataframe['lab_name'] == list_of_labs[index]] df = merge_arrival_and_completion_time(df) df.plot.line(x = 'time', y = 'server_size', rot=70, title="Visualise the number of tests being simultaneously processed at " + list_of_labs[index]) plt.show() def run_processes(path_to_tests_file, path_to_labs_file): """ This function serves as the pipeline with functions executed in the right order Parameters: path_to_tests_file: str path to file holding tests data path_to_labs_file: str path to file holding labs data """ tests_dataframe = create_dataframe_from_csv(path_to_tests_file) labs_dataframe = create_dataframe_from_csv(path_to_labs_file) tests_dataframe = drop_missing_values_in_dataframe(tests_dataframe) labs_dataframe = drop_missing_values_in_dataframe(labs_dataframe) tests_dataframe = add_new_column(tests_dataframe, "lab_name") tests_dataframe = add_new_column(tests_dataframe, "distance_from_lab") tests_dataframe = add_new_column(tests_dataframe, "time_test_arrives_lab") tests_dataframe = update_lab_name_with_closest_lab(tests_dataframe, labs_dataframe) tests_dataframe = update_distance_from_closest_lab(tests_dataframe, labs_dataframe) tests_dataframe = update_time_test_arrives_lab(tests_dataframe, 60) tests_dataframe = update_completion_time(tests_dataframe) tests_dataframe = update_server_size(tests_dataframe) print(tests_dataframe) visualise_hourly_arrivals_at_each_lab(tests_dataframe) visualise_number_of_tests_simultaneously_processed_at_each_lab(tests_dataframe) def main(): """ This function is the main where program execution starts """ run_processes('tests.csv', 'labs.csv') if __name__ == "__main__": main()
true
2d1aae770d95977f84374bdf4222e99eac41d784
Python
h4t4u/heapling
/heapling/model/wall.py
UTF-8
3,681
3.28125
3
[]
no_license
from model.physicalobject import PhysicalObject import random from math import * import pygame from utility.vector import Vector KEY = (0, 0, 0) BLACK = (0, 0, 1) def plane_angle_and_length(a, b): ''' it finds all I need for my program please DON'T TOUCH :param a: :param b: :return: ''' if a!=b: x = b[0] - a[0] y = b[1] - a[1] l = sqrt(x ** 2 + y ** 2) return [(asin(y / l) if x >= 0 else (pi - asin(y / l))), l] else: return 0, 0 def iter(coord1, coord2, angle_and_length_list, full_length): ''' creates new iteration between two points :param coord1: :param coord2: :param angle_and_length_list: :param full_length: :return: ''' new_list = [coord1] angle0, length0 = plane_angle_and_length(coord1, coord2) for angle, length in angle_and_length_list: old_x, old_y = new_list[-1] new_length = length * (length0 / full_length) new_x = old_x + cos(angle + angle0) * new_length new_y = old_y + sin(angle + angle0) * new_length new_list.append([new_x, new_y]) return new_list[:-1] class Wall(PhysicalObject): def __init__(self, first_coords, last_coords, depth, number_dots, amplitude): ''' :param first_coords: coordinates of first point :param last_coords: coordinates of last point :param depth: number of fractal iterations :param number_dots: number of inner points of original poligonal chain ''' self.amplitude = amplitude self.first_coords = first_coords self.last_coords = last_coords self.number_dots = number_dots self.depth = depth self.variation1 = random.random() self.variation2 = random.random() self.time = 0 self.dots = [[0,0]] self.width = abs(self.first_coords.x - self.last_coords.x) self.height = amplitude*3 self.all_iterations = [] for i in range(depth): self.all_iterations.append([first_coords, last_coords]) def step(self, dt): self.all_iterations = [] self.time += dt iter_number = self.depth time = self.time initial_list = [[0, 0]] frequency = 2 variation1 = self.variation1 variation2 = self.variation2 length = self.last_coords.x-self.first_coords.x vertex_number = self.number_dots l0 = length / (vertex_number + 1) for i in range(vertex_number): x = self.amplitude * cos( frequency * time * variation1 + i * 2 * pi / vertex_number) + l0 * (i + 1) y = self.amplitude * sin(frequency * time * variation2 + i * 2 * pi / vertex_number) initial_list.append([x, y]) initial_list.append([length, 0]) initial_angle_and_length_list = [] for i in range(vertex_number + 1): initial_angle_and_length_list.append(plane_angle_and_length(initial_list[i], initial_list[i + 1])) previous_list = initial_list for i in range(iter_number): new_list = [] for k in range(len(previous_list) - 1): new_dots = iter(previous_list[k], previous_list[k + 1], initial_angle_and_length_list, length) for j in new_dots: new_list.append(j) previous_list = new_list previous_list.append([length, 0]) vector_list = [] for i in previous_list: vector_list.append(Vector(*i)+self.first_coords) self.all_iterations.append(vector_list) self.dots = vector_list def display(self): surf = pygame.Surface((self.width+100, self.height)) surf.set_colorkey(KEY) for i in range(len(self.dots) - 1): pygame.draw.line (surf, BLACK, (self.dots[i].x - self.get_cords().x, self.dots[i].y - self.get_cords().y + round(self.height/2)), (self.dots[i + 1].x - self.get_cords().x, self.dots[i + 1].y - self.get_cords().y + round(self.height/2)), 5) return surf def get_dots(self): return self.all_iterations[2] def get_cords(self): return self.first_coords if __name__ == '__main__': pass
true
95fbc46c09dd69e92a2948f2b7ab5270eff794a4
Python
tate1010/Python-Neural-Network
/Basic Learning/Machine learning to mutiple two number.py
UTF-8
1,628
2.84375
3
[]
no_license
import numpy as np import matplotlib.pyplot as plt from keras.models import Sequential from keras.layers import Dense from keras.layers import LSTM import random from keras import backend as K import tensorflow as tf import math from keras.callbacks import EarlyStopping, ModelCheckpoint np.random.seed(42) #Generate training data input = [] output = [] realnumber =[] model_path = "hello.h5" # prepare callbacks callbacks = [ EarlyStopping( monitor='val_loss', patience=50, # was 10 min_delta=0.1, verbose=1), ModelCheckpoint( model_path, monitor='val_loss', save_best_only=True, verbose=0) ] for i in range(5000): num1 = random.random()*100+1 num2 = random.random()*100+1 output.append([math.log(num1)+math.log(num2)]) realnumber.append([num1*num2]) input.append([math.log(num1),math.log(num2)]) input = np.array(input) def RMSE(y_true,y_pred): return tf.sqrt(tf.reduce_mean(tf.square(tf.subtract(y_true, y_pred)))) print(input[0:2]) print(output[0:2]) model = Sequential() model.add(Dense(2,input_dim= 2,activation='relu')) for i in range(20): model.add(Dense(2,input_dim= 2, activation = "linear")) model.add(Dense(1)) model.compile(loss='MSE',optimizer='adam', verbose= 1 ) model.fit(input,output,epochs = 5000, batch_size = 512 ,verbose = 1 , validation_split=0.2) plt.plot(np.divide((np.exp(model.predict(input))- realnumber),realnumber)*100) plt.show() plt.plot(np.exp(model.predict(input))) plt.plot(realnumber) plt.show() print(np.exp(model.predict(np.array([[math.log(1),math.log(100000)]]))))
true
358d4728fefcd1a894177866ed64fef9a4da9928
Python
MangledPotat0/1DSolarWind
/thing.py
UTF-8
3,514
2.859375
3
[]
no_license
from time import sleep # List of parameters to be used numberOfCells = 5 gr = 396.41 #solar radius^3/solar mass*seconds initVelocity = 0 initDensity = 0.000000000000001 initEnergy = 2.1395 * (10 ** (-64)) # 3/2 kT = 2.071 E-16 joules x0 = 0.5 dx = 0.005 dt = 0.0000001 # List of functions to be used def calc_pressure(ncells,rho,e): #Calculating pressure pcold = 1 ecold = 1 p = [] for i in range(0,ncells): p.append(pcold + (2*rho[i]/3)*(e[i] - ecold)) return(p) def calc_force(ncells,area,p,x,x0): # Calculating force area = [1] + area xnew = [x0] + x force = [] for i in range(0,ncells): if xnew[i] < 1: force.append(p[i-1]*area[i] - p[i]*area[i] - gr*(xnew[i]+xnew[i+1]/2)) else: force.append(p[i-1]*area[i] - p[i]*area[i] - gr/((xnew[i]+xnew[i+1])/2)**2) print(force) return(force) def calc_velocity(ncells,vel,force,m,dt): # Calculating velocity velocity = [] for i in range(0,ncells): velocity.append(vel[i]+force[i]/m[i]*dt) return(velocity) def calc_position(ncells,x,vel,dt): # Calculating pressure position = [] for i in range(0,ncells): position.append(x[i] + vel[i]*dt) return(position) def calc_area(): a=1 return(a) def calc_volume(ncells,x,area): volume = [x[0]*area[0]] for i in range(1,ncells): volume.append(x[i]*area[i]-x[i-1]*area[i-1]) return(volume) def calc_density(ncells,v): density = [] for i in range(0,ncells): density.append(1/v[i]) return(density) def calc_energy(ncells,vol_old,vol,p): energy = [] for i in range(0,ncells): energy.append((vol[i]-vol_old[i])*p[i]) return(energy) #Initialization def initCells(ncells, velocity0, density0, energy0, xstep,x0): area = [1.0001] * ncells velocity = [velocity0] * ncells density = [density0] * ncells energy = [energy0] * ncells pressure = calc_pressure(ncells,density,energy) position = [] for i in range(1,ncells+1): position.append(x0 + dx*i) volume = calc_volume(ncells,position,area) mass = [] for i in range(0,ncells): mass.append(volume[i]*density[i]) return([area,mass,velocity,volume,density,pressure,energy,position]) def iterate(ncells,area,m,vel,vol,rho,p,e,x,dt,x0): pressure = calc_pressure(ncells,rho,e) force = calc_force(ncells,area,pressure,x,x0) velocity = calc_velocity(ncells,vel,force,m,dt) position = calc_position(ncells,x,vel,dt,) area = [1] * ncells volume = calc_volume(ncells,position,area) density = calc_density(ncells,volume) energy = calc_energy(ncells,vol,volume,pressure) return([area,m,velocity,volume,density,pressure,energy,position]) def run(ncells,vel,rho,e,dx,dt,x0): init = initCells(ncells,vel,rho,e,dx,x0) cont = 1 while cont: area = init[0] mass = init[1] velocity = init[2] volume = init[3] density = init[4] pressure = init[5] energy = init[6] position = init[7] print('Area: ',init[0], '\nMass: ',init[1], '\nVelocity: ',init[2], '\nVolume: ',init[3], '\nDensity: ',init[4], '\nPressure: ',init[5], '\nInternal Energy: ',init[6], '\nPosition: ',init[7]) init = iterate(ncells,area,mass,velocity,volume,density,pressure,energy,position,dt,x0) cont = input('Type anytihng to contine. \n') return run(numberOfCells,initVelocity,initDensity,initEnergy,dx,dt,x0)
true
b29dab0fe94b3b9c5490f0e3ad21128e0baa3633
Python
deyh2020/Metsco_Insulator_Detection
/final_design/data_reader.py
UTF-8
1,428
2.765625
3
[]
no_license
import json from urllib import request from PIL import Image import numpy as np import scipy.misc import os def normalize_image(file): img = Image.open(file, 'r') arr = np.array(img) arr = np.floor_divide(arr, 255) img = Image.fromarray(arr) img.save(file) with open('data.json') as f: data = json.load(f) # Output: {'name': 'Bob', 'languages': ['English', 'Fench']} folder = '/home/isidor/Documents/keras/data/mask_data/' os.system("find " + folder + " -name '*.jpg' -delete") os.system("find " + folder + " -name '*.png' -delete") print("Deleted old files") masks = ['a','b','c', 'd', 'e', 'f'] i = 0 while i < len(data): if len(data[i]['Label']) != 0: image = data[i]['Labeled Data'] request.urlretrieve(image, folder + 'frames/files/image' + str(i) + '.jpg') arr = 0 numOfObjects = len(data[i]['Label']['objects']) for j in range(0,numOfObjects): mask = data[i]['Label']['objects'][j]['instanceURI'] mask_file = folder + 'tmp_masks/image' + str(i) + masks[j] + '.png' request.urlretrieve(mask, mask_file) img = Image.open(mask_file) if j == 0: arr = np.asarray(img) else: arr = arr + np.asarray(img) img = Image.fromarray(arr) img.save(folder + 'masks/files/image' + str(i) + '.png') #normalize_image(mask_file) i = i+1
true
1912c2cbbb9e4638b51d7189bbb90ebd5b1d3eff
Python
rusvoskres/python_homework1
/dice_game_dif.py
UTF-8
2,318
3.984375
4
[ "MIT" ]
permissive
from dice_game import Dice class Dice_dif(Dice): def __init__(self, N,type): super().__init__(N) self.type_game=type def __str__(self): super().__str__() if self.type_game == 1: return f'Нужно угадать числа как непорядоченную пару' elif self.type_game==2: return f'Нужно угадать хотя бы одно значение' elif self.type_game==3: return f'Нужно, чтобы совпадали суммы чисел' def throw_dices(self): # type 1: совпала как непорядоченная пара # type 2: совпало хотя бы одно значение # type 3: совпала сумма self.current_throw+=1 if self.current_throw>self.throw_num: raise Exception('Вы превысили количество попыток') print(f'Попытка номер: {self.current_throw}') dice_1 = int(input('Введите первое число:')) dice_2 = int(input('Введите второе число:')) print(f'Вы ввели числа: ({dice_1}, {dice_2})') if self.type_game ==1: if {dice_1, dice_2} == {self._hidden_num1,self._hidden_num2}: return True else: return False elif self.type_game == 2: if dice_1 in {self._hidden_num1, self._hidden_num2} \ or dice_2 in {self._hidden_num1, self._hidden_num2}: return True else: return False elif self.type_game == 3: if dice_1+dice_2 == self._hidden_num1+self._hidden_num2: return True else: return False if __name__ == '__main__': dice_game=Dice_dif(5, 2) dice_game.set_hidden_numbers() print(dice_game) try: for i in range(15): result = dice_game.throw_dices() print(result) if result: print('Вы выиграли!!!') print(dice_game.show_result()) break except: print('Игра закончена. Вы проиграли') print(dice_game.show_result())
true
7b91592b4ce15bcc601ba4c91803d6dcabe94e12
Python
AntoineGachet/new_repo_python
/trash_code/progamme nul.py
UTF-8
110
3.109375
3
[]
no_license
r=float(input('entrer un nombre')) if r<5: print('bien joué') else: print('sal petite merde')
true
5024608c4818660e938999cbab7dd0d3dcd074b4
Python
flocka12/Flocka_records
/DB/db_con.py
UTF-8
457
2.796875
3
[]
no_license
''' module that connects to the database ''' import psycopg2 import os def db_init(): """creates db connection""" dbname = os.getenv('DB_NAME') user = os.getenv('DB_USER') host = os.getenv('DB_HOST') password = os.getenv('DB_PASSWORD') db_conn = psycopg2.connect( "dbname={} user={} host={} password={}".format(dbname, user, host, password), connection_factory=None, cursor_factory=None) return db_conn
true
b46e1d282e10b2db105ab35b199685cb69ffa081
Python
jrucl2d/Python_Coding_Test
/1Cycle/13장/q15.py
UTF-8
705
3.0625
3
[]
no_license
from collections import deque n, m, k, x = map(int, input().split()) graph = [[] for _ in range(n + 1)] for _ in range(m): a, b = map(int, input().split()) graph[a].append(b) visited = [False] * (n + 1) answer = [] def bfs(graph, start, visited): depth = 0 queue = deque([(start, depth)]) visited[start] = True while queue: v, depth = queue.popleft() if depth == k: answer.append(v) for i in graph[v]: if not visited[i]: queue.append((i, depth + 1)) visited[i] = True bfs(graph, x, visited) if len(answer) == 0: print(-1) else: answer.sort() for ans in answer: print(ans)
true
697bd8f5be4f160aca9c1b9f45e50b650152dc00
Python
TapanBhavsar/CIFAR10_classification_production_level
/CIFAR10_Serving/lib/cifar10_model_trainer.py
UTF-8
4,689
2.71875
3
[]
no_license
from model_trainer import ModelTrainer from CIFAR10_model import CIFAR10Model import tensorflow as tf import time import os import utilities class CIFAR10ModelTrainer(ModelTrainer): def __init__( self, train_data, train_labels, validation_data, validation_labels, test_data, test_labels, ): super(CIFAR10ModelTrainer, self).__init__( train_data=train_data, train_labels=train_labels, test_data=test_data, test_labels=test_labels, validation_data=validation_data, validation_labels=validation_labels, ) input_data_shape = [None] input_label_shape = [None] input_data_shape.extend(train_data.shape[1:]) input_label_shape.extend(train_labels.shape[1:]) self._initialize_placeholders(input_data_shape=input_data_shape, labels_shape=input_label_shape) self.__CIFAR10_model = CIFAR10Model() self.__session = tf.Session() self.__initialize_variables = None self.__model_saver = None def train_model(self, epochs, batch_size): model_output, model_softmax_output = self.__CIFAR10_model.build_model(self._input_data) error = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=model_output, labels=self._input_labels)) optm = tf.train.AdamOptimizer(learning_rate=0.01).minimize(error) corr = tf.equal(tf.argmax(model_output, 1), tf.argmax(self._input_labels, 1)) accuracy = tf.reduce_mean(tf.cast(corr, tf.float32)) self.__initialize_variables = tf.global_variables_initializer() self.__session.run(self.__initialize_variables) self.__model_saver = tf.train.Saver() for epoch in range(epochs): train_err = 0 train_acc = 0 train_batches = 0 start_time = time.time() # devide data into mini batch for batch in self._iterate_minibatches(self._train_data, self._train_labels, batch_size, shuffle=True): inputs, targets = batch # this is update weights self.__session.run([optm], feed_dict={self._input_data: inputs, self._input_labels: targets}) # cost function err, acc = self.__session.run( [error, accuracy], feed_dict={self._input_data: inputs, self._input_labels: targets} ) train_err += err train_acc += acc train_batches += 1 val_err = 0 val_acc = 0 val_batches = 0 # divide validation data into mini batch without shuffle for batch in self._iterate_minibatches( self._validation_data, self._validation_labels, batch_size, shuffle=False ): inputs, targets = batch # this is update weights self.__session.run([optm], feed_dict={self._input_data: inputs, self._input_labels: targets}) # cost function err, acc = self.__session.run( [error, accuracy], feed_dict={self._input_data: inputs, self._input_labels: targets} ) val_err += err val_acc += acc val_batches += 1 # print present epoch with total number of epoch # print training and validation loss with accuracy print("Epoch {} of {} took {:.3f}s".format(epoch + 1, epochs, time.time() - start_time)) print(" training loss:\t\t{:.6f}".format(train_err / train_batches)) print(" validation loss:\t\t{:.6f}".format(val_err / val_batches)) print(" validation accuracy:\t\t{:.2f} %".format(val_acc / val_batches * 100)) test_err = 0 test_acc = 0 test_batches = 0 for batch in self._iterate_minibatches(self._test_data, self._test_labels, batch_size, shuffle=False): inputs, targets = batch err, acc = self.__session.run( [error, accuracy], feed_dict={self._input_data: inputs, self._input_labels: targets} ) # apply tensor function test_err += err test_acc += acc test_batches += 1 print("Final results:") print(" test loss:\t\t\t{:.6f}".format(test_err / test_batches)) print(" test accuracy:\t\t{:.2f} %".format(test_acc / test_batches * 100)) def save_model(self, model_path): model_folder, model_file = os.path.split(model_path) utilities.create_folder(model_folder) save_path = self.__model_saver.save(self.__session, model_path)
