blob_id
stringlengths
40
40
language
stringclasses
1 value
repo_name
stringlengths
5
133
path
stringlengths
2
333
src_encoding
stringclasses
30 values
length_bytes
int64
18
5.47M
score
float64
2.52
5.81
int_score
int64
3
5
detected_licenses
listlengths
0
67
license_type
stringclasses
2 values
text
stringlengths
12
5.47M
download_success
bool
1 class
24d0d7c81e53034eaf712af1ad116f35dfd05f36
Python
goldworm/python-test
/asyncio-test/client.py
UTF-8
1,008
3
3
[]
no_license
import asyncio import sys async def on_recv(reader, writer, name, loop): i = 0 while True: data = await reader.read(100) if data == b'stop': break data = data.decode() print(f'{name}-{i}: {data}') await asyncio.sleep(1.0) resp = f'{name}-{i}-{data}' writer.write(resp.encode()) await writer.drain() i += 1 writer.close() loop.stop() async def on_connect(name: str, loop): path = "/tmp/iiss.sock" reader, writer = await asyncio.open_unix_connection(path, loop=loop) loop.create_task(on_recv(reader, writer, name, loop=loop)) def main(): if len(sys.argv) == 0: return print(f'Usage: {sys.argv[0]} <name>') name = sys.argv[1] loop = asyncio.get_event_loop() try: loop.create_task(on_connect(name, loop)) loop.run_forever() except KeyboardInterrupt: pass finally: loop.close() if __name__ == '__main__': main()
true
b92d6b52150af63d5a6fa19213d98817535cb683
Python
swati2728/function_questions
/more_eexercise.py
UTF-8
2,722
3.65625
4
[]
no_license
# Question 1 # i=1 # while i<=1000: # if i%2==0: # print("nav") # if i%7==0: # print("gurukul") # if i%21==0: # print("navgurukul") # i=i+1 # Question 2 # Number_of_students=input("enter a name:") # Ek_student_ka_kharcha=int(input("enter a spending amount:")) # if Ek_student_ka_kharcha<=50000: # print("Hum budget ke andar hain") # else: # print(" hum budget ke bahar hain") # # Question 3 password=input("enter your sakht password:") if len(password)>6 or len(password)>16: if "$" in password: if 2 or 8 in password: if "A" or "Z" in password: print("it is Strong password") else: print("it is Weak password") # Question 4 # num1=int(input("enter a first numbers:")) # num2=int(input("enter a second numbers:")) # num3=int(input("enter a third numbers:")) # if num1>num2: # print(num1,"is highst") # elif num2>num1: # print(num2,"is highst") # elif num3>num1: # print(num3,"is highst") # elif num3>num2: # print(num3,"is highst") # elif num2>num3: # print(num2,"is highst") # elif num1>num3: # print(num1,"is highst") # else: # ("nothing") # Question 5 # Question 6 # string_list = ["Rishabh", "Rishabh", "Abhishek", "Rishabh", "Divyashish", "Divyashish"] # new_list=[ ] # index=0 # while index<len(string_list): # if string_list[index] not in new_list: # new_list.append(string_list[index]) # index=index+1 # print(new_list) # Question 7 # list1 = [1, 342, 75, 23, 98] # list2 = [75, 23, 98, 12, 78, 10, 1] # new_list=[ ] # index=0 # while index<len(list1): # if list1[index] in list2: # new_list.append(list1[index]) # index=index+1 # print(new_list) # Question 8 # list1 = [1, 5, 10, 12, 16, 20] # list2 = [1, 2, 10, 13, 16] # list3=[ ] # index=0 # while index<len(list1): # list2.append(list1[index]) # index=index+1 # print(list2) # j=0 # while j<len(list2): # if list2[j] not in list3: # list3.append(list2[j]) # j=j+1 # print(list3) # # Question 9 # # def is_harshad_number(num): # # numbers=(input("enter a number:")) # # x=numbers.split() # print(x) # Question 10 # numbers= [[45, 21, 42, 63], [12, 42, 42, 53], [42, 90, 78, 13], [94, 89, 78, 76], [87, 55, 98, 99]] # index=0 # while index<len(numbers): # print(max(numbers[index])) # index=index+1 # # numbers= [[45, 21, 42, 63], [12, 42, 42, 53], [42, 90, 78, 13], [94, 89, 78, 76], [87, 55, 98, 99]] # index=0 # maxi=[] # while index<len(numbers): # j=0 # maximum=0 # while j<len(numbers[index]): # if numbers[index][j]>maximum: # maximum = numbers[index][j] # j=j+1 # maxi.append(maximum) # index=index+1 # print(maxi) # Question 11 # words = "navgurukul is great" # counter = 0 # while counter < len(words): # print (words[counter]) # counter=counter+1
true