true
6543740ba77da904da22689a103453f656cfb37b
Python
GLMF/GLMF191
/Dev/1_4_radio/radio.py
UTF-8
544
2.671875
3
[]
no_license
import npyscreen class Window(npyscreen.NPSApp): def main(self): Form = npyscreen.Form(name="GNU/Linux Magazine") radio_values = ["Option 1", "Option 2", "Option 3"] radio = Form.add(npyscreen.TitleSelectOne, max_height=len(radio_values), value = [0], name="Choix:", values = radio_values, scroll_exit=True) Form.edit() npyscreen.notify_wait("Valeur saisie : " + radio.get_selected_objects()[0], title="Vérification") if __name__ == "__main__": App = Window() App.run()
true
254584e03f6529313acaa2b3ef96ddf99166bfc6
Python
Brian-McG/HonoursDefaulterPrediction
/src/config/classifiers.py
UTF-8
4,192
2.671875
3
[]
no_license
"""Configures classifiers and their status""" from collections import OrderedDict from sklearn import svm from sklearn.ensemble import AdaBoostClassifier from sklearn.ensemble import RandomForestClassifier from sklearn.ensemble import VotingClassifier from sklearn.linear_model import LogisticRegression from sklearn.naive_bayes import BernoulliNB, GaussianNB from sklearn.neighbors import KNeighborsClassifier from sklearn.neural_network import MLPClassifier from sklearn.tree import DecisionTreeClassifier from classifier_wrappers.clustering_launched_classification import ClusteringLaunchedClassifier from classifier_wrappers.extreme_learning_machines import ExtremeLearningMachine classifiers = OrderedDict() def append_classifier_details(classifier_class, status, classifier_description, classifier_dict): """Adds classifier, data_balancer, status and classifier_description to classifier_arr as a dictionary""" classifier_dict[classifier_description] = {"classifier": classifier_class, "status": status} # Generic Classifiers # Clustering-Launched Classification clustering_launched_classifier = ClusteringLaunchedClassifier clustering_launched_classifier_description = "Clustering-Launched Classification" clustering_launched_classifier_enabled = False append_classifier_details(clustering_launched_classifier, clustering_launched_classifier_enabled, clustering_launched_classifier_description, classifiers) # Extreme learning machines elm = ExtremeLearningMachine elm_description = "Extreme Learning Machine" elm_enabled = True append_classifier_details(elm, elm_enabled, elm_description, classifiers) # Artificial Neural network ann = MLPClassifier ann_description = "Artificial neural network" ann_enabled = True append_classifier_details(ann, ann_enabled, ann_description, classifiers) # Support Vector Machines (with RBF kernel) svm_rdf = svm.SVC svm_rdf_description = "SVM (RBF)" svm_rdf_enabled = True append_classifier_details(svm_rdf, svm_rdf_enabled, svm_rdf_description, classifiers) # Support Vector Machines (with linear kernel) svm_linear = svm.SVC svm_linear_description = "SVM (linear)" svm_linear_enabled = True append_classifier_details(svm_linear, svm_linear_enabled, svm_linear_description, classifiers) # Support Vector Machines (with polynomial kernel) svm_poly = svm.SVC svm_poly_description = "SVM (polynomial)" svm_poly_enabled = True append_classifier_details(svm_poly, svm_poly_enabled, svm_poly_description, classifiers) # Logistic Regression logistic_regression = LogisticRegression logistic_regression_description = "Logistic regression" logistic_regression_enabled = True append_classifier_details(logistic_regression, logistic_regression_enabled, logistic_regression_description, classifiers) # Decision Tree decision_tree = DecisionTreeClassifier decision_tree_description = "Decision Tree" decision_tree_enabled = True append_classifier_details(decision_tree, decision_tree_enabled, decision_tree_description, classifiers) # AdaBoost adaboost = AdaBoostClassifier adaboost_description = "AdaBoost" adaboost_enabled = True append_classifier_details(adaboost, adaboost_enabled, adaboost_description, classifiers) # Random forest random_forest = RandomForestClassifier random_forest_description = "Random forest" random_forest_enabled = True append_classifier_details(random_forest, random_forest_enabled, random_forest_description, classifiers) # K-nearest neighbours k_nearest = KNeighborsClassifier k_nearest_description = "K-nearest neighbours" k_nearest_enabled = True append_classifier_details(k_nearest, k_nearest_enabled, k_nearest_description, classifiers) # Gaussian Naive Bayes gaussian_naive_bayes = GaussianNB gaussian_naive_bayes_description = "Gaussian Naive Bayes" gaussian_naive_bayes_enabled = True append_classifier_details(gaussian_naive_bayes, gaussian_naive_bayes_enabled, gaussian_naive_bayes_description, classifiers) # Bernoulli Naive Bayes bernoulli_naive_bayes = BernoulliNB bernoulli_naive_bayes_description = "Bernoulli Naive Bayes" bernoulli_naive_bayes_enabled = True append_classifier_details(bernoulli_naive_bayes, bernoulli_naive_bayes_enabled, bernoulli_naive_bayes_description, classifiers)
true
9b839ebf46f27bf76f7484218e5714c137215cc0
Python
rishsharma1/grokking_algorithms
/recursion.py
UTF-8
1,127
3.6875
4
[]
no_license
def sum_array(array): if len(array) == 0: return 0 return array[0]+sum_array(array[1:]) def length(array): if array == []: return 0 return 1+length(array[1:]) def _max(a,b): if a > b: return a return b def max_number(array): mid = (len(array)/2) - 1 if len(array) == 1: return array[0] elif len(array) == 2: return _max(array[0],array[1]) return _max(max_number(array[:mid+1]),max_number(array[mid+1:])) def alternate_max_number(array): print array if len(array) == 2: return array[0] if array[0] > array[1] else array[1] sub_max = alternate_max_number(array[1:]) return array[0] if array[0] > sub_max else sub_max def main(): print sum_array([1,2,3]) == sum([1,2,3]) print sum_array(range(1,100)) == sum(range(1,100)) print sum_array([]) == sum([]) print length([1,2,3]) == len([1,2,3]) print length(range(1,100)) == len(range(1,100)) print max_number([1,11000,3,500,2,34,50,9000]) print alternate_max_number([1,11000,3,500,2,34,50,9000]) if __name__ == "__main__": main()
true
363f7c33ace24d474a91cba62d966dd813a3a434
Python
katherinebroner/hackbright-intro-classes
/plants.py
UTF-8
554
3.921875
4
[]
no_license
class Plants(object): def __init__ (self, type_of_flower, flowering_or_not_flowering, color): self.type_of_flower = type_of_flower self.flowering_or_not_flowering = flowering_or_not_flowering self.color = color def set_is_flowering(self, bool): self.flowering_or_not_flowering = bool def flower_color(self): print "a", self.type_of_flower, "is", self.color[0], "and", self.color[1] sunflower = Plants("sunflower", True, ["yellow", "green"]) sunflower.set_is_flowering(True) sunflower.flower_color()
true
c94f0bd2b537007520cd09c2fd5d6090cd89d177
Python
ejoerns/flamingo
/flamingo/core/settings.py
UTF-8
856
2.625
3
[ "Apache-2.0" ]
permissive
import runpy class Settings: def __init__(self): self._values = {} self._modules = [] self.add('flamingo.default_settings') def add(self, module): self._modules.append(module) if module.endswith('.py') or '/' in module: values = runpy.run_path(module, init_globals=self._values) else: values = runpy.run_module(module, init_globals=self._values) self._values = {k: v for k, v in values.items() if not k.startswith('_')} def __getattribute__(self, name): try: return super().__getattribute__(name) except AttributeError: if name in self._values: return self._values[name] raise def __dir__(self): return super().__dir__() + list(self._values.keys())
true
ccf4adc09750dd387c31b170cc7e03c6466a4b87
Python
darrylyeo/Email-Event-Extractor
/utility_functions.py
UTF-8
3,032
2.6875
3
[]
no_license
import re import sys import spacy from itertools import * from spacy.attrs import ENT_IOB from spacy.matcher import Matcher def fix_space_tags(doc): ent_iobs = doc.to_array([ENT_IOB]) for i, token in enumerate(doc): if token.is_space: # Sets 'O' tag (0 is None, so I is 1, O is 2) ent_iobs[i] = 2 doc.from_array([ENT_IOB], ent_iobs.reshape((len(doc), 1))) return doc def get_dates_spacy(email): dates = [] labels = [] solo_dates = [] nlp = spacy.load('en_core_web_md') nlp.add_pipe(fix_space_tags, name='fix-ner', before='ner') doc = nlp(email) """dates = [ent for ent in doc.ents if ent.label_ == 'DATE'] print(dates)""" matcher = Matcher(nlp.vocab) pattern = [{"IS_ALPHA": True}, {"IS_SPACE": True, "OP": "*"}, {"IS_PUNCT": True}, {"IS_SPACE": True, "OP": "*"}, {"ENT_TYPE": "DATE", "OP": "+"}] matcher.add("DATE_PATTERN", None, pattern) matched = matcher(doc) results = [max(list(group), key=lambda x: x[2]) for key, group in groupby(matched, lambda prop: prop[1])] for match_id, start, end in results: matched_span = doc[start:end] dates.append(matched_span) for date in dates: s_token = date.start s_char = date.start_char text = doc.text for i in range(len(text)): if text[s_char-1] == '\n' or text[s_char-1] == '\t': break s_char -= 1 for i in range(len(doc)): if doc[s_token - 1].idx < s_char: break s_token -= 1 labels.append(doc[s_token:date.start+1]) for date in dates: start_token = date.start for i in range(len(doc)): if doc[start_token].ent_type_ == 'DATE': break start_token += 1 solo_dates.append(doc[start_token:date.end]) return [(labels[i], solo_dates[i]) for i in range(len(dates))] def get_names(email): names = [] nlp = spacy.load('en_core_web_md') nlp.add_pipe(fix_space_tags, name='fix-ner', before='ner') doc = nlp(email) for ent in doc.ents: if ent.label_ == 'PERSON': is_chair = False sent = ent.sent for i in range(sent.start, sent.end): if 'chair' in doc[i].text.lower(): is_chair = True for i in range(ent.start, ent.end): if doc[i].text == 'Khosmood': is_chair = False if is_chair: names.append(ent) return names def get_ents(email): nlp = spacy.load('en_core_web_md') nlp.add_pipe(fix_space_tags, name='fix-ner', before='ner') doc = nlp(email) return [ent for ent in doc.ents] if __name__ == '__main__': filename = sys.argv[1] f = open(filename) raw = f.read() dates_spacy = get_dates_spacy(raw) print('returns') for date_out in dates_spacy: print(date_out.text)
true
4f061868679f32e0d0b88256f5d2e184cc81370e
Python
Talanvor/infa_2020_Snigir
/Solar/graph3.py
UTF-8
656
3.015625
3
[]
no_license
import numpy as np import matplotlib.pyplot as plt x = [] y = [] t = 1.0 px = 0.0 py = 0.0 sx = 0.0 sy = 0.0 objects = [] with open('stats.txt', 'r') as stats: for line in stats: if len(line.strip()) == 0 or line[0] == '#': r = ((px - sx)**2 + (py - sy)**2)**0.5 y.append( r ) continue object_type = line.split()[0].lower() if object_type == "planet": #fixed x.append( (float(line.split()[6])**2 + float(line.split()[7])**2)**0.5 ) px = float(line.split()[4]) py = float(line.split()[5]) if object_type == "star": #fixed sx = float(line.split()[4]) sy = float(line.split()[5]) plt.plot(x, y) plt.grid(True) plt.show()
true
26d98e214125814995375a656e485469bc6ece13
Python
Aasthaengg/IBMdataset
/Python_codes/p02271/s434090235.py
UTF-8
271
2.78125
3
[]
no_license
import itertools n = input() a = list(map(int, input().split())) q = input() aset = set() for i in range(1, len(a) + 1): aset |= set(sum(combi) for combi in itertools.combinations(a, i)) for m in map(int, input().split()): print('yes' if m in aset else 'no')
true
d55b8e3250070c038c0ec56447bbd37d20990e53
Python
Jeevanjeethu/Practice
/Total/Python Learning/2nd class/xprint.py
UTF-8
38
3.03125
3
[]
no_license
x=int(input('x')) sum=x+x print(sum)
true
d75d15125c609fbabd6b254346f413f310bdc1ee
Python
Richard-Kirby/otg_keyboard
/accel/accel.py
UTF-8
4,404
2.796875
3
[ "MIT" ]
permissive
import smbus import time import math import threading from collections import deque import queue # Accelerometer class - sets up and returns accelerometer values as requested. class Accelerometer(threading.Thread): scaled_accel = [0, 0, 0] address = 0x68 power_mgmt_1 = 0x6b total_accel = 0 bus = 0 cycle_num = 5 # number of cycles to use for maximum and average max_accel = 0 # maximum acceleration over the defined number of cycles. avg_accel = 0 # Average acceleration over cycles # Set up the accelerometer. Power and sensitivity settings def __init__(self, cycle_num, accel_queue, delay = 0.01): # Initialise the Thread. threading.Thread.__init__(self) # Set up the queue fed by the accelerometer self.accel_queue = accel_queue self.delay = delay # Start talking to accelerometer - standard I2C stuff. self.bus = smbus.SMBus(1) # or bus = smbus.SMBus(1) for Revision 2 boards # Now wake the 6050 up as it starts in sleep mode self.bus.write_byte_data(self.address, self.power_mgmt_1, 0) # Write the setup to the accelerometer -value of 3 in AFS_SEL gives accel range of 16g. # The register to use is 1C (28 decimal) self.bus.write_byte_data(self.address, 0x1C, 0b00011000) # Assign cycle num in object to the one passed in. self.cycle_num = cycle_num # Create the queue ot recent reads. self.recent_reads = deque([0] * cycle_num, cycle_num) # Read word from accelerometer def read_word_2c(self, adr): high = self.bus.read_byte_data(self.address, adr) low = self.bus.read_byte_data(self.address, adr + 1) val = (high << 8) + low if val >= 0x8000: return -((65535 - val) + 1) else: return val # Returns the scaled values def get_scaled_accel_values(self): try: # Grab Accelerometer Data self.scaled_accel = [self.read_word_2c(0x3b) / 16384.0 * 8, self.read_word_2c(0x3d) / 16384.0 * 8, self.read_word_2c(0x3f) / 16384.0 * 8] except KeyboardInterrupt: raise except: print("** Read failed - assume 0 accel") self.scaled_accel = [0, 0, 0] # Scaling is 16g, so scale the 2 bytes to get the +/-16g # Take the square root of the squared sums to get the total acceleration. Use the opposite sign of the # Z component. self.total_accel = math.copysign(math.sqrt(self.scaled_accel[0] ** 2 + self.scaled_accel[1] ** 2 + self.scaled_accel[2] ** 2), self.scaled_accel[2]) # Let the deque build up to full length before doing calculations. if self.recent_reads.__len__() == self.cycle_num: self.recent_reads.popleft() self.recent_reads.append(self.total_accel) self.max_accel = max(self.recent_reads) else: self.recent_reads.append(self.total_accel) def run(self): # Read continuously, refreshing the values each read. try: while True: self.get_scaled_accel_values() if self.max_accel > 2 and self.recent_reads.__len__() == self.cycle_num: #print(time.time(), self.total_accel, "^^", self.max_accel, self.accel_queue.qsize()) # Send to acceleration queue self.accel_queue.put_nowait(self.max_accel) # Clear out the deque, so we don't report again too soon. self.recent_reads.clear() self.recent_reads.append(0) self.max_accel =0 time.sleep(self.delay) except KeyboardInterrupt: print("closing") except: raise if __name__ == "__main__": accel_que = queue.Queue() # Create the accelerometer object. my_accel = Accelerometer(5, accel_que, 0.005) my_accel.start() while True: # Read continuously, refreshing the values each read. if not accel_que.empty(): q_str = accel_que.get_nowait() #print("q string {}".format(q_str))
true
88a39df0f62bedf8a640e6a94855ebaf8af97b74
Python
jlucangelio/adventofcode
/day7.py
UTF-8
1,412
3
3
[ "MIT" ]
permissive
import sys with open(sys.argv[1]) as f: lines = f.readlines() count = 0 for line in lines: line = line.strip() seen = [] abba = "" tls = False hypernet = False abba_in_hypernet = False for char in line: if char == "[": hypernet = True seen = [] continue if char == "]": hypernet = False seen = [] continue if len(seen) == 0 or (len(seen) == 1 and char != seen[0]): seen.append(char) elif len(seen) == 2: if seen[1] != char: seen = seen[1:] seen.append(char) elif len(seen) == 3: if seen[0] == char: abba = "".join(seen) + char if hypernet: tls = False abba_in_hypernet = True break else: tls = True abba = "".join(seen) + char else: seen = seen[2:] seen.append(char) # print seen, char if tls: print "TLS", abba, line count += 1 elif abba_in_hypernet: print "ABBA in hypernet", abba, line print count
true
c688ffb759c080d2d33f59b4c30b9cd7a1af70f6
Python
OpenGL-rolandpls/OpenGL-texture
/src/index.py
UTF-8
16,930
2.984375
3
[ "MIT" ]
permissive
# IF3260: Computer Graphics # Texture Mapping - Immediate # --Libraries and Packages-- import sys import numpy from math import * from OpenGL.GL import * from OpenGL.GLU import * from OpenGL.GLUT import * from PIL import Image # --Camera Settings-- # Camera Angle angle = 0.0 # Camera Coordinate x = 0.0 y = 0.0 z = 0.0 # Camera Direction dx = 0.0 dy = 0.0 dz = 0.0 # --Mouse Settings-- xrot = 0.0 yrot = 0.0 xdiff = 0.0 ydiff = 0.0 mouseDown = False data = [] dim1 = [] dim2 = [] # --CLASSES-- class Camera: def __init__(self): self.position = (0.0, 0.0, 0.0) self.rotation = (0.0, 0.0, 0.0) def translate(self, dx, dy, dz): x, y, z = self.position self.position = (x + dx, y + dy, z + dz) def rotate(self, dx, dy, dz): x, y, z = self.rotation self.rotation = (x + dx, y + dy, z + dz) def apply(self): glTranslate(*self.position) glRotated(self.rotation[0], -1, 0, 0) glRotated(self.rotation[1], 0, -1, 0) glRotated(self.rotation[2], 0, 0, -1) camera = Camera() # Key Processing Unit def processNormalKeys(key, x, y): if (key == 27): exit(0) def processSpecialKeys(key, xx, yy): global x, z, dX, dZ, angle fraction = 0.1 movespeed = 1 if (key == GLUT_KEY_LEFT): camera.translate(movespeed, 0, 0) elif (key == GLUT_KEY_RIGHT): camera.translate(-movespeed, 0, 0) elif (key == GLUT_KEY_UP): camera.translate(0, -movespeed, 0) elif (key == GLUT_KEY_DOWN): camera.translate(0, movespeed, 0) elif (key == GLUT_KEY_PAGE_UP): camera.translate(0, 0, movespeed) elif (key == GLUT_KEY_PAGE_DOWN): camera.translate(0, 0, -movespeed) # Mouse Processing Unit def mouseMotion(x, y): global yrot, xrot, mouseDown if (mouseDown): yrot = - x + xdiff xrot = - y - ydiff def mouse(button, state, x, y): global xdiff, ydiff, mouseDown if (button == GLUT_LEFT_BUTTON and state == GLUT_DOWN): mouseDown = True xdiff = x + yrot ydiff = -y - xrot else: mouseDown = False def idle(): global mouseDown, xrot, yrot if (not mouseDown): if(xrot > 1): xrot -= 0.005 * xrot elif(xrot < -1): xrot += 0.005 * -xrot else: xrot = 0 if(yrot > 1): yrot -= 0.005 * yrot elif(yrot < -1): yrot += 0.005 * -yrot else: yrot = 0 # Lighting def renderLight(): glEnable(GL_LIGHT0) glEnable(GL_LIGHTING) glEnable(GL_DEPTH_TEST) glDepthFunc(GL_LEQUAL) glHint(GL_PERSPECTIVE_CORRECTION_HINT, GL_NICEST) glShadeModel(GL_SMOOTH) glEnable(GL_COLOR_MATERIAL) glColorMaterial(GL_FRONT, GL_AMBIENT_AND_DIFFUSE) glEnable(GL_TEXTURE_2D) specReflection = [1.0, 1.0, 1.0, 1.0] glMaterialfv(GL_FRONT, GL_SPECULAR, specReflection) glMateriali(GL_FRONT, GL_SHININESS, 30) glLightfv(GL_LIGHT0, GL_POSITION, [2.0, 2.0, 2.0, 1.0]) def drawCar(): global data z = 1.5 loadTexture(data[0],dim1[0],dim1[1]) #back window frame glEnable(GL_TEXTURE_2D) glColor3f(206/255, 20/255, 55/255) glBegin(GL_QUADS) glTexCoord2f(0.0, 0.0); glVertex3f(-3.0, 0.25, -z) glTexCoord2f(1.0, 0.0); glVertex3f(-3.0, 0.25, z) glTexCoord2f(1.0, 1.0); glVertex3f(-3.0, -1.0, z) glTexCoord2f(0.0, 1.0); glVertex3f(-3.0, -1.0, -z) glEnd() glBegin(GL_QUADS) glTexCoord2f(0.0, 0.0); glVertex3f(-3.0, 1.5, -z) glTexCoord2f(1.0, 0.0); glVertex3f(-3.0, 1.5, z) glTexCoord2f(1.0, 1.0); glVertex3f(-3.0, 1.0, z) glTexCoord2f(0.0, 1.0); glVertex3f(-3.0, 1.0, -z) glEnd() glBegin(GL_QUADS) glTexCoord2f(0.0, 0.0); glVertex3f(-3.0, 0.25, -z) glTexCoord2f(1.0, 0.0); glVertex3f(-3.0, 0.25, -z+0.5) glTexCoord2f(1.0, 1.0); glVertex3f(-3.0, 1.0, -z+0.5) glTexCoord2f(0.0, 1.0); glVertex3f(-3.0, 1.0, -z) glEnd() glBegin(GL_QUADS) glTexCoord2f(0.0, 0.0); glVertex3f(-3.0, 0.25, z-0.5) glTexCoord2f(1.0, 0.0); glVertex3f(-3.0, 0.25, z) glTexCoord2f(1.0, 1.0); glVertex3f(-3.0, 1.0, z) glTexCoord2f(0.0, 1.0); glVertex3f(-3.0, 1.0, z-0.5) glEnd() #top glColor3f(240/255, 20/255, 55/255) glBegin(GL_QUADS) glTexCoord2f(0.0, 0.0); glVertex3f(-3.0, 1.5, -z) glTexCoord2f(1.0, 0.0); glVertex3f(-3.0, 1.5, z) glTexCoord2f(1.0, 1.0); glVertex3f(0.6, 1.5, z) glTexCoord2f(0.0, 1.0); glVertex3f(0.6, 1.5, -z) glEnd() #bottom glColor3f(190/255, 20/255, 55/255) glBegin(GL_QUADS) glTexCoord2f(0.0, 0.0); glVertex3f(-3.0, -1.0, -z) glTexCoord2f(1.0, 0.0); glVertex3f(-3.0, -1.0, z) glTexCoord2f(1.0, 1.0); glVertex3f(3.0, -1.0, z) glTexCoord2f(0.0, 1.0); glVertex3f(3.0, -1.0, -z) glEnd() #front glColor3f(206/255, 20/255, 55/255) glBegin(GL_QUADS) glTexCoord2f(0.0, 0.0); glVertex3f(3.0, -1.0, -z) glTexCoord2f(1.0, 0.0); glVertex3f(3.0, 0.15, -z) glTexCoord2f(1.0, 1.0); glVertex3f(3.0, 0.15, z) glTexCoord2f(0.0, 1.0); glVertex3f(3.0, -1.0, z) glEnd() #front cover glColor3f(230/255, 20/255, 55/255) glBegin(GL_QUADS) glTexCoord2f(0.0, 0.0); glVertex3f(3.0, 0.15, -z) glTexCoord2f(1.0, 0.0); glVertex3f(1.2, 0.25, -z) glTexCoord2f(1.0, 1.0); glVertex3f(1.2, 0.25, z) glTexCoord2f(0.0, 1.0); glVertex3f(3.0, 0.15, z) glEnd() #front window frame glColor3f(235/255, 20/255, 55/255) glBegin(GL_QUADS) glTexCoord2f(0.0, 0.0); glVertex3f(0.6, 1.5, -z) glTexCoord2f(1.0, 0.0); glVertex3f(0.6, 1.5, z) glTexCoord2f(1.0, 1.0); glVertex3f(0.65, 1.42, z) glTexCoord2f(0.0, 1.0); glVertex3f(0.65, 1.42, -z) glTexCoord2f(0.0, 0.0); glVertex3f(1.15, 0.34, -z) glTexCoord2f(1.0, 0.0); glVertex3f(1.15, 0.34, -z+0.1) glTexCoord2f(1.0, 1.0); glVertex3f(0.65, 1.42, -z+0.1) glTexCoord2f(0.0, 1.0); glVertex3f(0.65, 1.42, -z) glTexCoord2f(0.0, 0.0); glVertex3f(1.15, 0.34, z) glTexCoord2f(1.0, 0.0); glVertex3f(1.15, 0.34, z-0.1) glTexCoord2f(1.0, 1.0); glVertex3f(0.65, 1.42, z-0.1) glTexCoord2f(0.0, 1.0); glVertex3f(0.65, 1.42, z) glTexCoord2f(0.0, 0.0); glVertex3f(1.15, 0.34, -z) glTexCoord2f(1.0, 0.0); glVertex3f(1.15, 0.34, z) glTexCoord2f(1.0, 1.0); glVertex3f(1.2, 0.25, z) glTexCoord2f(0.0, 1.0); glVertex3f(1.2, 0.25, -z) glEnd() #left above (window frame part) glColor3f(206/255, 20/255, 55/255) glBegin(GL_QUADS) glTexCoord2f(0.0, 0.0); glVertex3f(-3.0, 1.5, -z) glTexCoord2f(1.0, 0.0); glVertex3f(0.6, 1.5, -z) glTexCoord2f(1.0, 1.0); glVertex3f(0.696, 1.3, -z) glTexCoord2f(0.0, 1.0); glVertex3f(-3.0, 1.3, -z) glEnd() glBegin(GL_QUADS) glTexCoord2f(0.0, 0.0); glVertex3f(-3.0, 1.3, -z) glTexCoord2f(1.0, 0.0); glVertex3f(-3.0, 0.25, -z) glTexCoord2f(1.0, 1.0); glVertex3f(-2.5, 0.25, -z) glTexCoord2f(0.0, 1.0); glVertex3f(-2.5, 1.3, -z) glEnd() glBegin(GL_QUADS) glTexCoord2f(0.0, 0.0); glVertex3f(-1.2, 1.3, -z) glTexCoord2f(1.0, 0.0); glVertex3f(-1.2, 0.25, -z) glTexCoord2f(1.0, 1.0); glVertex3f(-1.0, 0.25, -z) glTexCoord2f(0.0, 1.0); glVertex3f(-1.0, 1.3, -z) glEnd() glBegin(GL_QUADS) glTexCoord2f(0.0, 0.0); glVertex3f(1.2, 0.25, -z) glTexCoord2f(1.0, 0.0); glVertex3f(0.696, 1.3, -z) glTexCoord2f(1.0, 1.0); glVertex3f(0.496, 1.3, -z) glTexCoord2f(0.0, 1.0); glVertex3f(1.0, 0.25, -z) glEnd() #left back glBegin(GL_POLYGON) glTexCoord2f(0.0, 0.0); glVertex3f(1.2, 0.25, -z) glTexCoord2f(1.0, 0.0); glVertex3f(1.2, -1.0, -z) glTexCoord2f(1.0, 1.0); glVertex3f(-3.0, -1.0, -z) glTexCoord2f(0.0, 1.0); glVertex3f(-3.0, 0.25, -z) glEnd() #left front glBegin(GL_POLYGON) glTexCoord2f(0.0, 0.0); glVertex3f(1.2, 0.25, -z) glTexCoord2f(1.0, 0.0); glVertex3f(3.0, 0.15, -z) glTexCoord2f(1.0, 1.0); glVertex3f(3.0, -1.0, -z) glTexCoord2f(0.0, 1.0); glVertex3f(1.2, -1.0, -z) glEnd() #right above (window frame part) glBegin(GL_QUADS) glTexCoord2f(0.0, 0.0); glVertex3f(-3.0, 1.5, z) glTexCoord2f(1.0, 0.0); glVertex3f(0.6, 1.5, z) glTexCoord2f(1.0, 1.0); glVertex3f(0.696, 1.3, z) glTexCoord2f(0.0, 1.0); glVertex3f(-3.0, 1.3, z) glEnd() glBegin(GL_QUADS) glTexCoord2f(0.0, 0.0); glVertex3f(-3.0, 1.3, z) glTexCoord2f(1.0, 0.0); glVertex3f(-3.0, 0.25, z) glTexCoord2f(1.0, 1.0); glVertex3f(-2.5, 0.25, z) glTexCoord2f(0.0, 1.0); glVertex3f(-2.5, 1.3, z) glEnd() glBegin(GL_QUADS) glTexCoord2f(0.0, 0.0); glVertex3f(-1.2, 1.3, z) glTexCoord2f(1.0, 0.0); glVertex3f(-1.2, 0.25, z) glTexCoord2f(1.0, 1.0); glVertex3f(-1.0, 0.25, z) glTexCoord2f(0.0, 1.0); glVertex3f(-1.0, 1.3, z) glEnd() glBegin(GL_QUADS) glTexCoord2f(0.0, 0.0); glVertex3f(1.2, 0.25, z) glTexCoord2f(1.0, 0.0); glVertex3f(0.696, 1.3, z) glTexCoord2f(1.0, 1.0); glVertex3f(0.496, 1.3, z) glTexCoord2f(0.0, 1.0); glVertex3f(1.0, 0.25, z) glEnd() #right back glBegin(GL_POLYGON) glTexCoord2f(0.0, 0.0); glVertex3f(1.2, 0.25, z) glTexCoord2f(1.0, 0.0); glVertex3f(1.2, -1.0, z) glTexCoord2f(1.0, 1.0); glVertex3f(-3.0, -1.0, z) glTexCoord2f(0.0, 1.0); glVertex3f(-3.0, 0.25, z) glEnd() #right front glBegin(GL_POLYGON) glTexCoord2f(0.0, 0.0); glVertex3f(1.2, 0.25, z) glTexCoord2f(1.0, 0.0); glVertex3f(3.0, 0.15, z) glTexCoord2f(1.0, 1.0); glVertex3f(3.0, -1.0, z) glTexCoord2f(0.0, 1.0); glVertex3f(1.2, -1.0, z) glEnd() glDisable(GL_TEXTURE_2D) #lampu glBegin(GL_QUADS) glColor3f(0.9,0.9,0.9) glVertex3f(3.006, -0.65, -z+0.101) glVertex3f(3.006, -0.35, -z+0.101) glVertex3f(3.006, -0.35, -z+0.601) glVertex3f(3.006, -0.65, -z+0.601) glVertex3f(3.006, -0.65, z-0.101) glVertex3f(3.006, -0.35, z-0.101) glVertex3f(3.006, -0.35, z-0.601) glVertex3f(3.006, -0.65, z-0.601) glColor3f(0.6,0.2,0.2) glVertex3f(-3.006, -0.65, -z+0.101) glVertex3f(-3.006, -0.35, -z+0.101) glVertex3f(-3.006, -0.35, -z+0.601) glVertex3f(-3.006, -0.65, -z+0.601) glVertex3f(-3.006, -0.65, z-0.101) glVertex3f(-3.006, -0.35, z-0.101) glVertex3f(-3.006, -0.35, z-0.601) glVertex3f(-3.006, -0.65, z-0.601) glColor3f(0,0,0) glVertex3f(3.006, -0.6, -z+1) glVertex3f(3.006, -0.37, -z+1) glVertex3f(3.006, -0.37, z-1) glVertex3f(3.006, -0.6, z-1) #lampu2 glColor3f(0.6,0.6,0.6) glVertex3f(3.005, -0.7, -z) glVertex3f(3.005, -0.3, -z) glVertex3f(3.005, -0.3, z) glVertex3f(3.005, -0.7, z) glVertex3f(-3.005, -0.7, -z) glVertex3f(-3.005, -0.3, -z) glVertex3f(-3.005, -0.3, z) glVertex3f(-3.005, -0.7, z) glVertex3f(2.9, -0.3, -z-0.0014) glVertex3f(3.0, -0.3, -z-0.0014) glVertex3f(3.0, -0.7, -z-0.0014) glVertex3f(2.9, -0.7, -z-0.0014) glVertex3f(2.9, -0.3, z+0.0014) glVertex3f(3.0, -0.3, z+0.0014) glVertex3f(3.0, -0.7, z+0.0014) glVertex3f(2.9, -0.7, z+0.0014) glColor3f(226/255, 152/255, 22/255) glVertex3f(2.95, -0.35, z+0.0015) glVertex3f(2.985, -0.35, z+0.0015) glVertex3f(2.985, -0.65, z+0.0015) glVertex3f(2.95, -0.65, z+0.0015) glVertex3f(2.95, -0.35, -z-0.0015) glVertex3f(2.985, -0.35, -z-0.0015) glVertex3f(2.985, -0.65, -z-0.0015) glVertex3f(2.95, -0.65, -z-0.0015) glEnd() #front window glass glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA) glEnable(GL_BLEND) glColor4f(90/255, 90/255, 90/255, 0.3) glBegin(GL_QUADS) glVertex3f(0.65, 1.42, -z) glVertex3f(0.65, 1.42, -z) glVertex3f(1.15, 0.34, -z) glVertex3f(1.15, 0.34, -z) glEnd() glDisable(GL_BLEND) #right window glass glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA) glEnable(GL_BLEND) glColor4f(90/255, 90/255, 90/255, 0.3) glBegin(GL_QUADS) glVertex3f(-3.0, 1.5, z-0.01) glVertex3f(0.5, 1.5, z-0.01) glVertex3f(1.2, 0.25, z-0.01) glVertex3f(-3.0, 0.25, z-0.01) glEnd() glDisable(GL_BLEND) #front window glass glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA) glEnable(GL_BLEND) glColor4f(90/255, 90/255, 90/255, 0.3) glBegin(GL_QUADS) glVertex3f(0.5, 1.5, -z) glVertex3f(0.5, 1.5, z) glVertex3f(1.2, 0.25, z) glVertex3f(1.2, 0.25, -z) glEnd() glDisable(GL_BLEND) #back window glass glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA) glEnable(GL_BLEND) glColor4f(90/255, 90/255, 90/255, 0.3) glBegin(GL_QUADS) glVertex3f(-2.99, 0.25, -z+0.5) glVertex3f(-2.99, 0.25, z-0.5) glVertex3f(-2.99, 1.0, z-0.5) glVertex3f(-2.99, 1.0, -z+0.5) glEnd() glDisable(GL_BLEND) loadTexture(data[1],dim1[2],dim1[3]) glEnable(GL_TEXTURE_2D) # Car's Wheel glColor3f(0.0, 0.0, 0.0) quadric = gluNewQuadric() gluQuadricNormals(quadric, GLU_SMOOTH) gluQuadricTexture(quadric, GL_TRUE) glTranslatef(1.7,-1.0,-1.7) gluCylinder(quadric,0.6,0.6,0.2,15,15) gluDisk(quadric, 0, 0.6, 15, 15) glTranslatef(0.0,0.0,0.2) gluDisk(quadric, 0, 0.6, 15, 15) glTranslatef(0.0, 0.0, -0.2) glTranslatef(-3.3, 0.0, 0.0) gluCylinder(quadric,0.6,0.6,0.2,15,15) gluDisk(quadric, 0, 0.6, 15, 15) glTranslatef(0.0,0.0,0.2) gluDisk(quadric, 0, 0.6, 15, 15) glTranslatef(0.0, 0.0, -0.2) glTranslatef(0.0, 0.0, 3.2) gluCylinder(quadric,0.6,0.6,0.2,15,15) gluDisk(quadric, 0, 0.6, 15, 15) glTranslatef(0.0,0.0,0.2) gluDisk(quadric, 0, 0.6, 15, 15) glTranslatef(0.0, 0.0, -0.2) glTranslatef(3.3, 0.0, 0.0) gluCylinder(quadric,0.6,0.6,0.2,15,15) gluDisk(quadric, 0, 0.6, 15, 15) glTranslatef(0.0,0.0,0.2) gluDisk(quadric, 0, 0.6, 15, 15) glColor3f(1.0, 1.0, 1.0) gluDisk(quadric, 0.2, 0.4, 15, 15) glTranslatef(-3.3, 0.0, 0.0) gluDisk(quadric, 0.2, 0.4, 15, 15) glTranslatef(0.0, 0.0, -0.2) glTranslatef(0.0, 0.0, -3.2) gluDisk(quadric, 0.2, 0.4, 15, 15) glTranslatef(+3.3, 0.0, 0.0) gluDisk(quadric, 0.2, 0.4, 15, 15) glDisable(GL_TEXTURE_2D) # Initialization def InitGL(Width, Height): glClearColor(0.0, 0.0, 0.0, 0.0) glClearDepth(1.0) glDepthFunc(GL_LESS) glEnable(GL_DEPTH_TEST) glShadeModel(GL_SMOOTH) glMatrixMode(GL_PROJECTION) glLoadIdentity() gluPerspective(45.0, float(Width)/float(Height), 0.1, 100.0) glMatrixMode(GL_MODELVIEW) # initialize texture mapping glEnable(GL_TEXTURE_2D) glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST) glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST) glTexEnvf(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_DECAL) def DrawGLScene(): #global X_AXIS,Y_AXIS,Z_AXIS #global DIRECTION glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT) glLoadIdentity() renderLight() camera.apply() camera.rotate(xrot*0.001, 0.0, 0.0) camera.rotate(0, yrot*0.001, 0.0) # glBindTexture(GL_TEXTURE_2D, ID) # Draw Car drawCar() # Draw Cube (multiple quads) '''glBegin(GL_QUADS); glTexCoord2f(0.0, 0.0); glVertex3f(-1.0, -1.0, 1.0); glTexCoord2f(1.0, 0.0); glVertex3f( 1.0, -1.0, 1.0); glTexCoord2f(1.0, 1.0); glVertex3f( 1.0, 1.0, 1.0); glTexCoord2f(0.0, 1.0); glVertex3f(-1.0, 1.0, 1.0); glTexCoord2f(1.0, 0.0); glVertex3f(-1.0, -1.0, -1.0); glTexCoord2f(1.0, 1.0); glVertex3f(-1.0, 1.0, -1.0); glTexCoord2f(0.0, 1.0); glVertex3f( 1.0, 1.0, -1.0); glTexCoord2f(0.0, 0.0); glVertex3f( 1.0, -1.0, -1.0); glTexCoord2f(0.0, 1.0); glVertex3f(-1.0, 1.0, -1.0); glTexCoord2f(0.0, 0.0); glVertex3f(-1.0, 1.0, 1.0); glTexCoord2f(1.0, 0.0); glVertex3f( 1.0, 1.0, 1.0); glTexCoord2f(1.0, 1.0); glVertex3f( 1.0, 1.0, -1.0); glTexCoord2f(1.0, 1.0); glVertex3f(-1.0, -1.0, -1.0); glTexCoord2f(0.0, 1.0); glVertex3f( 1.0, -1.0, -1.0); glTexCoord2f(0.0, 0.0); glVertex3f( 1.0, -1.0, 1.0); glTexCoord2f(1.0, 0.0); glVertex3f(-1.0, -1.0, 1.0); glTexCoord2f(1.0, 0.0); glVertex3f( 1.0, -1.0, -1.0); glTexCoord2f(1.0, 1.0); glVertex3f( 1.0, 1.0, -1.0); glTexCoord2f(0.0, 1.0); glVertex3f( 1.0, 1.0, 1.0); glTexCoord2f(0.0, 0.0); glVertex3f( 1.0, -1.0, 1.0); glTexCoord2f(0.0, 0.0); glVertex3f(-1.0, -1.0, -1.0); glTexCoord2f(1.0, 0.0); glVertex3f(-1.0, -1.0, 1.0); glTexCoord2f(1.0, 1.0); glVertex3f(-1.0, 1.0, 1.0); glTexCoord2f(0.0, 1.0); glVertex3f(-1.0, 1.0, -1.0); glEnd(); idle() #X_AXIS = X_AXIS - 0.30 #Z_AXIS = Z_AXIS - 0.30''' idle() glutSwapBuffers() def loadImage(filename): image = Image.open(filename) ix = image.size[0] iy = image.size[1] data = numpy.array(list(image.getdata()), dtype=numpy.int64) return data, ix, iy def loadTexture(data, ix, iy): glPixelStorei(GL_UNPACK_ALIGNMENT,1) glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB, ix, iy, 0, GL_RGB, GL_UNSIGNED_BYTE, data) glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP) glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP) glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT) glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT) glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST) glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST) glTexEnvf(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_DECAL) def main(): global data, dim1, dim2 glutInit(sys.argv) glutInitDisplayMode(GLUT_RGBA | GLUT_DOUBLE | GLUT_ALPHA | GLUT_DEPTH) glutInitWindowSize(640,480) glutInitWindowPosition(200,200) window = glutCreateWindow(b'OpenGL Python Textured Cube') glutDisplayFunc(DrawGLScene) glutIdleFunc(DrawGLScene) glutKeyboardFunc(processNormalKeys) glutSpecialFunc(processSpecialKeys) #Mouse Function glutMouseFunc(mouse) glutMotionFunc(mouseMotion) InitGL(640, 480) arr, x, y = loadImage("../img/blue.jpg") dim1.append(x) dim1.append(y) data.append(arr) arr2, x2, y2 = loadImage("../img/wheel.jpg") dim1.append(x2) dim1.append(y2) data.append(arr2) # arr, x, y = loadImage("../img/tes.jpg") # dim2.append(x) # dim2.append(y) # data.append(arr) glutMainLoop() if __name__ == "__main__": main()
true
7e0d08ced97466efac6ee69191d7bba9df933fd2
Python
YaooXu/Software_test
/analyzer.py
UTF-8
12,056
2.8125
3
[]
no_license
import os import re import ast import json import astunparse import numpy as np global source, file_parent_path, file_name TAB_SIZE = 4 cnt = 0 all_func = {} # 分析源码的class和method class SourceAnalyser(ast.NodeVisitor): def __init__(self): self.all_class = {} self.all_func = [] self.names = set() def analyze(self, node): self.visit(node) def visit_Module(self, node): self.generic_visit(node) def visit_Name(self, node): self.names.add(node.id) def visit_FunctionDef(self, node): if node.name[0] != '_': # 忽略私有 print('func name:', node.name) self.all_func.append(node.name) def visit_ClassDef(self, node): self.all_class[node.name] = [] print('ClassDef:', node.name) for sub_node in ast.walk(node): if isinstance(sub_node, ast.FunctionDef) and sub_node.name[0] != '_': # 忽略私有 print('method name:', sub_node.name) self.all_class[node.name].append(sub_node.name) print() def typeCastToString(castParameter): ''' 将任意基本类型的对象转换为字符串 :param castParameter:需要转换的参数 ''' newType = [] if type(castParameter) == int: # 整型转字符串 newType = str(castParameter) elif type(castParameter) == list: castParameter_new = [] for i in castParameter: if type(i) == str: newType = ','.join(castParameter) elif type(i) == int: i = str(i) castParameter_new.append(i) newType = ','.join(castParameter_new) elif type(i) == tuple: i = ','.join(i) castParameter_new.append(i) newType = ','.join(castParameter_new) elif type(i) == dict: i = str(i) castParameter_new.append(i) newType = ','.join(castParameter_new) # return type(newType) return newType def in_all_func(node, all_func): # 判断是不是代码库函数调用 # 调用方式的不同会使node.value.func中的属性不一样 if 'attr' in node.value.func.__dict__: if node.value.func.attr in all_func: print("代码库函数调用:%s" % node.value.func.attr) return True elif 'id' in node.value.func.__dict__: if node.value.func.id in all_func: print("代码库函数调用:%s" % node.value.func.id) return True print("不是代码库函数调用") return False def add_brackets(s): # 给字符串加括号 s = '(' + s + ')' return s def add_quotes(s): # 给字符串加双引号 s = '\"' + s + '\"' return s # 分析目标代码的函数调用 class CallVisitor(ast.NodeVisitor): def __init__(self): self.all_class = {} self.names = set() def visit_Module(self, node): self.generic_visit(node) def visit_Name(self, node): self.names.add(node.id) def visit_ClassDef(self, node): # self.all_class[node.name] = [] # print('ClassDef:', node.name) # for sub_node in ast.walk(node): # if isinstance(sub_node, ast.FunctionDef): # print('func name:', sub_node.name) # self.all_class[node.name].append(sub_node.name) body = node.body for sub_node in body: if isinstance(sub_node, ast.FunctionDef): self.visit_FunctionDef(sub_node) pass def visit_FunctionDef(self, node): body = node.body for sub_node in body: if isinstance(sub_node, ast.Assign): self.visit_Assign(sub_node) pass # 判断是否有assign def visit_Assign(self, node): global cnt print("\n------访问Assign节点---") line_num = node.lineno print("line_num = ", line_num) print(source[line_num - 1]) # print(type(astunparse.dump(node))) col_offset = node.col_offset if not isinstance(node.value, ast.Call): print("节点未调用方法或者函数") return if not in_all_func(node, all_func): # 不是调用的代码库函数 return # 每个log文件的前缀路径 prefix_log_path = os.path.join(file_parent_path, 'log', file_name + "_" + str(cnt) + "_line" + str(line_num)) # log中输出内容的前缀信息 prefix_output = "output = %s\\n" prefix_args = "input =" if 'id' not in node.value.func.