41e45c7d8296f6a35c327b3d3bc69bdebc43036c
Python
jiuzhibuguniao/Test
/Test/time_test.py
UTF-8
464
3.125
3
[]
no_license
################## #time_test #Author:@Rooobins #Date:2019-01-03 ################## import time a = "Sat Mar 28 22:24:24 2016" print(time.time()) print(time.localtime(time.time())) print(time.asctime(time.localtime(time.time()))) print(time.strftime("%Y-%m-%d %H:%M:%S",time.localtime())) print(time.strftime("%a %b %d %H:%M:%S",time.localtime())) print(time.strptime(a,"%a %b %d %H:%M:%S %Y")) print(time.mktime(time.strptime(a,"%a %b %d %H:%M:%S %Y")))
true
9d4ff64326613d3eadcb17a2c2f5a5deebd295fb
Python
dianluyuanli-wp/xiaohuli-leetCode-python-newcoder-js
/sort/balance tree or not and tree ergodic.py
UTF-8
979
3.0625
3
[]
no_license
class TreeNode(object): def __init__(self, x): self.val = x self.left = None self.right = None def com_bv(node): #print node.val if node.left is None and node.right is None: node.bv=0 elif node.left is None and node.right is not None: node.bv=com_bv(node.right)+1 elif node.left is not None and node.right is None: node.bv=com_bv(node.left)+1 else: left_n=com_bv(node.left) right_n=com_bv(node.right) node.bv=left_n+1 if left_n>right_n else right_n+1 return node.bv p1=TreeNode(1) p2=TreeNode(2) p3=TreeNode(3) p4=TreeNode(4) p5=TreeNode(5) p6=TreeNode(6) p7=TreeNode(7) p8=TreeNode(8) p9=TreeNode(9) p5.left=p2 p5.right=p7 p2.left=p1 p2.right=p4 p4.left=p3 p7.left=p6 p7.right=p9 p9.left=p8 stack=[] r_node=p5 a=com_bv(p5) while r_node is not None or stack: print str(r_node.val)+' '+str(r_node.bv) if r_node.right is not None: stack.append(r_node.right) r_node=r_node.left if r_node is None and stack: r_node=stack.pop() a=com_bv(p5)
true
3902cbf7da24b71cb39d37454d23c33fb5d59af0
Python
AngrySaltyFish24/PollutionBikeMonitor
/server.py
UTF-8
4,749
2.609375
3
[]
no_license
from http.server import * import socketserver import ssl import json import sqlite3 class Handler(BaseHTTPRequestHandler): def do_GET(self): try: if self.path == "/datafromDB": self.wfile.write(database.getValues()) elif len(self.path) > 1: with open(self.path[1:], "rb") as file: self.send_response(200) if "js" in self.path: self.send_header("Content-type", "text/javascript") else: self.send_header("Content-type", "text/css") self.end_headers() self.wfile.write(file.read()) else: self.homepage() except Exception as e: print(self.path) print(e) def do_POST(self): self.send_response(200) length = int(self.headers["content-length"]) data = self.rfile.read(length) database.insertValues(data) self.homepage() def homepage(self): with open("index.html", "rb") as file: self.send_response(200) self.send_header("Content-type", "text/html") self.end_headers() self.wfile.write(file.read()) class CreateDatabase(): def __init__(self): self.dbinit() def dbinit(self): self.conn = sqlite3.connect("database.db") self.c = self.conn.cursor() self.c.execute(""" CREATE TABLE IF NOT EXISTS data ( lat int(4), lng int(4), sound int(1), CO int(1), airquality int(1), routeID int(1) ) """) data = self.c.execute('select * from data') self.collums = list(map(lambda x: x[0], data.description)) def generateID(self): self.c.execute("SELECT * FROM data") try: lastID = self.c.fetchall()[-1][-1] print(lastID) except: lastID = 0 return lastID+1 def insertValues(self, rawData): try: str = rawData.decode() str = str[:str.rfind('}')+1] + ']' + str[str.rfind('}')+1:] data = json.loads(str[str.find("["):str.rfind("]") + 1]) id = self.generateID() for item in data: values = [] for key, value in item.items() : if isinstance( value, (frozenset, list, set, tuple,) ): for coord in value: values.append(coord) else: values.append(value) values = list(reversed(values)) values.append(id) self.c.execute(""" INSERT