__dict__: # *.* 形式的函数调用 try: # 打log log_name = prefix_log_path + "_" + node.value.func.value.id + "_" + node.value.func.attr + "_py%s.txt" print("log_name = " + log_name) except: print("错误:节点属性缺少") return else: if node.value.func.id == 'input': # 跳过input函数 return # * 形式的函数调用 try: # 打log log_name = prefix_log_path + "_" + node.value.func.id + "_py%s.txt" print("log_name = " + log_name) except: print("错误:节点属性缺少") return try: # 第二行参数得多加一个缩进 addition = "%swith open(r\"%s\"%%(sys.version[0:3]), \"w+\", encoding=\'utf8\') as f:\n%sf.write(\"%s\"%%str(%s))" % ( " " * col_offset, log_name, " " * (col_offset + TAB_SIZE), prefix_output, node.targets[0].id) # print(addition) if '#' in source[line_num - 1]: # 清楚注释 idx = source[line_num - 1].find('#') source[line_num - 1] = source[line_num - 1][:idx] # 清楚右边多余的空格 source[line_num - 1] = source[line_num - 1].rstrip() source[line_num - 1] += '\n' while source[line_num - 1][-2] != ')': # 有的函数调用有多行,注意 [-1] 是 \n line_num += 1 source[line_num - 1] += '%s\n' % (addition) # print(source[line_num - 1]) print("插装成功") cnt += 1 except: print("错误:节点属性缺少") return if len(node.value.args): # 该函数调用存在参数 # f.write("input = %s %s %s" % ('x*', '-', str(s))) to_print_list = [] # 待打印的参数 print('参数列表:') for arg in node.value.args: # 前面的打印形式str加个%s prefix_args += " %s" # 字符串是s , 变量名是id if 's' in arg.__dict__: print(arg.s) arg.s = str(arg.s).replace('\n', r'\n') # arg.s = arg.s.replace('\n', r'\n') to_print_list.append("r\"%s\"" % arg.s) elif 'id' in arg.__dict__: print(arg.id) to_print_list.append("str(%s)" % arg.id) else: print('参数列表中又无法解析的参数') return to_print_str = ",".join(to_print_list) # 'x*', '-', str(s) to_print_str = add_brackets(to_print_str) # ('x*', '-', str(s)) prefix_args = add_quotes(prefix_args) # "input = %s %s %s" # 最终插入的语句 instrument_str = "f.write" + add_brackets(prefix_args + ' % ' + to_print_str) # 加上缩进和换行符插入 source[line_num - 1] += " " * (col_offset + TAB_SIZE) + instrument_str + '\n' # print(instrument_str) def visit_Call(self, node): pass # try: # # xx.xx 不区分方法和构造函数 # # re.sub,np.ndarray # print(node.func.value.id, node.func.attr) # except: # # 什么时候是attr,什么时候是id # if 'attr' in node.func.__dict__: # print(node.func.attr) # else: # print(node.func.id) # pass def load_json(json_path): # 加载json中的所有函数 with open(json_path, 'r') as f: print("解析json,得到系统调用:") data = json.load(f) # print(data) for i in data: print(i) for sub_class in data[i]['classes']: for j in data[i]['classes'][sub_class]: # print(j) all_func[j] = 1 for sub_fun in data[i]['funcs']: all_func[sub_fun] = 1 def analyse_lib(lib_pathes: list): res = {} for path in lib_pathes: print('********************************************\n\n%s*' % path) with open(path, encoding='utf8') as f: source = f.readlines() source = ''.join(source) t = ast.parse(source) analyzer = SourceAnalyser() analyzer.analyze(t) cur_res = { 'classes': analyzer.all_class, 'funcs': analyzer.all_func } # 得到模块的无后缀名字 module_name = os.path.split(path)[-1].split('.')[0] if module_name == '__init__': # 如果有的模块的所有信息在__init__总给出 # 需要再分割一次路径名 dir_path = os.path.split(path)[0] module_name = os.path.split(dir_path)[-1].split('.')[0] res[module_name] = cur_res with open('module_func_class.json', 'w', encoding='utf8') as f: f.write(json.dumps(res, indent=4)) load_json("module_func_class.json") print(all_func) def get_instrument_file(file_path: str, save_path=None, over_write=True): r""" :param file_path: 待插装的目标文件 :param save_path: 插装后文件的保存路径,如果为None默认放到与目标文件同一目录下 :return: 插装之后的文件路径 """ global cnt cnt = 0 print('generating instrument file for % s' % file_path) with open(file_path, 'r', encoding='utf8') as f: global source, file_parent_path, file_name source = f.readlines() file_parent_path = os.path.split(file_path)[0] file_name = os.path.split(file_path)[-1][0:-3] # print(file_parent_path, file_name) # log文件夹 log_path = os.path.join(file_parent_path, 'log') if not os.path.exists(log_path): os.mkdir(log_path) source_str = ''.join(source) root = ast.parse(source_str) # print(astunparse.dump(root)) if save_path is None: save_path = file_parent_path + "/" + "instrument_" + file_name + ".py" if over_write: visitor = CallVisitor() visitor.visit(root) # 插装后代码路径 source[0] = 'import sys\n' + source[0] with open(save_path, "w+", encoding='utf8') as f: tmp = ''.join(source) f.write(tmp) return save_path if __name__ == "__main__": lib_dir = 'E:\Anaconda\Lib' pathes = [] for root, dir, files in os.walk(lib_dir): # 暂时只处理root下的.py文件 for file in files: if file.startswith('_') or file[-2:] != 'py': continue path = os.path.join(root, file) pathes.append(path) break pathes.append(r'C:\Users\dell\.PyCharm2019.1\system\python_stubs\-727401014\builtins.py') analyse_lib(pathes) # # 待插装的代码集合 # test_pathes = [] # # 识别目标代码自定义的函数 # # for path in test_pathes: # # path = r'D:\课件\大三上\软件质量测试\大作业\code\Software_test\test.py' # get_instrument_file(path)
true
cc2b492650aedc5ec9271657e5d76b8bad6edf53
Python
Ismgh/OCR
/neural_network_design.py
UTF-8
2,315
2.609375
3
[]
no_license
# Try various number of hidden nodes and see what performs best for i in xrange(5, 50, 5): nn = OCRNeuralNetwork(i, data_matrix, data_labels, train_indices, False) performance = str(test(data_matrix, data_labels, test_indices, nn)) print "{i} Hidden Nodes: {val}".format(i=i, val=performance) def test(data_matrix, data_labels, test_indices, nn): avg_sum = 0 for j in xrange(100): correct_guess_count = 0 for i in test_indices: test = data_matrix[i] prediction = nn.predict(test) if data_labels[i] == prediction: correct_guess_count += 1 avg_sum += (correct_guess_count / float(len(test_indices))) return avg_sum / 100 actual_vals = [0] * 10 actual_vals[data['label']] = 1 output_errors = np.mat(actual_vals).T - np.mat(y2) hidden_errors = np.multiply(np.dot(np.mat(self.theta2).T, output_errors), self.sigmoid_prime(sum1)) self.theta1 += self.LEARNING_RATE * np.dot(np.mat(hidden_errors), np.mat(data['y0'])) self.theta2 += self.LEARNING_RATE * np.dot(np.mat(output_errors), np.mat(y1).T) self.hidden_layer_bias += self.LEARNING_RATE * output_errors self.input_layer_bias += self.LEARNING_RATE * hidden_errors def save(self): if not self._use_file: return json_neural_network = { "theta1":[np_mat.tolist()[0] for np_mat in self.theta1], "theta2":[np_mat.tolist()[0] for np_mat in self.theta2], "b1":self.input_layer_bias[0].tolist()[0], "b2":self.hidden_layer_bias[0].tolist()[0] }; with open(OCRNeuralNetwork.NN_FILE_PATH,'w') as nnFile: json.dump(json_neural_network, nnFile) def _load(self): if not self._use_file: return with open(OCRNeuralNetwork.NN_FILE_PATH) as nnFile: nn = json.load(nnFile) self.theta1 = [np.array(li) for li in nn['theta1']] self.theta2 = [np.array(li) for li in nn['theta2']] self.input_layer_bias = [np.array(nn['b1'][0])] self.hidden_layer_bias = [np.array(nn['b2'][0])]
true
6dcd7ee1176922eb32fcdaed810de63ff5e8d5dc
Python
Garyguo2011/DistanceVectorRouting
/project1/hub.py
UTF-8
481
2.59375
3
[]
no_license
from sim.api import * from sim.basics import * import time class Hub (Entity): """ A simple hub -- floods all packets """ def handle_rx (self, packet, port): """ Just sends the packet back out of every port except the one it came in on. """ if type(packet) is DiscoveryPacket: print ("Router: {3} DiscoveryPacket: {0} -> {1}: Latency: {2}".format(packet.src.name, packet.dst, packet.latency, str(self.name))) # self.send(packet, port, flood=True
true
a42d46ca65cbfa162fb0b499a1643d7be618d439
Python
qianpeng-shen/Study_notes
/第二阶段笔记/pythonweb/day04/unix_send.py
UTF-8
622
2.65625
3
[]
no_license
from socket import * import sys,os #确定用哪个文件进行通信 server_address='./test' #判断'./test'文件存在性,如果已经存在需要处理 #删除这个文件 if os.path.exists(server_address): os.unlink(server_address) #创建本地套接字 sockfd=socket(AF_UNIX,SOCK_STREAM) #绑定本地套接字文件 sockfd.bind(server_address) #监听 sockfd.listen(5) while True: c,addr=sockfd.accept() while True: data=c.recv(1024) if data: print(data.decode()) c.sendall("收到消息".encode()) else: break c.close() sockfd.close()
true
c79ed3d8fb6294f539ccd2a2fdfc75ba86f50356
Python
zerlok/nsu-prog-all
/ptycho-coursework/fp.py
UTF-8
14,960
2.515625
3
[]
no_license
#!/usr/bin/python3 from argparse import Action from numpy import ( pi, sin, cos, radians, arctan, arccos, exp, angle, conjugate, sqrt, conj, array, zeros, ones, meshgrid, arange, mean, any as np_any, sum as np_sum, std, fft, save as np_save, ) import optics as o from abstracts import Factory from os.path import join as path_join from settings import DEFAULT_LOWRES_FORMAT class LED: def __init__(self, lid, pos, k): self.id = lid self.pos = pos self.k = k def __str__(self): return "<LED#{:03}: pos={} k=({:.2f}, {:.2f})>".format( self.id, self.pos, *self.k, ) def draw(self, data, steps, radius): pos = tuple(int(p) for p in self.get_center_wavevec(steps, data.shape)) hw = radius.shape[0]//2 data[pos[1]-hw : pos[1]+hw, pos[0]-hw : pos[0]+hw] += radius def get_center_wavevec(self, steps, lims): # Center wavevecs. return ( lims[0]/2.0 + self.k[0]/steps[0], lims[1]/2.0 + self.k[1]/steps[1] ) def get_wavevec_slice(self, sizes, steps, lims): '''Returns slice of amplitude FT frequency range for specified led.''' kxc, kyc = self.get_center_wavevec(steps, lims) # Safe slices for x and y (lowest wavevec, highest wavevec, step) return ( slice( max(int(round(kxc - sizes[0]/2.0)), 0), min(int(round(kxc + sizes[0]/2.0)), lims[0]), 1 ), slice( max(int(round(kyc - sizes[1]/2.0)), 0), min(int(round(kyc + sizes[1]/2.0)), lims[1]), 1 ) ) # Unsafe slices (no limits used). # ( # slice( # int(round(kxc - sizes[0]/2.0)), # int(round(kxc + sizes[0]/2.0)), # 1 # ), # slice( # int(round(kyc - sizes[1]/2.0)), # int(round(kyc + sizes[1]/2.0)), # 1 # ) # ) @Factory class LEDSystems: '''LEDs systems....''' pass class LEDSystem: def walk(self): raise NotImplementedError def at(self, i, j): raise NotImplementedError @LEDSystems.product('grid', default=True, kwargs_types={'num': int, 'gap': float, 'height': float}) class LEDGrid(LEDSystem): '''A lighting LED grid for Fourier Ptychography purposes.''' def __init__(self, num, gap, height, wavevec): self.num = num self.gap = gap self.height = height self.width = (num-1) * gap hw = self.width / 2.0 self.mtrx = [ LED( lid = col + row * num, pos = (col, row), k = ( -wavevec * sin(arctan((col*gap - hw) / height)), -wavevec * sin(arctan((row*gap - hw) / height)) ) ) for row in range(num) for col in range(num) ] def __len__(self): return self.num * self.num def __str__(self): return "<LED matrix {}x{}, gap {}, height {}>".format( self.num, self.num, self.gap, self.height, ) def __iter__(self): return iter(self.mtrx) def get_radius(self, na): return na * sqrt(self.gap**2 + self.height**2) / self.gap def walk(self): '''Walk through leds from central to border in spin''' hn = self.num // 2 x, y = hn, hn yield self.at(x, y) # Directions of steps. dirs = ((0, 1), (-1, 0), (0, -1), (1, 0)) # Down, Left, Up, Right dn = int(self.num % 2 == 0) turn = 0 steps_to_take = 1 steps_left = steps_to_take for i in range(1, len(self)): if steps_left: # Just make a step steps_left -= 1 else: # Make step and turn dn += 1 turn += 1 steps_to_take += int(turn % 2 == 0) steps_left = steps_to_take-1 # Get step direction and new coordinates d = dirs[dn % 4] x, y = x+d[0], y+d[1] yield self.at(x, y) def at(self, column, row): '''Returns LED at specified grid location.''' return self.mtrx[row * self.num + column] @LEDSystems.product('sphere', kwargs_types={'start': int, 'end': int, 'step': int}) class LEDSphere(LEDSystem): '''A lighting LED sphere for Reflective Fourier Ptychography.''' def __init__(self, start, end, step, wavevec): self.step = step self.ring_len = 360 // step self.sphere = [ LED( lid = i + j * self.ring_len, pos = (psy, phi), k = ( -wavevec * sin(radians(phi)) * cos(radians(psy)), -wavevec * sin(radians(phi)) * sin(radians(psy)) ) ) for (j, phi) in enumerate(range(start, end+step, step)) for (i, psy) in enumerate(range(360, 0, -step)) # ClockWise ] def __len__(self): return len(self.sphere) * self.ring_len def __str__(self): return "<LED sphere (reflection) phi: {} -> {} by {}, total {}>".format( self.sphere[0].pos[1], self.sphere[-1].pos[1], self.step, len(self), ) def __iter__(self): return iter(self.sphere) def get_radius(self, na): return na / sin(radians(self.step)) def walk(self): '''Walk through leds in spin.''' return iter(self) def at(self, ring, hr): '''Returns LED at specified ring (from central to border) and hour ().''' return self.sphere[ring *self.ring_len + hr] class FourierPtychographySystem(o.System): def __init__(self, leds, *args, **kwargs): super(FourierPtychographySystem, self).__init__(*args, **kwargs) self.leds = leds def count_leds_overlap(self): '''Returns the LEDs overlaping factor in Fourier space.''' r = self.leds.get_radius(self.objective.na) return (2.0*arccos(1.0/(2.0*r)) - sqrt(1.0 - (1.0/(2.0*r))**2) / r) / pi def count_total_coverage(self, size=(256, 256)): wavevec_steps = self.get_wavevec_steps(*size) radius = self.objective.generate_ctf(*wavevec_steps) data = zeros(size, dtype=bool) for led in self.leds: led.draw(data, wavevec_steps, radius) return np_sum(data) / (size[0] * size[1]) def check_fourier_space_borders(self, low_size, high_size): '''Checks if all wavevector slices are inside the image size in the Fourier space.''' steps = self.get_wavevec_steps(*high_size) for led in self.leds.walk(): sl = led.get_wavevec_slice( sizes = low_size, steps = steps, lims = high_size, ) sl = tuple(int(round(s.stop - s.start) / s.step) for s in sl) if sl != low_size: print("Failed to get FT slice for led: {}, images: low {}, high {}, slice {}".format( led, low_size, high_size, sl, )) return False return True def get_leds_look(self, size, brightfield=False, darkfield=False, overlaps=False, factor=255): '''Returns the image of LEDs look as from microscope.''' wavevec_steps = self.get_wavevec_steps(*size) radius = array([[1, 1], [1, 1]]) \ if not overlaps else \ self.objective.generate_ctf(*wavevec_steps) * 1 data = zeros(size, dtype=int) for led in self.leds: led.draw(data, wavevec_steps, radius) cut = zeros(size, dtype=float) steps = self.objective.generate_wavevec_steps(*size) if brightfield or overlaps: cut += self.objective.generate_ctf(*steps) * 1.0 if darkfield or overlaps: cut += (1 - self.objective.generate_ctf(*steps)) * 0.5 return o.pack_image(data*cut*factor, size) @Factory class Generators: '''Simulators of low resolution images obtaining as from optical microscope system.''' pass class LowresGenerator(FourierPtychographySystem): def save_into_dir(self, result, dirname): print("WARNING: amplitudes will be saved into image files and will loose some quality!") low_images = [o.pack_image(data, result['size'], norm=True) for data in result['amplitudes']] filename = path_join(dirname, DEFAULT_LOWRES_FORMAT) for (i, img) in enumerate(low_images): img.save(filename.format(id=i)) def save_into_npy(self, result, filename): np_save(filename, result['amplitudes']) @Generators.product('simple') class SimpleObjectiveView(LowresGenerator): '''Simple objective view generator.''' def __init__(self, *args, **kwargs): super(SimpleObjectiveView, self).__init__(*args, **kwargs) def _inner_run(self, ampl): result = super(SimpleObjectiveView, self)._inner_run(ampl) return { 'ft': fft.fftshift(fft.fft2(ampl)), 'slices': None, 'lows_ft': None, 'amplitudes': result['amplitude'], 'size': result['amplitude'].shape, 'len': 1, } def save_into_dir(self, result, dirname): img = o.pack_image(result['amplitudes'], result['size'], norm=True) img.save(path_join(dirname, "result.png")) @Generators.product('lowres-generator', default=True) class LEDGenerator(LowresGenerator): def _inner_run(self, ampl): '''Creates a bundle of low resolution images data for each LED on grid. Returns an array with matrices (amplitude values).''' q2 = self.quality*self.quality x_step, y_step = wavevec_steps = self.get_wavevec_steps(*ampl.shape) low_size = tuple(int(i * self.quality) for i in ampl.shape) # pupil = self.objective.generate_pass_mtrx(*self.objective.generate_wavevec_steps(*ampl.shape)) pupil = self.objective.generate_pass_mtrx(x_step, y_step) ampl_ft = fft.fftshift(fft.fft2(ampl)) slices = [ led.get_wavevec_slice( sizes = low_size, steps = wavevec_steps, lims = ampl.shape ) for led in self.leds ] lows_ft = array([ q2 * ampl_ft[y_slice, x_slice] * pupil for (x_slice, y_slice) in slices ]) ampls = array([ abs(fft.ifft2(fft.ifftshift(low))) # abs(ampl_ft[y_slice, x_slice]) for low in lows_ft ]) return { 'ft': ampl_ft, 'slices': slices, 'lows_ft': lows_ft, 'amplitudes': ampls, 'size': low_size, 'len': ampls.shape[0], } @Factory class RecoveryMethods: '''Fourier-Ptychography high resolution images recovery methods.''' pass @RecoveryMethods.product('fp', default=True, kwargs_types={'loops': int}) class FPRecovery(FourierPtychographySystem): '''A simple Fourier Ptychography high resolution image recovery.''' def __init__(self, loops, *args, **kwargs): super(FPRecovery, self).