INTO data VALUES ( ?, ?, ?, ?, ?, ? ) """, (values)) print(values) self.conn.commit() self.c.execute("SELECT * FROM data") data = self.c.fetchall() for dataItem in range(len(data)): self.c.execute("SELECT * FROM data WHERE lat=%s AND lng=%s" % (data[dataItem][0], data[dataItem][1])) duplicates = self.c.fetchall() if len(duplicates) > 0: average = [sum(x) for x in zip(*duplicates)] for item in range(len(average)): average[item] /= len(duplicates) for duplicate in duplicates: self.c.execute("""DELETE FROM data WHERE lat=%s AND lng=%s """ % (data[dataItem][0], data[dataItem][1])) average[-1] = duplicates[0][-1] self.c.execute(""" INSERT INTO data VALUES ( ?, ?, ?, ?, ?, ? ) """, (average)) self.conn.commit() except Exception as e: print(e) def getValues(self): self.c.execute("SELECT * FROM data") return str(self.c.fetchall()).encode() if __name__ == "__main__": database = CreateDatabase() server = socketserver.TCPServer(("", 80), Handler) server.socket = ssl.wrap_socket( server.socket, certfile="cert.pem", keyfile="key.pem", server_side=True) try: server.serve_forever() except KeyboardInterrupt: print(" Recieved Shutting Down")
true
3cc5e86d6016f7e162ef98bd91139c0d11ea1aa1
Python
kevinyuQ/SideProjs
/old/gnolac/gnolac.py
UTF-8
2,805
2.65625
3
[]
no_license
import code import functools import inspect import re import signal import sys def main(fn): """Call fn with command line arguments. Used as a decorator. The main decorator marks the function that starts a program. For example, @main def my_run_function(): # function body Use this instead of the typical __name__ == "__main__" predicate. """ if inspect.stack()[1][0].f_locals['__name__'] == '__main__': args = sys.argv[1:] # Discard the script name from command line fn(*args) # Call the main function return fn def read_eval_print_loop(next_line, env, interactive=False, quiet=False, startup=False, load_files=()): """Read and evaluate input until an end of file or keyboard interrupt.""" if startup: for filename in load_files: scheme_load(filename, True, env) while True: try: src = next_line() while src.more_on_line: expression = scheme_read(src) result = scheme_eval(expression, env) if not quiet and result is not None: print(result) except (SchemeError, SyntaxError, ValueError, RuntimeError) as err: if (isinstance(err, RuntimeError) and 'maximum recursion depth exceeded' not in getattr(err, 'args')[0]): raise elif isinstance(err, RuntimeError): print('Error: maximum recursion depth exceeded') else: print('Error:', err) except KeyboardInterrupt: # <Control>-C if not startup: raise print() print('KeyboardInterrupt') if not interactive: return except EOFError: # <Control>-D, etc. print() return @main def run(*argv): import argparse parser = argparse.ArgumentParser(description='Gnolac Language Interpreter') parser.add_argument('-load', '-i', action='store_true', help='run file interactively') parser.add_argument('file', nargs='?', type=argparse.FileType('r'), default=None, help='Scheme file to run') args = parser.parse_args() next_line = buffer_input interactive = True load_files = [] if args.file is not None: if args.load: load_files.append(getattr(args.file, 'name')) else: lines = args.file.readlines() def next_line(): return buffer_lines(lines) interactive = False read_eval_print_loop(next_line, create_global_frame(), startup=True, interactive=interactive, load_files=load_files) tscheme_exitonclick()
true
183880eb25bf8f5e44685f53820c5776a20d4946
Python
yurifarias/CursoEmVideoPython
/ex034.py
UTF-8
204
4.15625
4
[]
no_license
salário = float(input('Digite o valor do salário: R$')) if salário <= 1250: salário *= 1.15 else: salário *= 1.10 print('O salário inicial será aumentado para R${:.2f}'.format(salário))
true
f284c4d3b0a02f9b6c25aeaa2fc81141d545d17e
Python
fg0x0/Python-Lesson
/Auto-File-Move-And-Rename.py
UTF-8
1,138
2.65625
3
[]
no_license