__init__(*args, **kwargs) self.loops = loops self.q2 = self.quality * self.quality self.q_2 = 1.0 / self.q2 def _inner_run(self, ampls): self._init_recovery(ampls) for i in range(self.loops): self._init_recovery_iteration(i) for led in self.leds.walk(): self._recover_for_led(led) self._finish_recovery_iteration(i) return self._finish_recovery() def _init_recovery(self, ampls): '''Initial method to build FP data before process started.''' lowres_size = ampls[0].shape highres_size = tuple(int(i / self.quality) for i in lowres_size) steps = self.get_wavevec_steps(*highres_size) ctf = self.objective.generate_ctf(*steps) self._params = { 'lowres_size': lowres_size, 'steps': steps, 'ctf': ctf, 'ictf': 1.0 - ctf, 'measured': ampls, 'highres_ft': fft.fftshift(fft.fft2(ones(highres_size))), 'highres_size': highres_size, 'slices': [ led.get_wavevec_slice( sizes = lowres_size, steps = steps, lims = highres_size, ) for led in self.leds ] } def _init_recovery_iteration(self, iter_num): '''Initial method to build FP iteration data (for every loop).''' pass def _recover_for_led(self, led): '''4 steps of FP recovery flow for single led.''' # 1st - Get highres FT part for current led. x_slice, y_slice = self._params['slices'][led.id] old_highres_ft_part = self._params['highres_ft'][y_slice, x_slice] old_lowres_ft = self.q2 * old_highres_ft_part * self._params['ctf'] # 2nd - Build the I_li (low-res amplitude). old_lowres_ampl = fft.ifft2(fft.ifftshift(old_lowres_ft)) # 3rd - Build the FT of I_mi with the known phase of I_li. new_lowres_ampl = self.q_2 * self._params['measured'][led.id] * exp(1j * angle(old_lowres_ampl)) new_lowres_ft = fft.fftshift(fft.fft2(new_lowres_ampl)) # 4th - Add new FT of I_hi to the old one. self._params['highres_ft'][y_slice, x_slice] = \ self._params['ictf'] * old_highres_ft_part \ + self._params['ctf'] * new_lowres_ft def _finish_recovery_iteration(self, iter_num): '''Finish FP recovery iteration.''' pass def _finish_recovery(self): '''Last method of the FP recovery to build final data.''' highres_data = fft.ifft2(fft.ifftshift(self._params['highres_ft'])) return { 'ft': self._params['highres_ft'], 'amplitude': abs(highres_data), 'phase': angle(highres_data), } @RecoveryMethods.product('epry-fp') class EPRYRec(FPRecovery): def __init__(self, *args, **kwargs): super(EPRYRec, self).__init__(*args, **kwargs) self.alpha = 1.0 self.beta = 1.0 def _init_recovery(self, ampls): super(EPRYRec, self)._init_recovery(ampls) self._params['pupil'] = ones(self._params['lowres_size'], dtype=complex) def _recover_for_led(self, led): transfer = self._params['ctf'] * self._params['pupil'] x_slice, y_slice = self._params['slices'][led.id] old_highres_ft_part = self._params['highres_ft'][y_slice, x_slice] old_lowres_ft = old_highres_ft_part * transfer; old_lowres_ampl = fft.ifft2(fft.ifftshift(old_lowres_ft)); new_lowres_ampl = self.q_2 * self._params['measured'][led.id] * exp(1j * angle(old_lowres_ampl)); new_lowres_ft = fft.fftshift(fft.fft2(new_lowres_ampl)); ft_diff = (new_lowres_ft - old_lowres_ft) new_highres_ft_part = old_highres_ft_part \ + self.alpha * (conj(transfer) / (abs(transfer)**2).max()) * ft_diff; self._params['highres_ft'][y_slice, x_slice] = new_highres_ft_part self._params['pupil'] \ += self.beta * (conj(new_highres_ft_part) / (abs(new_highres_ft_part)**2).max()) * ft_diff; def _finish_recovery(self): '''Last method of the FP recovery to build the final data.''' highres_data = fft.ifft2(fft.ifftshift(self._params['highres_ft'])) return { 'ft': self._params['highres_ft'], 'amplitude': abs(highres_data), 'phase': angle(highres_data), 'pupil': self._params['pupil'], } @RecoveryMethods.product('adaptive-fp') class AdaptiveFPRecovery(FPRecovery): def _init_recovery_iteration(self, iter_num): self._params['i'] = iter_num def _recover_for_led(self, led): x_slice, y_slice = self._params['slices'][led.id] old_highres_ft_part = self._params['highres_ft'][y_slice, x_slice] old_lowres_ft = self.q2 * old_highres_ft_part * self._params['ctf'] old_lowres_ampl = fft.ifft2(fft.ifftshift(old_lowres_ft)) # Measured I correction. measured_ampl = self._params['measured'][led.id] if self._params['i']: measured_ampl *= np_sum(abs(old_lowres_ampl)) / np_sum(measured_ampl) new_lowres_ampl = self.q_2 * measured_ampl * exp(1j * angle(old_lowres_ampl)) new_lowres_ft = fft.fftshift(fft.fft2(new_lowres_ampl)) self._params['highres_ft'][y_slice, x_slice] = \ self._params['ictf'] * old_highres_ft_part \ + self._params['ctf'] * new_lowres_ft def _finish_recovery_iteration(self, iter_num): print("CI = {} at {} step.".format(self.count_convergence(), iter_num)) pass def count_convergence(self): '''Count convergence index (measure the recovery goodness).''' conv = 0.0 for led in self.leds: x_slice, y_slice = self._params['slices'][led.id] lowres_ampl = self._params['highres_ft'][y_slice, x_slice] measured_ampl = self._params['measured'][led.id] conv += mean(measured_ampl) / np_sum(abs(lowres_ampl - measured_ampl)) return conv
true
209eafeec0cd6b5bacb44a7231920c01c824b433
Python
carrier-io/galloper
/galloper/database/utils.py
UTF-8
410
2.53125
3
[ "Apache-2.0" ]
permissive
from sqlalchemy.sql import expression from sqlalchemy.ext.compiler import compiles from sqlalchemy.types import DateTime class utcnow(expression.FunctionElement): type = DateTime() @compiles(utcnow, 'postgresql') def pg_utcnow(element, compiler, **kw): return "TIMEZONE('utc', CURRENT_TIMESTAMP)" @compiles(utcnow, 'sqlite') def sqlite_urcnow(element, compiler, **kw): return "DATETIME('now')"
true
a62a6642313d5b1ff0d28f4fc6705a4aa6b387b2
Python
yxrya/Distributed-Computing-SynchBFS
/v4MB/main.py
UTF-8
3,887
2.625
3
[]
no_license
from queue import Queue from message import Message from process import Process import threading import time import sys import json def launch_master_thread(n, ids, root, conn_matrix): global id_process, id_label print(f'In master thread. Launching {n} threads..') initial_config = {} q = Queue() # initially empty queue for pid in ids: initial_config[int(pid)] = {'parent': None, 'children':[], 'marked':False, 'sent':[], 'r':0, 'q':q } threadLock = threading.Lock() r=1 while True: print(f'********** master broadcast {r} ***********') if r==1: config = initial_config latest_q = q print(f'|| BFS LEVEL: {root}') r = r+1 print(list(latest_q.queue)) id_process = launch_threads(ids, conn_matrix, root, latest_q, config) done_threads = [] config={} while True: #wait for all threads to complete one round after the first broadcast #time.sleep(2) if len(done_threads) == len(id_process): #print(f'done status: {done_threads}') break tmp=None #print(f'master acq {list(q.queue)}') threadLock.acquire() if q.qsize()!=0: tmp = q.get() threadLock.release() #print(f'master rel') if tmp==None: continue if tmp.receiverID == 'Master': config[tmp.senderID] = tmp.msg_type latest_q = tmp.msg_type['q'] done_threads.append(tmp.senderID) #print(f'-----------------> Master recieved done from {tmp.senderID}') else: threadLock.acquire() q.put(tmp) threadLock.release() for v in id_process.values(): v.join() # check termination visited = [] for key in config.keys(): if config[key]['marked']==True: visited.append(key) if len(visited)==n and latest_q.qsize()==0: break print('**********************************************') for c in config: print(f'{c} : Parent: {config[c]["parent"]} Children: {config[c]["children"]} Marked: {config[c]["marked"]}') print('exiting master thread. bye!') def launch_threads(ids, conn_matrix, root, q, config): i=0 for p_id in ids: id_label[i] = p_id i += 1 for p_id, conn in zip(ids, conn_matrix): neighbor_ids = [] for j in range(len(conn)): if (conn[j]==1 and id_label[j]!=int(p_id)): neighbor_ids.append(id_label[j]) process = Process(int(p_id), root, neighbor_ids, q, config) id_process[p_id] = process #print(id_label) for v in id_process.values(): v.start() return id_process if __name__=="__main__": assert(len(sys.argv) == 3) n = int(sys.argv[1]) root = sys.argv[2] with open("input.dat","r") as dat_file: data = dat_file.readlines() ids = data[0].strip().split(",") for i in range(len(ids)): ids[i] = int(ids[i]) matrix_rows = data[1].strip().split(",") connectivity_matrix = [] for row in matrix_rows: connectivity_matrix.append(row.split()) for row in range(len(connectivity_matrix)): for j in range(len(connectivity_matrix)): connectivity_matrix[row][j] = int(connectivity_matrix[row][j]) id_process = {} id_label = {} master_thread = threading.Thread(name='master',target=launch_master_thread, args=(n, ids, root, connectivity_matrix)) master_thread.start()
true
27b7b846c193c6386ddc974ab1a6b895a422d2bd
Python
AlejandroCamara/Learn_Python_3_the_Hard_Way
/Exercise 03. Numbers and Math/ex3-sd.py
UTF-8
1,512
4.28125
4
[]
no_license
# Exercise 03: Numbers and Math - Study Drills. # Prints the message "I will now count my chickens:" print("I will now count my chickens:") # Prints "Hens" and the result of (25 + (30 / 6)) print("Hens", 25.0 + 30.0 / 6.0) # Prints "Roosters" and the result of (100 - (25 * (3 % 4))) print("Roosters", 100.0 - 25.0 * 3.0 % 4.0) # Prints "Now I will count the eggs:" print("Now I will count the eggs:") # Prints the result of (3 + 2 + 1 -5 + (4 % 2) - (1 / 4) + 6) print(3.0 + 2.0 + 1.0 - 5.0 + 4.0 % 2.0 - 1.0 / 4.0 + 6.0) # Prints "Is it true that 3 + 2 < 5 - 7?" print("Is it true that 3 + 2 < 5 - 7?") # Prints the result of comparing (3 + 2) < (5 - 7) with a Boolean print(3.0 + 2.0 < 5.0 - 7.0) # Prints "What is 3 + 2?" and the result of (3 + 2) print("What is 3 + 2?", 3.0 + 2.0) # Prints "What is 5 - 7?" and the result of (5 - 7) print("What is 5 - 7?", 5.0 - 7.0) # Prints "Oh, that's why it's False." print("Oh, that's why it's False.") # Prints "How about some more." print("How about some more.") # Prints "Is it greater?" and the result of comparing (5 > -2) print("Is it greater?", 5.0 > -2.0) # Prints "Is it greater or equal?" and the result of comparing (5 >= -2) print("Is it greater or equal?", 5.0 >= -2.0) # Prints "Is it less or equal?" and the result of comparing (5 <= -2) print("Is it less or equal?", 5.0 <= -2.0) # Personal calculations print("Christmas gifts:", 295 + 340) print("Steam games:", 349.50 + 299.25 + 349.50 + 187.19) print("Credit card fee:", 1500 / 12)
true
f39b599dacc067dc03b21d974a9bccc4ebdaa26b
Python
AustenA/AOC2020
/3-1.py
UTF-8
378
3
3
[]
no_license
f = open("Day3Trees.txt", "r") d = f.read().split("\n") total = 0 down = 0 over = 0 height = len(d) width = len(d[0]) downSpeed = 1 rightSpeed = 3 while True: over = rightSpeed + over down = downSpeed + down if down >= height: break over = over%width print(d[down][over]) if (d[down][over] == '#'): total = total + 1 print(total)
true
ba2f20b365a33bd2709e3fa7fe8456dd91584df9
Python
Pranavtechie/Class-XII-Projects
/Section C/Group - 1 (03,04,433)/Source Code/src.py
UTF-8
12,090
3.21875
3
[]
no_license
import mysql.connector as sql from mysql.connector import Error from time import sleep import os import datetime from prettytable import PrettyTable from math import fabs house_list = ['Godavari', 'Krishna', 'Penna', 'Tungabhadra'] def Establish_Connection(): """This function establishes connection to mysql database""" connection = sql.connect( host='localhost', user='root', password='student', database='medic') mycursor = connection.cursor() return connection, mycursor, Error # Establishing connection to the database conn, cursor, sqlerror = Establish_Connection() def Cls(): """This function clears the clears the screen in the command prompt""" os.system('cls') def Exit(): """This function prints the Thank You message when a user exits the program""" print("Thank you for using the program") sleep(1.5) exit() def Main_Heading(): """This function prints the main heading""" print("---------- SAINIK SCHOOL KALIKIRI -----------") print("----------- Dispensary Management -----------\n") def Get_Admin_Username_List(): """This function returns the list of admin usernames""" cursor.execute("SELECT username FROM admin_user") username_data = cursor.fetchall() username_list = [] for row in username_data: username_list.append(row[0]) return username_list def Get_Admin_User_Password(username): """This function returns the password of a given user""" cursor.execute( f"SELECT password FROM admin_user WHERE username = '{username}'") password = cursor.fetchone()[0] return password def Get_Admin_Name(username): """This function returns the name of the admin user given the username""" cursor.execute( f"SELECT name FROM admin_user WHERE username = '{username}'") name = cursor.fetchone()[0] return name def Get_Cadet_Name(roll_no): """This function returns the name of the cadet based on his roll number""" cursor.execute(f"SELECT name FROM cadet WHERE roll_no = {roll_no}") name = cursor.fetchone()[0] return name def Get_Roll_No_List(): """This function returns the list of roll no of the cadets""" roll_list = [] cursor.execute("SELECT roll_no FROM cadet") data = cursor.fetchall() for row in data: roll_list += row return roll_list def Get_Cadet_Password(roll_no): """This function returns the password for a given Roll Number""" cursor.execute( f"SELECT password FROM cadet_user WHERE roll_no = {roll_no}") password = cursor.fetchone()[0] return password def Redirecting(): """This function just prints redirecting on the screen""" print("\nRedirecting", end='') sleep(1) print(".", end='') sleep(1) print(".", end='') sleep(1) print(".") def Input_Date(): """This function inputs date and returns the date""" print("\nPlease do enter only integers for the date") while True: try: day_input = int(input("Enter the Day: ")) month_input = int(input("Enter the Month: ")) year_input = int(input("Enter the Year: ")) the_date = datetime.date(year_input, month_input, day_input) return the_date except ValueError: print("\nYou have entered an invalid characters. Please Try Again") continue def Check_Roll_No(roll_no): """This function checks whether the entered roll number exists in the data and returns True if matched""" roll_list = Get_Roll_No_List() if roll_no in roll_list: return True else: return False def Get_Probable_Medicine(med_name): """This function return the probable list and table of medicines""" cursor.execute( f"SELECT medicine_name FROM medicine WHERE medicine_name like '%{med_name}%'") data = cursor.fetchall() med_list = [] med_table = PrettyTable() med_table.field_names = ['Medicine Name'] for med in data: med_table.add_row([med[0]]) med_list.append(med[0]) if len(med_list) == 0: return [], [] else: return med_list, med_table def Check_Expiry(med_name): """This function checks whether the given medicine in expired or not""" try: cursor.execute( f"SELECT expiry FROM medicine WHERE medicine_name = '{med_name}'") expiry_date = cursor.fetchone()[0] if expiry_date > datetime.date.today(): return True else: return False except Error: return 'Error' def Check_Quantity(med_name): """This function checks the quantity available to issue medicine""" cursor.execute( f"SELECT quantity FROM medicine WHERE medicine_name = '{med_name}'") aval_quantity = cursor.fetchone()[0] if aval_quantity > 0: return True else: return False def Change_Medication_Status(): """This function checks the end_date and updates the medical status of the cadet""" try: cursor.execute( "SELECT roll_no, timestamp, end_date, status FROM issue_medicine WHERE status = 'Under Medication'") data = cursor.fetchall() for roll_no, timestamp, end_date, status in data: if end_date < datetime.date.today(): cursor.excecute( f"UPDATE issue_medicine SET status = 'Healthy' WHERE roll_no = {roll_no} and timestamp = '{timestamp}'") conn.commit() else: pass except sqlerror: print("An Error Occurred while parsing and modifying the Status of the Cadet.") def Scan_For_Expiry(): """This function scans the entire medicines to check if any medicine expired""" expiry_table = PrettyTable() expiry_table.field_names = ['Medicine Name', 'Usage / Indication', 'Quantity', 'Expiry'] expiry_list = [] try: cursor.execute(f"SELECT medicine_name FROM medicine") data = cursor.fetchall() for medicine in data: check_value = Check_Expiry(medicine[0]) if not check_value: cursor.execute( f"SELECT * FROM medicine WHERE medicine_name = '{medicine[0]}'") name, usage, qty, exp = cursor.fetchone() expiry_list.append(name) expiry_table.add_row([name, usage, qty, exp]) else: pass if len(expiry_list) == 0: return False, False else: return expiry_table, expiry_list except sqlerror: print("\nAn Error Occurred while scanning for expiry") def Get_BMI_Status(bmi): """This function gets the bmi status based on the bmi value""" if bmi < 18.5 or bmi == 18.5: return 'Underweight' elif 18.5 < bmi < 24.9: return 'Healthy' elif 25 < bmi < 29.9: return 'Overweight' elif bmi > 30: return 'Obese' else: return "Can't Be Calculated" def Update_BMI(roll_no): """This function updates BMI and BMI Status of a cadet""" try: import mysql.connector new = mysql.connector.connect( host='localhost', user='root', password='student', database='medic') new_cursor = new.cursor() new_cursor.execute( f"SELECT height, weight FROM medical_data WHERE roll_no = {roll_no}") height, weight = new_cursor.fetchone() if height and weight: height = height/100 bmi = (weight / height**2) bmi = round(bmi, 2) bmi_status = Get_BMI_Status(bmi) new_cursor.execute( f"UPDATE medical_data SET BMI = {bmi}, BMI_status = '{bmi_status}' WHERE roll_no = {roll_no}") new.commit() return True else: return False except sqlerror: return False def Input_Timing(): """This function lets user to enter timing""" while True: hour_input = input("Enter the hour (24 Hour Format): ") minute_input = input("Enter the minutes: ") try: hour_input = int(hour_input) minute_input = int(minute_input) if 0 <= hour_input <= 23 and 0 <= minute_input <= 59: time = datetime.time(hour=hour_input, minute=minute_input) return time else: print("You input exceeded the limit. Please Try Again") sleep(1) continue except ValueError: print( "You have entered an invalid value for hours of minute. Please Try Again") sleep(1) continue def Check_If_Admitted(roll_no): """This function checks whether a cadet is admitted or not""" try: cursor.execute( f"SELECT * FROM admission WHERE roll_no = {roll_no} and status = 'Admitted'") data = cursor.fetchone() if data is not None: print("\nYou can't Admit the Cadet. The cadet is already Admitted") print(f"Admitted Cause: {data[1]}") print(f"Admitted on: {data[3]}") print(f"Discharge Date: {data[2]}") return True else: return False except sqlerror: print("An Error Occurred while parsing data from the database. Please Try Again") sleep(1.5) def Get_Latest_Timestamp(roll_no): """This function gets the latest admission timestamp of a cadet""" try: cursor.execute( f"SELECT timestamp FROM admission WHERE roll_no = {roll_no} and status = 'Admitted' ORDER BY timestamp DESC") timestamp = cursor.fetchall()[0][0] return timestamp except sqlerror: print("\nAn error occurred while getting admission data. Please Try Again") sleep(1.5) return False def Calculate_Eye_Sight_Points(): """This functions calculates the points for eye sight""" for house in house_list: cursor.execute(f"""SELECT medical_data.eye_l,medical_data.eye_r FROM medical_data,cadet WHERE cadet.house = '{house}' and cadet.roll_no = medical_data.roll_no""") data = cursor.fetchall() house_total = 0 for eye_l, eye_r in data: if eye_l is None and eye_r is None: continue else: print("else is getting executed") eye_l = fabs(eye_l) eye_r = fabs(eye_r) eye_total = eye_l + eye_r house_total += eye_total else: cursor.execute( f"UPDATE fit_house SET eye_sight = {house_total} WHERE house = '{house}'") conn.commit() def Calculate_BMI_Points(): """This function calculates points based on BMI""" for house in house_list: cursor.execute(f"""SELECT medical_data.BMI FROM medical_data,cadet WHERE cadet.house = '{house}' and cadet.roll_no = medical_data.roll_no""") data = cursor.fetchall() house_bmi = 0 for row in data: bmi = row[0] if bmi is None: continue else: house_bmi += bmi else: cursor.execute( f"UPDATE fit_house SET BMI = {house_bmi} WHERE house = '{house}'") conn.commit() def Add_Admission_Points(roll_no): """This function adds points the the fit house table if a cadet is admitted""" cursor.execute(f"SELECT house FROM cadet WHERE roll_no = {roll_no}") house = cursor.fetchone()[0] cursor.execute( f"UPDATE fit_house SET admission = admission + 5 WHERE house = '{house}'") conn.commit() def Calculate_Total_Points(): """This function calculates the total points for the house""" for house in house_list: cursor.execute( f"UPDATE fit_house SET total_points = bmi + eye_sight + admission WHERE house = '{house}'") conn.commit()
true
ab8dcaaff9068711dd87fe66e3c1a736362ac5ca
Python
searow/cs249-project
/scws_poly_eval.py
UTF-8
4,884
2.5625
3
[]
no_license
from utils import * import numpy as np from scipy.stats import spearmanr window_sizes = range(1, 100) embeddings_fp = './embedding_results/saved_embeddings_step_5000000_k_2_dim_150_neg_1_swind_5_contexts_1_2018-06-02-20-39-00/saved_embeddings_step_5000000_k_2_dim_150_neg_1_swind_5_contexts_1_2018-06-02-20-39-00' # embeddings_fp = 'saved_embeddings_step_5000000_k_1_dim_300_neg_65_swind_5_contexts_1_2018-06-01-13_41_24' corpus_fp = './data/enwik9/enwik9_tokenized_50000' eval_fp = 'data/SCWS/ratings' def eval(eval_test, name_token, target_embeddings, target_mask, context_embeddings, window_size): d = {} for i in range(1, 3): word_index = eval_test['word{}_index'.format(i)] sentence = eval_test['word{}_in_context'.format(i)] tokenized_sentence = tokenize_sentence( \ sentence, name_token) all_meaning_embedding_list = extract_meanings_as_list(target_embeddings, \ tokenized_sentence, word_index, target_mask) context_embedding_list = extract_contexts_as_list(\ tokenized_sentence, \ word_index, context_embeddings, window_size) d['w{}_real_meaning'.format(i)] = get_real_meaning_embedding( \ context_embedding_list, \ all_meaning_embedding_list) return cosine_sim(d['w1_real_meaning'], d['w2_real_meaning']) def tokenize_sentence(sentence, name_token): # Chris # sentence = [0, 1, 5, 2, 1, 2, 0] unknown_token = 0 words = sentence.split() tokenized = [] for word in words: if word not in name_token: tokenized.append(unknown_token) else: tokenized.append(name_token[word]) return tokenized def extract_meanings_as_list(target_embeddings, tokenized_sentence, word_index, target_mask): k = len(target_embeddings) meanings = [] target_token = tokenized_sentence[word_index] is_untrained_embs = np.count_nonzero(target_mask[0][target_token]) == 0 for i in range(k): if(is_untrained_embs or target_mask[1][target_token][i]): meanings.append(target_embeddings[i][target_token]) return meanings def extract_contexts_as_list(tokenized_sentence, word_index, context_emb_mat, window_size): # Alex # e.g. tokenized_sentence=[0, 2, 1, 3, ...] # word_index = 1 # context_emb_mat: V x D # Remeber to check bound when using window_size! if word_index < window_size: context_tokens = [token for token in tokenized_sentence[0:word_index+window_size+1] \ if token != tokenized_sentence[word_index]] else: context_tokens = [token for token in tokenized_sentence[word_index-window_size:word_index+window_size+1] \ if token != tokenized_sentence[word_index]] assert(context_emb_mat.shape[0] == 1) return [context_emb_mat[0][token] for token in context_tokens] def get_real_meaning_embedding(context_embedding_list, all_meaning_embedding_list): # Jack avg_c = np.mean(context_embedding_list, axis=0) scores = [np.dot(m, avg_c) for m in all_meaning_embedding_list] return all_meaning_embedding_list[np.argmax(scores)] def cosine_sim(emb1, emb2): return np.dot(emb1, emb2) def evaluate_spearman(window_size, eval_tests, name_token, context_embeddings, target_counts, target_embeddings): true_scores = [] test_scores = [] word1_UNK = 0 word2_UNK = 0 eval_UNK = 0 target_mask = filter_words(target_counts) for eval_test in eval_tests: if eval_test['word1'] not in name_token or eval_test['word2'] not in name_token: continue score = eval(eval_test, name_token, target_embeddings, target_mask, context_embeddings, window_size) test_scores.append(score) true_scores.append(eval_test['average_human_rating']) spearman_score = spearmanr(test_scores, true_scores) rho_correlation = spearman_score[0] return rho_correlation if __name__ == '__main__': # Load trained data. train_loaded = load(embeddings_fp) target_embeddings = train_loaded['target_embeddings'] target_counts = train_loaded['target_counts'] context_embeddings = train_loaded['context_embeddings'] context_counts = train_loaded['context_counts'] # Load corpus data. corpus_loaded = load(corpus_fp) name_token = corpus_loaded['dictionary'] token_name = corpus_loaded['reversed_dictionary'] # Load eval task. eval_tests = load(eval_fp) # eval_test = list of dicts. spearman_scores = [] for window in window_sizes: score = evaluate_spearman(window, eval_tests, name_token, context_embeddings, target_counts, target_embeddings) spearman_scores.append(score) print('{} {}'.format(window, score))
true
1a374bf3437548133478a3ee20978e726bf6b7c3
Python
donglaiw/pytorch_connectomics
/connectomics/data/utils/data_affinity.py
UTF-8
4,188
2.703125
3
[ "MIT" ]
permissive
import numpy as np # from Janelia pyGreentea # https://github.com/naibaf7/PyGreentea def mknhood2d(radius=1): # Makes nhood structures for some most used dense graphs. ceilrad = np.ceil(radius) x = np.arange(-ceilrad,ceilrad+1,1) y = np.arange(-ceilrad,ceilrad+1,1) [i,j] = np.meshgrid(y,x) idxkeep = (i**2+j**2)<=radius**2 i=i[idxkeep].ravel(); j=j[idxkeep].ravel(); zeroIdx = np.ceil(len(i)/2).astype(np.int32); nhood = np.vstack((i[:zeroIdx],j[:zeroIdx])).T.astype(np.int32) return np.ascontiguousarray(np.flipud(nhood)) def mknhood3d(radius=1): # Makes nhood structures for some most used dense graphs. # The neighborhood reference for the dense graph representation we use # nhood(1,:) is a 3 vector that describe the node that conn(:,:,:,1) connects to # so to use it: conn(23,12,42,3) is the edge between node [23 12 42] and [23 12 42]+nhood(3,:) # See? It's simple! nhood is just the offset vector that the edge corresponds to. ceilrad = np.ceil(radius) x = np.arange(-ceilrad,ceilrad+1,1) y = np.arange(-ceilrad,ceilrad+1,1) z = np.arange(-ceilrad,ceilrad+1,1) [i,j,k] = np.meshgrid(z,y,x) idxkeep = (i**2+j**2+k**2)<=radius**2 i=i[idxkeep].ravel(); j=j[idxkeep].ravel(); k=k[idxkeep].ravel(); zeroIdx = np.array(len(i) // 2).astype(np.int32); nhood = np.vstack((k[:zeroIdx],i[:zeroIdx],j[:zeroIdx])).T.astype(np.int32) return np.ascontiguousarray(np.flipud(nhood)) def mknhood3d_aniso(radiusxy=1,radiusxy_zminus1=1.8): # Makes nhood structures for some most used dense graphs. nhoodxyz = mknhood3d(radiusxy) nhoodxy_zminus1 = mknhood2d(radiusxy_zminus1) nhood = np.zeros((nhoodxyz.shape[0]+2*nhoodxy_zminus1.shape[0],3),dtype=np.int32) nhood[:3,:3] = nhoodxyz nhood[3:,0] = -1 nhood[3:,1:] = np.vstack((nhoodxy_zminus1,-nhoodxy_zminus1)) return np.ascontiguousarray(nhood) def seg_to_aff(seg, nhood=mknhood3d(1), pad='replicate'): # constructs an affinity graph from a segmentation # assume affinity graph is represented as: # shape = (e, z, y, x) # nhood.shape = (edges, 3) shape = seg.shape nEdge = nhood.shape[0] aff = np.zeros((nEdge,)+shape,dtype=np.float32) for e in range(nEdge): aff[e, \ max(0,-nhood[e,0]):min(shape[0],shape[0]-nhood[e,0]), \ max(0,-nhood[e,1]):min(shape[1],shape[1]-nhood[e,1]), \ max(0,-nhood[e,2]):min(shape[2],shape[2]-nhood[e,2])] = \ (seg[max(0,-nhood[e,0]):min(shape[0],shape[0]-nhood[e,0]), \ max(0,-nhood[e,1]):min(shape[1],shape[1]-nhood[e,1]), \ max(0,-nhood[e,2]):min(shape[2],shape[2]-nhood[e,2])] == \ seg[max(0,nhood[e,0]):min(shape[0],shape[0]+nhood[e,0]), \ max(0,nhood[e,1]):min(shape[1],shape[1]+nhood[e,1]), \ max(0,nhood[e,2]):min(shape[2],shape[2]+nhood[e,2])] ) \ * ( seg[max(0,-nhood[e,0]):min(shape[0],shape[0]-nhood[e,0]), \ max(0,-nhood[e,1]):min(shape[1],shape[1]-nhood[e,1]), \ max(0,-nhood[e,2]):min(shape[2],shape[2]-nhood[e,2])] > 0 ) \ * ( seg[max(0,nhood[e,0]):min(shape[0],shape[0]+nhood[e,0]), \ max(0,nhood[e,1]):min(shape[1],shape[1]+nhood[e,1]), \ max(0,nhood[e,2]):min(shape[2],shape[2]+nhood[e,2])] > 0 ) if nEdge==3 and pad == 'replicate': # pad the boundary affinity aff[0,0] = (seg[0]>0).astype(aff.dtype) aff[1,:,0] = (seg[:,0]>0).astype(aff.dtype) aff[2,:,:,0] = (seg[:,:,0]>0).astype(aff.dtype) return aff def blend_gaussian(sz, sigma=0.8, mu=0.0): """ Gaussian blending """ zz, yy, xx = np.meshgrid(np.linspace(-1,1,sz[0], dtype=np.float32), np.linspace(-1,1,sz[1], dtype=np.float32), np.linspace(-1,1,sz[2], dtype=np.float32), indexing='ij') dd = np.sqrt(zz*zz + yy*yy + xx*xx) ww = 1e-4 + np.exp(-( (dd-mu)**2 / ( 2.0 * sigma**2 ))) return ww
true
87aa5dcbbab1a117e3f0ff41f685a291efb72b74
Python
takkaria/plucker
/tests/test_plucker/test_extractor.py
UTF-8
1,407
2.796875
3
[ "MIT" ]
permissive
import pytest from typing import List from plucker.types import JSONValue from plucker.extractor import extract, _get_from_path from plucker.tokeniser import ArrayToken, NameToken, Range, Token from plucker.exceptions import ExtractError # A fake range cos it doesn't really matter. fr = Range(0, 0) def test_getter(): data = {"fred": 2} path: List[Token] = [NameToken(fr, "fred")] assert _get_from_path(data, path) == 2 def test_getter_array(): data = {"fred": [2, 3, 4]} path: List[Token] = [NameToken(fr, "fred")] assert _get_from_path(data, path) == [2, 3, 4] def test_getter_array_subs(): data = {"fred": [{"v": 2}, {"v": 3}]} path: List[Token] = [NameToken(fr, "fred"), ArrayToken(fr), NameToken(fr, "v")] assert _get_from_path(data, path) == [2, 3] def test_getter_array_sub_subs(): data = [ {"fred": [{"v": 2}, {"v": 3}]}, {"fred": [{"v": 2}, {"v": 3}]}, ] path: List[Token] = [ ArrayToken(fr), NameToken(fr, "fred"), ArrayToken(fr), NameToken(fr, "v"), ] assert _get_from_path(data, path) == [[2, 3], [2, 3]] def test_getter_array_error(): data: JSONValue = [ {"fred": []}, {"fred": []}, ] path = ".fred[].v" with pytest.raises(ExtractError) as exc: extract(data, path) assert "expected fred to be 'dict' but it was 'list'" in str(exc)
true
9de669e2a40472f54416f858b33b56d677b88535
Python
frozenparadox99/OpenCvCourse
/drawOnStream.py
UTF-8
1,117
2.796875
3
[]
no_license
import cv2 #Callback Function def draw_rect(event,x,y,flags,params): global p1,p2,topLeftClicked,bottomRightClicked if event==cv2.EVENT_LBUTTONDOWN: if topLeftClicked and bottomRightClicked: p1=(0,0) p2=(0,0) topLeftClicked=False bottomRightClicked=False if topLeftClicked==False: p1=(x,y) topLeftClicked=True elif bottomRightClicked==False: p2=(x,y) bottomRightClicked=True #Global variables p1=(0,0) p2=(0,0) topLeftClicked=False bottomRightClicked=False #Dock the callback cv2.namedWindow('frame') cv2.setMouseCallback('frame',draw_rect) #Access the video cap=cv2.VideoCapture(0) while True: ret,frame=cap.read() if topLeftClicked: cv2.circle(frame,center=p1,radius=5,color=(0,0,255),thickness=-1) if topLeftClicked & bottomRightClicked: cv2.rectangle(frame,p1,p2,(0,0,255),3) cv2.imshow('frame',frame) if cv2.waitKey(1) & 0xFF ==ord('q'): break cap.release() cv2.destroyAllWindows()
true
1f06329bdb958c952b45f9999504208e107b2d5f
Python
JakeAttard/2810ICTPythonExercises
/W1H6.py
UTF-8
933
3.375
3
[]
no_license
from PyTest import * ##//////////////////////////// PROBLEM STATEMENT ////////////////////////// ## Given a list of ints, decide which is larger of the first and // ## last elements in the list, and set all the other elements to be that // ## that value. Print the changed list. Implement functions for: // ## - reading the list // ## - finding the maximum of 2 integers // ## - setting all elements of a list to a single value // ## - printing a list // ## 1, 2, 3 -> 3, 3, 3 // ## 11, 5, 9 -> 11, 11, 11 // ## 2, 11, 3 -> 3, 3, 3 // ##/////////////////////////////////////////////////////////////////////////
true
5be89b5e1bfafc13a64772afca678879345d1543
Python
drabekj/OttoBot-Alexa-Skill
/test/test_add_to_watchlist.py
UTF-8
3,682
2.609375
3
[ "MIT" ]
permissive
import unittest from flask import json from app import create_app, db, logger from app.models import Stock, User, Watchlist from test.sample_requests import * class AddToWatchlistTestCase(unittest.TestCase): """This class represents the OttoBot routing test case""" def setUp(self): """Define test variables and initialize app.""" self.app = create_app(config_name="testing") self.client = self.app.test_client # binds the app to the current context with self.app.app_context(): # create all tables db.create_all() # Insert testing data Stock(test_stock_1_ticker, test_stock_1_date, close=test_stock_1_close).save() User(test_user_id, test_user_name).save() def test_intent_add_to_watchlist_dialog(self): """Test if the add to watchlist dialog works correctly including confirmation/cancelation.""" # 1st Step: start dialog "add to watchlist" logger.info("1st step: start dialog add to watchlist") self.add_to_watchlist_dialog_invoke() logger.info("2st step: deny adding stock to watchlist") self.add_to_watchlist_dialog_deny() logger.info("3st step: confirm adding stock to watchlist") self.add_to_watchlist_dialog_invoke() self.add_to_watchlist_dialog_confirm() def add_to_watchlist_dialog_invoke(self): # Setup request = json.dumps(intent_add_to_watchlist()) # Execute res = self.client().post('/api/', data=request, content_type='application/json') # Assert self.assertEqual(res.status_code, 200) self.assertIn(RESPONSE_intent_add_to_watchlist_ask_confirmation, str(res.data)) # check if stock not in watchlist just yet with self.app.app_context(): watchlist = Watchlist.get_users_tickers(test_user_id) for item in watchlist: self.assertNotEqual(item, test_add_stock) def add_to_watchlist_dialog_deny(self): # Setup request = json.dumps(intent_add_to_watchlist_deny()) # Execute res = self.client().post('/api/', data=request, content_type='application/json') # Assert 1st step self.assertEqual(res.status_code, 200) self.assertIn(RESPONSE_intent_add_to_watchlist_denied, str(res.data)) # check if stock not in watchlist just yet with self.app.app_context(): watchlist = Watchlist.get_users_tickers(test_user_id) for item in watchlist: self.assertNotEqual(item, test_add_stock) def add_to_watchlist_dialog_confirm(self): # Setup request = json.dumps(intent_add_to_watchlist_confirm()) # Execute res = self.client().post('/api/', data=request, content_type='application/json') # Assert 1st step self.assertEqual(res.status_code, 200) self.assertIn( RESPONSE_intent_add_to_watchlist_confirmed.format(test_add_stock), str(res.data)) # check if stock was added to watchlist with self.app.app_context(): watchlist = Watchlist.get_users_tickers(test_user_id) for item in watchlist: self.assertEqual(item, test_add_stock) def tearDown(self): """teardown all initialized variables.""" with self.app.app_context(): # drop all tables db.session.remove() db.drop_all() # Make the tests conveniently executable if __name__ == "__main__": unittest.main()
true
c2a180e13a684facfb74f3055a4acf620094dbca
Python
morallo/plaso
/tests/parsers/sqlite_plugins/twitter_ios.py
UTF-8
6,863
2.515625
3
[ "Apache-2.0" ]
permissive
#!/usr/bin/python # -*- coding: utf-8 -*- """Tests for Twitter on iOS 8+ plugin.""" import unittest from plaso.lib import definitions from plaso.lib import timelib from plaso.parsers.sqlite_plugins import twitter_ios from tests import test_lib as shared_test_lib from tests.parsers.sqlite_plugins import test_lib class TwitterIOSTest(test_lib.SQLitePluginTestCase): """Tests for Twitter on iOS 8+ database plugin.""" @shared_test_lib.skipUnlessHasTestFile([u'twitter_ios.db']) def testProcess(self): """Test the Process function on a Twitter iOS file.""" plugin = twitter_ios.TwitterIOSPlugin() storage_writer = self._ParseDatabaseFileWithPlugin( [u'twitter_ios.db'], plugin) # We should have 184 events in total. # - 25 Contacts creation events. # - 25 Contacts update events. # - 67 Status creation events. # - 67 Status update events. self.assertEqual(184, storage_writer.number_of_events) events = list(storage_writer.GetEvents()) # Test the first contact creation event. event = events[0] expected_timestamp = timelib.Timestamp.CopyFromString( u'2007-04-22 14:42:37') self.assertEqual(event.timestamp, expected_timestamp) self.assertEqual( event.timestamp_desc, definitions.TIME_DESCRIPTION_CREATION) self.assertEqual(event.screen_name, u'BBCBreaking') self.assertEqual(event.name, u'BBC Breaking News') self.assertEqual(event.location, u'London, UK') self.assertEqual(event.following, 0) self.assertEqual(event.followers_count, 19466932) self.assertEqual(event.following_count, 3) self.assertEqual(event.url, u'http://www.bbc.co.uk/news') expected_description = ( u'Breaking news alerts and updates from the BBC. For news, features, ' u'analysis follow @BBCWorld (international) or @BBCNews (UK). Latest ' u'sport news @BBCSport.') self.assertEqual(event.description, expected_description) expected_profile_url = ( u'https://pbs.twimg.com/profile_images/' u'460740982498013184/wIPwMwru_normal.png') self.assertEqual(event.profile_url, expected_profile_url) expected_message = ( u'Screen name: BBCBreaking Profile picture URL: ' u'https://pbs.twimg.com/profile_images/460740982498013184/' u'wIPwMwru_normal.png Name: BBC Breaking News Location: London, UK ' u'Description: Breaking news alerts and updates from the BBC. For ' u'news, features, analysis follow @BBCWorld (international) or ' u'@BBCNews (UK). Latest sport news @BBCSport. URL: ' u'http://www.bbc.co.uk/news Following: No Number of followers: ' u'19466932 Number of following: 3') expected_short_message = ( u'Screen name: BBCBreaking Description: Breaking news alerts and ' u'updates from t...') self._TestGetMessageStrings(event, expected_message, expected_short_message) # Test first contact modification event. event = events[1] expected_timestamp = timelib.Timestamp.CopyFromString( u'2015-12-02 15:35:44') self.assertEqual(event.timestamp, expected_timestamp) self.assertEqual( event.timestamp_desc, definitions.TIME_DESCRIPTION_UPDATE) self.assertEqual(event.screen_name, u'BBCBreaking') self.assertEqual(event.name, u'BBC Breaking News') self.assertEqual(event.location, u'London, UK') self.assertEqual(event.following, 0) self.assertEqual(event.followers_count, 19466932) self.assertEqual(event.following_count, 3) self.assertEqual(event.url, u'http://www.bbc.co.uk/news') expected_description = ( u'Breaking news alerts and updates from the BBC. For news, features, ' u'analysis follow @BBCWorld (international) or @BBCNews (UK). Latest ' u'sport news @BBCSport.') self.assertEqual(event.description, expected_description) expected_profile_url = ( u'https://pbs.twimg.com/profile_images/' u'460740982498013184/wIPwMwru_normal.png') self.assertEqual(event.profile_url, expected_profile_url) expected_message = ( u'Screen name: BBCBreaking Profile picture URL: ' u'https://pbs.twimg.com/profile_images/460740982498013184/' u'wIPwMwru_normal.png Name: BBC Breaking News Location: London, UK ' u'Description: Breaking news alerts and updates from the BBC. For ' u'news, features, analysis follow @BBCWorld (international) or ' u'@BBCNews (UK). Latest sport news @BBCSport. URL: ' u'http://www.bbc.co.uk/news Following: No Number of followers: ' u'19466932 Number of following: 3') expected_short_message = ( u'Screen name: BBCBreaking Description: Breaking news alerts and ' u'updates from t...') self._TestGetMessageStrings(event, expected_message, expected_short_message) # Test first status creation event. event = events[50] expected_timestamp = timelib.Timestamp.CopyFromString( u'2014-09-11 11:46:16') self.assertEqual(event.timestamp, expected_timestamp) self.assertEqual( event.timestamp_desc, definitions.TIME_DESCRIPTION_CREATION) self.assertEqual(event.text, u'Never forget. http://t.co/L7bjWue1A2') self.assertEqual(event.user_id, 475222380) self.assertEqual(event.name, u'Heather Mahalik') self.assertEqual(event.retweet_count, 2) self.assertEqual(event.favorite_count, 3) self.assertEqual(event.favorited, 0) expected_message = ( u'Name: Heather Mahalik User Id: 475222380 Message: Never forget. ' u'http://t.co/L7bjWue1A2 Favorite: No Retweet Count: 2 Favorite ' u'Count: 3') expected_short_message = ( u'Name: Heather Mahalik Message: Never forget. http://t.co/L7bjWue1A2') self._TestGetMessageStrings(event, expected_message, expected_short_message) # Test first status update event. event = events[51] expected_timestamp = timelib.Timestamp.CopyFromString( u'2015-12-02 15:39:37') self.assertEqual(event.timestamp, expected_timestamp) self.assertEqual( event.timestamp_desc, definitions.TIME_DESCRIPTION_UPDATE) self.assertEqual(event.text, u'Never forget. http://t.co/L7bjWue1A2') self.assertEqual(event.user_id, 475222380) self.assertEqual(event.name, u'Heather Mahalik') self.assertEqual(event.retweet_count, 2) self.assertEqual(event.favorite_count, 3) self.assertEqual(event.favorited, 0) expected_message = ( u'Name: Heather Mahalik User Id: 475222380 Message: Never forget. ' u'http://t.co/L7bjWue1A2 Favorite: No Retweet Count: 2 Favorite ' u'Count: 3') expected_short_message = ( u'Name: Heather Mahalik Message: Never forget. http://t.co/L7bjWue1A2') self._TestGetMessageStrings(event, expected_message, expected_short_message) if __name__ == '__main__': unittest.main()
true
7c0702d25ff96613d2f0a75ec8d61b7149f2de64
Python
stefanduscher/stefanduscher
/Anfänger_Tag3_Schieberegler.py
UTF-8
2,764
3.53125
4
[]
no_license
# Programm: Interaktive Grafik mit Schieberegler # # Datum: 02. Juno 2019 # # Autor: Stefan Duscher # # Bemerkungen: Kurs "Python für Anfänger" Ludwigsburg # # ---------------------------------------------------- # Einbinden der Bibliotheken import numpy as np import matplotlib.pyplot as plt import matplotlib as mpl from matplotlib.widgets import Slider # Abfrage der Eigenschaften der Bibliothek Matplotlib def Abfragen_Matplotlib(): mpl_version = mpl.__version__ mpl_ort = mpl.__file__ mpl_config = mpl.get_configdir() mpl_cache = mpl.get_cachedir() print("Version von Matplotlib:", mpl_version) print("Installationsort von Matplotlib:", mpl_ort) print("Die Konfigurationsinformationen befinden sich bei:", mpl_config) print("Der Zwischenspeicher / Cache befindet sich bei:", mpl_cache) # Definition der x- und y-Werte x = np.linspace(0,12,200) y = np.sin(x) bild = plt.figure() # Hier wird "bild" zum Objekt figure(), das aus der Bibliothek Pyplot aus # Matplotlib stammt. Diesem Objekt kann man später Eigenschaften zuweisen. # Der eigentliche Plot und der Slider sollen übereinander stehen. # Mit einem einfachen 2x1-Raster werden sie aber gleich hoch. # Wir erzeugen das Raster daher mit gridspec, da kann man ein # Höhenverhältnis angeben. gs = mpl.gridspec.GridSpec(2, 1, height_ratios=[8, 1]) # Mit Gridspec unterteilt man vorbereitend ein Fenster, wenn man dann darin # Subplots platzieren will. Details siehe den Link zur offiziellen Doku: # https://matplotlib.org/3.1.0/api/_as_gen/matplotlib.gridspec.GridSpec.html zeichnen1 = bild.add_subplot(gs[0]) zeichnen2 = bild.add_subplot(gs[1]) # zeichnen1 und zeichnen2 sind ebenfalls Objekte; sie leiten sich aus dem Objekt # Bild ab und geben ihm weitere Eigenschaften, nämlich dass eine Untergrafik ("Subplot") # dem Bild zugewiesen wird. # zeichnen1 weist das Subplot gs[0] zu, das ist das obere 8 Neuntel hoche Subplot # zeichnen2 weist das Subplot gs[1] zu, das ist das untere 1 Neuntel hohe Subplot zeichnen1.plot(x,y) # Der Slider füllt einen Subplot, hat einen Namen und Min-, Max- und Startwert sl = Slider(zeichnen2, 'Frequenz ', 0.01, 5.0, valinit=1) bild.show() # Diese update-Funktion zeichnet den Graph neu: def myupdate(val): y = np.cos(val*x) # val ist der am Schieberegler eingestellte Wert zeichnen1.cla() # alten subplot löschen zeichnen1.plot(x,y) # neu zeichnen bild.canvas.draw_idle() # # Hier beginnt das Hauptprogramm Abfragen_Matplotlib() # hier wird dem Slider gesagt, dass er bei Änderungen die Funktion myupdate rufen soll sl.on_changed(myupdate)
true
3a7f93912835863b36ce9326b6dcb9a72c8876f2
Python
dongupak/Basic-Python-Programming
/Ch18_패키지/from_import_ex.py
UTF-8
190
2.65625
3
[]
no_license
import sys sys.path.append("/Users/dongupak/pkgTutorial") from math_pkg import math_op print('100 + 200 =', math_op.add(100,200)) from str_pkg import str_op print(str_op.upper('hello'))
true
e39e1b1ecb2867867113fd26aa951eca6a54d3e6
Python
gutzbenj/hackerrank_challenges
/warmup/birthday_cake_candles.py
UTF-8
315
3.03125
3
[]
no_license
import sys # Complete the birthdayCakeCandles function below. def birthdayCakeCandles(ar): ar_max = max(ar) print(sum([n == ar_max for n in ar])) sys.stdout.flush() if __name__ == '__main__': ar_count = int(input()) ar = list(map(int, input().rstrip().split())) birthdayCakeCandles(ar)
true
3082950c9c51fb337c3ca87a5c9e6dfa519015c6
Python
Icedgarr/Machine-Learning
/coursework/Problemset1/Ex4.py
UTF-8
2,077
3.171875
3
[]
no_license
# -*- coding: utf-8 -*- """ Created on Fri Jan 27 11:18:36 2017 @author: roger """ import numpy as np import itertools as itt import matplotlib.pyplot as plt from numpy import random as rand def proj_basis(d,D): #Projects the basis of a D-dim space to a d-dim space W=rand.normal(0,1/d,(d,D)) #Generate a random matrix to project D-dim vectors to d-dim space basis=np.identity(D) #Generate the basis of a D-dim space proj_vect=np.dot(W,basis) #Project the basis proj_vect[0]=proj_vect[0]-np.mean(proj_vect[0]) #center first component proj_vect[1]=proj_vect[1]-np.mean(proj_vect[1]) #center second component std_dev=np.sqrt(np.var(proj_vect[0,])) #compute the std dev of the first component proj_vect=proj_vect/std_dev #rescale by first component return proj_vect d=2 i=0 rng=[10,50,100,150,200,500,1000,10000] for D in rng: #Plot the proj basis for a rng of dimensions D into a d-dim space i=i+1 proj_vect=proj_basis(d,D) rnd_vect_plane=rand.normal(0,1,(2,D)) #generate random normals plt.subplot(4,2,i) #more than one plot plt.scatter(proj_vect[0],proj_vect[1]) plt.scatter(rnd_vect_plane[0],rnd_vect_plane[1],color="red") plt.title("N=%d"%D) #change title #hypercube def proj_hypercube(d,D): vmax=[1]*D vmin=[-1]*D hypercube=np.transpose(np.asarray(list(itt.product(*zip(vmin,vmax))))) #generates the vertices W=rand.normal(0,1/d,(d,D)) #Generates the projection matrix proj_hyp_cube=np.dot(W,hypercube) #Projects proj_hyp_cube[0]=proj_hyp_cube[0]-np.mean(proj_hyp_cube[0]) proj_hyp_cube[1]=proj_hyp_cube[1]-np.mean(proj_hyp_cube[1]) std_dev=np.sqrt(np.var(proj_hyp_cube[1,])) proj_hyp_cube=proj_hyp_cube/std_dev return proj_hyp_cube d=2 rng=[2,3,4,5,6,10] i=0 for D in rng: #projects the hypercubes from different dimensions to a 2-dim subspace i=i+1 proj_hyp_cube=proj_hypercube(d,D) plt.subplot(3,2,i) #more than one plot plt.scatter(proj_hyp_cube[0],proj_hyp_cube[1]) plt.title("D=%d"%D) #change title
true
6851172d0b9952f940f838f89ef0e316edb6f073
Python
ChizzaHut/PythonLog
/Practice 6 - List Comprehensions.py
UTF-8
174
3
3
[]
no_license
import random a = random.sample(range(1, 50), 10) a.sort() b = [] c = [] for x in a: if x % 2 == 0: b.append(x) else: c.append(x) print(a) print(b)
true
3583759e41724e3824eb3d7df8ff1f55dfe04330
Python
bwats2/CSCIE7-Final-Project
/tests/beautifulsouptest3.py
UTF-8
2,594
3.28125
3
[]
no_license
import requests from bs4 import BeautifulSoup # https://stackoverflow.com/questions/24398302/bs4-featurenotfound-couldnt-find-a-tree-builder-with-the-features-you-requeste # https://codeburst.io/web-scraping-101-with-python-beautiful-soup-bb617be1f486 NFL_TEAMS = ['Arizona Cardinals', 'Atlanta Falcons', 'Baltimore Ravens', 'Buffalo Bills', 'Carolina Panthers', 'Chicago Bears', 'Cincinnati Bengals', 'Cleveland Browns', 'Dallas Cowboys', 'Denver Broncos', 'Detroit Lions', 'Green Bay Packers', 'Houston Texans', 'Indianapolis Colts', 'Jacksonville Jaguars', 'Kansas City Chiefs', 'Los Angeles Chargers', 'Los Angeles Rams', 'Miami Dolphins', 'Minnesota Vikings', 'New England Patriots', 'New Orleans Saints', 'New York Giants', 'New York Jets', 'Oakland Raiders', 'Philadelphia Eagles', 'Pittsburgh Steelers', 'San Francisco 49ers', 'Seattle Seahawks', 'Tampa Bay Buccaneers', 'Tennessee Titans', 'Washington Redskins'] website_url = requests.get("https://en.wikipedia.org/wiki/2019_NFL_season").text soup = BeautifulSoup(website_url,"html.parser") # print(soup.prettify()) my_table = soup.find('table',{'class':'multicol'}) # print(my_table) links = my_table.find_all('td') # print(links) teamscores = [link.text.strip() for link in links] # for link in links: # teamscores.append(link.text.strip()) print(teamscores) # index = teamscores.index("New Orlean Saints") # print(teamscores[index]) # print(teamscores[index+1]) # print(teamscores[index+2]) # Issue is that team names have added characters such as "y – New Orleans Saints" # Maybe I can use REGEX??? # import re # # berry_idx = [i for i, item in enumerate(NFL_TEAMS) if re.search('??????New Orlean Saints?????')] # teamindex = [i for i, word in enumerate(teamscores) if word.endswith('New England Patriots') or word.startswith('New England Patriots')] # print(teamindex[0]) # https://stackoverflow.com/questions/4146009/python-get-list-indexes-using-regular-expression from collections import defaultdict teamscoredict = defaultdict(int) # Dict to hold team and score value for team in NFL_TEAMS: print(team) # Wikipedia sometimes adds characters to start or end of team name in table teamindex = [i for i, word in enumerate(teamscores) if word.endswith(team) or word.startswith(team)] print(teamscores[teamindex[0]]) wins = int(teamscores[teamindex[0]+1]) ties = int(teamscores[teamindex[0]+3]) score = wins+ties/2 print(f"wins: {wins}") print("losses: ",teamscores[teamindex[0]+2]) print(f"ties: {ties}") print(score) teamscoredict[team] = score print(teamscoredict)
true
9f956c93a622df14048693b428b8d1db11c6c7d1
Python
faterazer/LeetCode
/0022. Generate Parentheses/generate_parentheses.py
UTF-8
524
3.40625
3
[]
no_license
from typing import List class Solution: def generateParenthesis(self, n: int) -> List[str]: ret = [] self.dfs(ret, "", n, n) return ret def dfs(self, ret: List[str], s: str, lpairs: int, rpairs: int) -> None: if rpairs < lpairs: return if lpairs == 0 and rpairs == 0: ret.append(s) return if lpairs: self.dfs(ret, s + "(", lpairs - 1, rpairs) if rpairs: self.dfs(ret, s + ")", lpairs, rpairs - 1)
true
752852e27c7500c56dc4c7a03790ec99359e9469
Python
Tubbz-alt/sds
/example_problem/exact-solution.py
UTF-8
825
3.109375
3
[ "BSD-2-Clause" ]
permissive
'''Find the exact solution of the toy dataset ''' from itertools import combinations import numpy as np import pandas as pd from time import time START = time() N = 24 # Population size n = 12 # dissimilar-set size # Load dataset, reset column labels while doing so because pandas will interpret as string mtrx = pd.read_csv(f'toy-{N}x{N}-dataset.csv', skiprows=1, header=None) # Run through all possible combinations sums = [] for subset in combinations(mtrx.index, n): submtrx = mtrx[list(subset)].loc[list(subset)] sums.append(submtrx.sum().sum()/2) sums = np.array(sums) df = pd.DataFrame([sums.max(), sums.mean(), sums.min()], index=['max set', 'mean set', 'min set']).T df.to_csv(f'exact-solution-N{N}-n{n}.csv', index=False) print(f'Exact solution N = {N}, n = {n}') print((time()-START)/60, ' min')
true
dc21f1d75ad28fa3f7d7fdebfd694e29872c064d
Python
tangyiheng2021/pg_plan_inspector
/pgpi/regression.py
UTF-8
19,527
2.953125
3
[]
no_license
""" rgression.py Formatted by black (https://pypi.org/project/black/) Copyright (c) 2021, Hironobu Suzuki @ interdb.jp """ import math import os import operator from .common import Common, Log from .repository import Repository import numpy as np from sklearn.linear_model import LinearRegression from sklearn.metrics import mean_squared_error class CalcRegression: """ Functions to calculate the regression params. """ def set_log_level(self, log_level): self.LogLevel = log_level def __rss(self, X, Y): assert len(X) != 0 return math.sqrt( sum(list(map(lambda x: x ** 2, list(map(operator.sub, X, Y))))) ) / len(X) def scan(self, X, Y): """ linear regression * Model(no bias): y = a * x * Loss function: Mean Square Error """ _sumY = sum(Y) _sumX = sum(X) if Log.debug3 <= self.LogLevel: print("Debug3: ----- SCAN ----") print("Debug3: ===> X = {}".format(X)) print("Debug3: ===> Y = {}".format(Y)) if 250 * _sumY < _sumX: # Assume that this data set is fit to a constant function. if Log.debug3 <= self.LogLevel: print( "Debug3: ==> coef = 0 intercept = {}".format( round(_sumY / len(Y), 5) ) ) return (0, round(_sumY / len(Y), 5)) else: if Log.debug3 <= self.LogLevel: if _sumX == 0: print( "Debug3: ==> coef = 0 intercept = {}".format( round(_sumY / len(Y), 5) ) ) else: print( "Debug3: ==> coef = {} intercept = 0".format( round(_sumY / _sumX, 5) ) ) if _sumX == 0: return (0, round(_sumY / len(Y), 5)) else: return (_sumY / _sumX, 0) def gather(self, X, Y): """ linear regression * Model(no bias): y = a * x * Loss function: Mean Square Error """ _sumY = sum(Y) _sumX = sum(X) if Log.debug3 <= self.LogLevel: print("Debug3: ---- GATHER ----") print("Debug3: ===> X = {}".format(X)) print("Debug3: ===> Y = {}".format(Y)) if Log.debug3 <= self.LogLevel: if _sumX == 0: print( "Debug3: ==> coef = 0 intercept = {}".format( round(_sumY / len(Y), 5) ) ) else: print( "Debug3: ==> coef = {} intercept = 0".format( round(_sumY / _sumX, 5) ) ) if _sumX == 0: return (0, round(_sumY / len(Y), 5)) else: return (_sumY / _sumX, 0) def nested_loop(self, Xouter, Xinner, Y): """ Multiple linear regression * Model(no bias): Y = a * Xinner * Xouter * Loss function: Mean Square Error """ """ _sumY = 0; _sumX = 0 for i in range(0, len(Y)): _sumY += Y[i] * Xinner[i] * Xouter[i] _sumX += Xinner[i] **2 * Xouter[i] **2 """ _sumY = sum(list(map(operator.mul, list(map(operator.mul, Xinner, Xouter)), Y))) _sumX = sum( list( map( operator.mul, list(map(lambda x: x ** 2, Xinner)), list(map(lambda x: x ** 2, Xouter)), ) ) ) if Log.debug3 <= self.LogLevel: print("Debug3: +++++ NESTED LOOP JOIN +++++") print("Debug3: ===> Xouter = {}".format(Xouter)) print("Debug3: ===> Xinner = {}".format(Xinner)) print("Debug3: ===> Y = {}".format(Y)) if _sumX == 0: print("Debug3: ==> coef=1") else: print("Debug3: ==> coef={}".format(str(round(_sumY / _sumX, 5)))) return 1 if _sumX == 0 else _sumY / _sumX def merge_or_hash_join(self, Xouter, Xinner, Y, add_bias_0=True): def multi_regression(Xouter, Xinner, Y, add_bias_0=True): _X = [] _Y = [] """Format _Y and _X""" for i in range(0, len(Y)): _Y.append(Y[i]) _X.append([Xouter[i], Xinner[i]]) if add_bias_0: # Add a constraint because we assume that the bias is 0 _X.append([0, 0]) _Y.append(0) if Log.debug3 <= self.LogLevel: print("Debug3: ****MERGE OR HASH JOIN*****") print("Debug3: ===> Xouter = {}".format(Xouter)) print("Debug3: ===> Xinner = {}".format(Xinner)) print("Debug3: ===> X ={}".format(_X)) print("Debug3: ===> Plan Rows ={} Y={}".format(Y, _Y)) """ Calc regression Multiple linear regression * Model(no bias): Y = a1 * Xouter + a2 * Xinner * Loss function: Mean Square Error """ scireg = LinearRegression() scireg.fit(_X, _Y) _list = scireg.coef_.tolist() _coef = [round(_list[n], 5) for n in range(len(_list))] _intercept = round(scireg.intercept_, 5) """Predict and calculate RMSE.""" _y_pred = scireg.predict(_X) _rmse = np.sqrt(mean_squared_error(_Y, _y_pred)) del scireg return (_coef, _intercept, _rmse) def single_regression(X, Y, add_bias_0=True): _X = [] _Y = [] """Format _Y and _X""" for i in range(0, len(Y)): _Y.append(Y[i]) _X.append([X[i]]) if add_bias_0: # Add a constraint because we assume that the bias is 0 _X.append([0]) _Y.append(0) if Log.debug3 <= self.LogLevel: print("Debug3: ****MERGE OR HASH JOIN*****") print("Debug3: ===> X={}".format(X)) print("Debug3: ===> Plan Rows ={} Y={}".format(Y, _Y)) """ Calc regression Multiple linear regression * Model: Y = a * X + b * Loss function: Mean Square Error """ scireg = LinearRegression() scireg.fit(_X, _Y) _list = scireg.coef_.tolist() _coef = [round(_list[n], 5) for n in range(len(_list))] _intercept = round(scireg.intercept_, 5) """Predict and calculate RMSE.""" _y_pred = scireg.predict(_X) _rmse = np.sqrt(mean_squared_error(_Y, _y_pred)) del scireg return (_coef[0], _intercept, _rmse) def reg(Xouter, Xinner, Y): ## Same as NestedLoop _sumY = sum( list(map(operator.mul, list(map(operator.mul, Xinner, Xouter)), Y)) ) _sumX = sum( list( map( operator.mul, list(map(lambda x: x ** 2, Xinner)), list(map(lambda x: x ** 2, Xouter)), ) ) ) _coef = 1 if _sumX == 0 else _sumY / _sumX # Calculate MSE _mse = ( sum( list( map( lambda x: x ** 2, list( map( operator.sub, Y, list( map( lambda y: _coef * y, list(map(operator.mul, Xouter, Xinner)), ) ), ) ), ) ) ) / len(Y) ) return (_coef, np.sqrt(_mse)) """ Calcuate regression parameters. """ (coef, intercept, rmse) = multi_regression(Xouter, Xinner, Y) if coef[0] < 0 or coef[1] < 0: (coef, intercept, rmse) = multi_regression(Xouter, Xinner, Y, False) _coef = [coef[0], coef[1]] _reg = 0 _intercept = intercept _rmse = rmse (coef, intercept, rmse) = single_regression(Xouter, Y) if coef < 0: (coef, intercept, rmse) = single_regression(Xouter, Y, False) if rmse < _rmse: _coef = [coef, 0] _intercept = intercept _rmse = rmse (coef, intercept, rmse) = single_regression(Xinner, Y) if coef < 0: (coef, intercept, rmse) = single_regression(Xinner, Y, False) if rmse < _rmse: _coef = [0, coef] _intercept = intercept _rmse = rmse """ # Note: This is not used because it makes the results significantly unstable. (coef, rmse) = reg(Xouter, Xinner, Y) if rmse < _rmse: _coef = [0, 0] _intercept = 0 _reg = coef """ if Log.debug3 <= self.LogLevel: print( "Debug3: ==> coef={} reg={} intercept={}".format( _coef, _reg, _intercept ) ) return (_coef, _reg, _intercept) class Regression(Repository, CalcRegression): def __init__(self, base_dir=".", log_level=Log.error): self.ServerId = "" self.Level = 0 self.set_base_dir(base_dir) self.LogLevel = log_level def __set_serverId(self, serverId): self.ServerId = serverId """ Handle self.Level value. """ def __init_level(self): self.Level = 0 def __incr_level(self): self.Level += 1 def __get_level(self): return self.Level def __delete_objects(self, plan): """Delete all objects except 'Node Type' and 'Plan(s)'.""" for k in list(plan): """ Use list(plan) instead of plan.keys() to avoid "RuntimeError: dictionary changed size during iteration" error. """ if k != "Node Type" and k != "Plans" and k != "Plan": plan.pop(k) return plan def __calc_regression(self, plan, reg, queryid, planid, depth): """ Calculate the regression parameters of plan, and Set the results into reg. """ self.__incr_level() _level = self.__get_level() _node_type = plan["Node Type"] """ nested loop type """ for n in ( "Append", "Merge Append", "Recursive Union", "Nested Loop", "BitmapAnd", "BitmapOr", ): if n == _node_type: ( _Xouter, _Xinner, _RR, ) = self.get_inputs(plan) """ Calculate the regression parameter. """ if Log.debug3 <= self.LogLevel: print("Debug3: === NodeType={}".format(n)) print("Debug3: *** Y ActualRows={}".format(plan["Actual Rows"])) print( "Debug3: *** Xouter ={} Xinner ={}".format(_Xouter, _Xinner) ) _Y = plan["Actual Rows"] _coef = self.nested_loop(_Xouter, _Xinner, _Y) """ Set the result to the reg dict. """ reg.update(Coefficient=[_coef]) return """ hash or merge join """ for n in ("Merge Join", "Hash Join"): if n == _node_type: ( _Xouter, _Xinner, _RR, ) = self.get_inputs(plan) """ Calculate the regression parameter. """ if Log.debug3 <= self.LogLevel: print( "Debug3: HASH or MERGE depth={} RR={} queryid={} planid={}".format( depth, _RR, queryid, planid ) ) if Log.debug3 <= self.LogLevel: print("Debug3: === NodeType={}".format(n)) print("Debug3: *** Y ActualRows={}".format(plan["Actual Rows"])) print( "Debug3: *** Xouter ={} Xinner ={}".format(_Xouter, _Xinner) ) _Y = plan["Actual Rows"] (_coef, _reg, _intercept) = self.merge_or_hash_join( _Xouter, _Xinner, _Y ) """ Set the result to the reg dict. """ reg.update(Coefficient=[_coef]) reg.update(Coefficient2=[_reg]) reg.update(Intercept=[_intercept]) return """ scan type """ """Calculate the regression parameter.""" if Log.debug3 <= self.LogLevel: print("Debug3: === NodeType={}".format(_node_type)) print( "Debug3: *** Plan Rows={} NormalizeParam={} NormalizePlanParam={}".format( plan["Plan Rows"], plan["NormalizeParam"], plan["NormalizePlanParam"], ) ) print("Debug3: *** Actual Rows={}".format(plan["Actual Rows"])) (_coef, _intercept) = self.scan(plan["Plan Rows"], plan["Actual Rows"]) """ Set the result to the reg dict. """ reg.update(Coefficient=[_coef]) reg.update(Intercept=[_intercept]) return def __regression(self, Plans, reg_param, queryid, planid): """ Calculate the regression parameters of Plans, and Set the results into reg_param. Parameters ---------- Plans : dict A plan grouped with the same queryid-planid. reg_param : dict A dict type skeleton with the same structure as Plans. queryid : int planid : int Returns ------- reg_param: dict A dict which contains the regression parameter in each node. """ def incr(plan): if "Node Type" in plan: self._count += 1 def op(Plans, reg_param, queryid, planid): if isinstance(Plans, list): for i in range(0, len(Plans)): incr(Plans[i]) self.__calc_regression( Plans[i], reg_param[i], queryid, planid, self._count ) if "Plans" in Plans[i]: op(Plans[i]["Plans"], reg_param[i]["Plans"], queryid, planid) return else: incr(Plans) self.__calc_regression(Plans, reg_param, queryid, planid, self._count) if "Plans" in Plans: op(Plans["Plans"], reg_param["Plans"], queryid, planid) return # Main procedure. self._count = 0 op(Plans, reg_param, queryid, planid) """ Public method """ def regression(self, serverId): """ Calculate the regression parameters of all serverId's query plans in the repository. """ if self.check_serverId(serverId) == False: if Log.error <= self.LogLevel: print("Error: serverId '{}' is not registered.".format(serverId)) sys.exit(1) self.__set_serverId(serverId) self.set_log_level(self.LogLevel) if Log.info <= self.LogLevel: print("Info: Calculating regression parameters.") """ Check the grouping stat file. """ _grouping_seqid = self.get_seqid_from_grouping_stat(self.ServerId) """ Check the regression stat file. """ self.check_regression_dir(self.ServerId) _regression_seqid = self.get_seqid_from_regression_stat(self.ServerId) if Log.debug3 <= self.LogLevel: print( "Debug3: _grouping_seqid={} _regression_seqid={}".format( _grouping_seqid, _regression_seqid ) ) """ Calculate the regression parameters. """ if _regression_seqid < _grouping_seqid: for _hash_subdir in self.get_grouping_dir_list(self.ServerId): _gsdirpath = self.get_grouping_subdir_path(self.ServerId, _hash_subdir) if os.path.isdir(_gsdirpath): _gsdirlist = self.get_grouping_subdir_list( self.ServerId, _hash_subdir ) for f in _gsdirlist: _gpath = self.path(_gsdirpath, f) _qp_id = str(f).split(".") _queryid = _qp_id[0] _planid = _qp_id[1] if Log.debug3 <= self.LogLevel: print("Debug3: >>>>>> gpath={}".format(_gpath)) _json_dict = self.read_plan_json(_gpath) _reg_param = self.read_plan_json(_gpath) self.delete_unnecessary_objects( self.__delete_objects, _reg_param ) """ Calculate the regression parameters in each plan and Store into _reg_param. """ self.__init_level() self.__regression( _json_dict["Plan"], _reg_param["Plan"], _queryid, _planid ) """ Write the result (regression parameters) to the regression directory. """ _rsdirpath = self.get_regression_subdir_path( self.ServerId, _hash_subdir ) if os.path.exists(_rsdirpath) == False: os.makedirs(_rsdirpath) _rpath = self.path(_rsdirpath, f) self.write_plan_json(_reg_param, _rpath) if Log.debug3 <= self.LogLevel: print("Debug3: Rpath={}".format(_rpath)) print("Debug3: reg_param={}".format(_reg_param)) """Update stat file""" self.update_regression_stat_file(self.ServerId, _grouping_seqid)
true
7a96c3968455cd93482d14650e46a4463e68f313
Python
zhao1701/tcvae
/tcvae/visualization.py
UTF-8
6,200
2.796875
3
[]
no_license
#!/usr/bin/env python """ This module contains utilities for predicting with and inspecting autoencoders models. """ import imageio import numpy as np import pandas as pd import matplotlib.pyplot as plt from .utils import check_path def plot_img(img, figsize=(4, 4)): plt.figure(figsize=figsize) plt.imshow(img) plt.axis('off') def process_for_animation(img): img *= 255 img = img.astype(np.uint8) return img def tile_multi_image_traversal(latent_traversals, num_rows): """ Combines independent latent traversals for different images into a single traversal with images tiled together. Parameters ---------- latent_traversals : np.ndarray A 5-dimensional array with the following shape: (traversal_resolution, num_samples, img_height, img_width, num_channels). num_rows : int The number of rows of images when their traversals are tiled together. Must be a divisor of the number of images. Returns ------- latent_traversals : np.ndarray A 4-dimensional array with the following shape: (traversal_resolution, num_rows*img_height, num_cols*img_width, num_channels). """ traversal_resolution, num_samples, img_height, img_width, num_channels = \ latent_traversals.shape assert (num_samples % num_rows == 0), ( 'The number of rows of the stitched image must be an integer divisor ' 'of the number of samples in the batch.') num_cols = num_samples // num_rows latent_traversals = latent_traversals.reshape( traversal_resolution, num_rows, num_cols, img_height, img_width, num_channels) latent_traversals = latent_traversals.transpose(0, 1, 3, 2, 4, 5) latent_traversals = latent_traversals.reshape( traversal_resolution, num_rows * img_height, num_cols * img_width, num_channels) return latent_traversals def animate_traversals(traversals_dict, traversal_dir): for latent_index, traversal in traversals_dict.items(): basename = 'traversal-{:0>2}.gif'.format(latent_index) filename = traversal_dir / basename imageio.mimsave(filename, traversal) # def plot_loss_history(csv_file, html_file=None): # csv_file = check_path(csv_file, path_type=str) # df = pd.read_csv(csv_file) # df = df.drop('epoch', axis='columns') # metrics = df.columns # num_metrics = len(metrics) # colors = [ # 'blue', 'green', 'red', 'orange', 'purple', 'yellow'] # # Individual area plots for each metric # area_plots = list() # kdim = hv.Dimension('epoch', label='Epoch', range=(None, None)) # for index, metric in enumerate(metrics): # label = metric.capitalize().replace('_', ' ') # vdim = hv.Dimension(metric, label=label, range=(None, None)) # ylim = (df[metric].min(), df[metric].max()) # xlabel = 'Epoch' if index == (num_metrics - 1) else '' # area_plot = hv.Area( # (df.index, df[metric]), vdims=vdim, kdims=kdim) # area_plot = area_plot.opts( # ylim=ylim, color=colors[index], xlabel=xlabel) # area_plots.append(area_plot) # # Composition of multiple line plots for each metric # line_plots = list() # vdim = hv.Dimension('value', label='Value', range=(None, None)) # for index, metric in enumerate(metrics): # label = metric.capitalize().replace('_', ' ') # line_plot = hv.Curve( # (df.index, df[metric]), vdims=vdim, kdims=kdim, label=label) # line_plot = line_plot.opts(color=colors[index]) # line_plots.append(line_plot) # overlay = hv.Overlay(line_plots).opts(xlabel='') # # Create final layout # all_plots = [overlay] + area_plots # layout = hv.Layout(all_plots).cols(1).opts( # opts.Area(width=800, height=200, alpha=0.2), # opts.Curve(width=800, height=200)).opts(title='Training history') # # Save HTML file # if html_file is not None: # html_file = check_path(html_file, path_type=str) # hv.save(layout, html_file) # return layout # def plot_dist_history(csv_file, html_file=None): # csv_file = check_path(csv_file, path_type=str) # df = pd.read_csv(csv_file) # width = 1000 # sigma_cols = df.columns[df.columns.str.contains('sigma')] # mu_cols = df.columns[df.columns.str.contains('mu')] # # Create bar plot with most recent latent standard deviations # kdim = hv.Dimension('latents', label='Latent dimension') # vdim = hv.Dimension('sigma', label='Current standard deviation') # sigmas_latest = df[sigma_cols].iloc[-1] # sigmas_latest = [ # (index.split('_')[-1], value) for index, value # in sigmas_latest.iteritems()] # sigma_bar_plot = hv.Bars(sigmas_latest, kdims=kdim, vdims=vdim) # sigma_bar_plot = sigma_bar_plot.opts(width=width) # # Create line plots of latent standard deviation history # kdim = hv.Dimension('epoch', label='Epoch') # sigma_line_plots = [ # hv.Curve( # (df.index, df[col]), # vdims=hv.Dimension(col, label='Standard deviation'), # kdims=kdim, label='Latent {}'.format(index)).opts(alpha=0.5) # for index, col in enumerate(sigma_cols)] # sigma_line_overlay = hv.Overlay(sigma_line_plots).opts( # opts.Curve(width=width, height=400, show_grid=True)) # # Create line plots of latent mean history # mu_line_plots = [ # hv.Curve( # (df.index, df[col]), # vdims=hv.Dimension(col, label='Mean'), # kdims=kdim, label='Latent {}'.format(index)).opts(alpha=0.5) # for index, col in enumerate(mu_cols)] # mu_line_overlay = hv.Overlay(mu_line_plots).opts( # opts.Curve(width=width, height=400, show_grid=True)) # # Create composite layout # layout = sigma_bar_plot + sigma_line_overlay + mu_line_overlay # layout = layout.cols(1).opts( # title='Latent Distribution History') # Save HTML file if html_file is not None: html_file = check_path(html_file, path_type=str) hv.save(layout, html_file) return layout
true
53cd1ab4b5f083450ec003ed9c8ce954338c85ad
Python
WHJR-G12-Github/Template_C6_SAA1
/template_c6_saa1.py
UTF-8
203
4.09375
4
[]
no_license
# Create a list 'numbers' # Create a variable 'count' # Initialize it to '0' # Create a 'for' loop to access every element in the list # Increment 'count' by '1' # Print the value of 'count'
true
6c0629c92e02d265fed64805996f97e26d68f96a
Python
learning022/quality-report
/backend/hqlib/metric/product/size_metrics.py
UTF-8
3,053
2.53125
3
[]
no_license
""" Copyright 2012-2019 Ministerie van Sociale Zaken en Werkgelegenheid Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ from typing import List from hqlib.typing import MetricParameters, MetricValue from ..metric_source_mixin import SonarMetric, SonarDashboardMetric from ...domain import LowerIsBetterMetric, Product class ProductLOC(SonarDashboardMetric, LowerIsBetterMetric): """ Metric for measuring the size (in number of lines of code) of a product. """ name = 'Component omvang' unit = 'regels code' target_value = 5000 low_target_value = 6000 def value(self) -> MetricValue: return self._metric_source.ncloc(self._sonar_id()) if self._metric_source else -1 class TotalLOC(SonarMetric, LowerIsBetterMetric): """ Metric for measuring the total size (in number of lines of code) of several products. """ name = 'Totale omvang' unit = 'regels code' template = 'Het totaal aantal {unit} voor de producten {products} is {value} {unit}.' target_value = 30000 # Maximum number of LOC to be eligible for 4 stars, see # https://www.softwareimprovementgroup.com/wp-content/uploads/2018/05/20180509-SIG-TUViT-Evaluation-Criteria-Trusted-Product-Maintainability-Guidance-for-producers.pdf # We use the lowest number (Python; 122000 LOC in 20 years = 30500 in 5 years) low_target_value = 30500 def _parameters(self) -> MetricParameters: parameters = super()._parameters() products = self.__main_products() parameters['products'] = ', '.join([product.name() for product in products]) return parameters def value(self) -> MetricValue: if not self._metric_source: return -1 total = 0 for product in self.__main_products(): sonar_id = product.metric_source_id(self._metric_source) if sonar_id: product_size = self._metric_source.ncloc(sonar_id) if product_size == -1: return -1 total += product_size return total def recent_history(self) -> List[int]: """ Subtract the minimum value from all values so that we can send more data to the Google Chart API. """ historic_values = [h for h in super().recent_history() if h is not None] minimum_value = min(historic_values) if historic_values else 0 return [value - minimum_value for value in historic_values] def __main_products(self) -> List[Product]: """ Return the main products. """ return [product for product in self._project.products() if product.is_main()]
true
795c029a42ca3a93b03f409dccf1ea3138456403
Python
BlakeMcMurray/Bioinformatics-Algorithms
/Chapter 2/score.py
UTF-8
527
2.859375
3
[]
no_license
#working (probably) import countMatrix as CM #calculates the score of a set of motifs #breaks ties by first encounter of max nucleotide def score(kmers): count_m = CM.count(kmers) m = 0 score = 0 tracker = 0 for i in range(len(count_m)): m = max(count_m[i]) for j in range(len(count_m[i])): if count_m[i][j] == m and tracker == 0: tracker = 1 continue else: score += count_m[i][j] tracker = 0 return(score)
true