#!/usr/bin/env python3 from watchdog.observers import Observer from watchdog.events import FileSystemEventHandler import os import json import time class MyHandler(FileSystemEventHandler): i = 1 def on_modif(self,event): new_name = "new_file_" + str(self.i) + ".txt" for filename in os.listdir(folder_to_track): file_exists = os.path.isfile(folder_destination + "/" + new_name) while file_exists: self.i +=1 new_name = "new_file_" + str(self.i) + ".txt" file_exists = os.path.isfile(folder_destination + "/" + new_name) src = folder_to_track + "/" + filename new_destination = folder_destination + "/" + new_name os.rename(src, new_destination) folder_to_track = "/home/fg0d/Desktop/myFolder" folder_destination = "/home/fg0d/Desktop/newFolder" event_handler = Myhandler() observer = Observer() observer.schedule(event_handler , folder_to_track , recursive = True) observer.start() try: while True: time.sleep(10) except KeyboardInterrupt: observer.stop() observer.join()
true
4bb46a59e4c5df5cd1771765ff852e474d926e61
Python
huaxiawudi/yz1806
/7/day07/app/views.py
UTF-8
308
2.578125
3
[]
no_license
from random import randint from django.shortcuts import render # Create your views here. def add_student(request): stu = Student() stu.sname = '小明' + str(randint(1,1000)) stu.ssex = randint(0,1) stu.sage = randint(15,30) stu.save() return HttpResponse("添加学生%d" % stu.id)
true
3511054dbca5c31cf98f294da32fc333dcd094ea
Python
rheehot/Algorithm_problem
/leetcode_3Sum.py
UTF-8
1,165
3.125
3
[]
no_license
class Solution(object): def threeSum(self, nums): result = [] nums.sort() #중복제거 간소화 하기 위해 정렬 for i in range(len(nums)-2): #중복 일 경우 건너 뜀 if i > 0 and nums[i] == nums[i - 1]: continue left, right = i + 1, len(nums) - 1 while left < right: sum = nums[i] + nums[left] + nums[right] if sum < 0: left += 1 elif sum > 0: right -= 1 else: result.append([nums[i], nums[left], nums[right]]) #정답에 중복이 들어가면 X => 중복처리 while left < right and nums[left] == nums[left + 1]: left += 1 while left < right and nums[right] == nums[right - 1]: right -= 1 #정답일 경우 투 포인터 이동 left += 1 right -= 1 return result
true
7c72f37ccb94d4b9250e63bfd8170362e98e0b6a
Python
RunningIkkyu/ProxyPool
/proxypool/getter.py
UTF-8
1,284
2.53125
3
[]
no_license
from proxypool.tester import Tester from proxypool.db import RedisClient from proxypool.crawler import Crawler from proxypool.setting import POOL_UPPER_THRESHOLD, PRIVATE_PROXY_ENABLE from proxypool.private_proxy import PrivateProxy import sys class Getter(): def __init__(self): self.redis = RedisClient() self.crawler = Crawler() def is_over_threshold(self): """ Check if the mount of proxies is over threshold.""" if self.redis.count() >= POOL_UPPER_THRESHOLD: return True else: return False def run(self): print('Getter started.') if PRIVATE_PROXY_ENABLE: proxies = PrivateProxy().get_proxies() for proxy in proxies: print('Add private proxy {}'.format(proxy)) self.redis.add(proxy) else: if not self.is_over_threshold(): for callback_label in range(self.crawler.__CrawlFuncCount__): callback = self.crawler.__CrawlFunc__[callback_label] # 获取代理 proxies = self.crawler.get_proxies(callback) sys.stdout.flush() for proxy in proxies: self.redis.add(proxy)
true
486ef6398fb532fb5c73aaa6d74c09b77dcba1cd
Python
nithish1199/Color-detection
/main.py
UTF-8
868
2.59375
3
[]
no_license
import cv2 import numpy as np import pyautogui cap = cv2.VideoCapture(0) lower_red = np.array([0, 50, 50]) # example value upper_red = np.array([10, 255, 255]) prev_y=0 while True: ret, frame = cap.read() hsv = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV) mask = cv2.inRange(hsv, lower_red, upper_red) contours, hierarchy = cv2.findContours(mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) for c in contours: area=cv2.contourArea(c) if area>300: x,y,w,h=cv2.boundingRect(c) cv2.rectangle(frame,(x,y),(x+w,y+h),(0,255,0),2) if y<prev_y: pyautogui.press('down') else: pyautogui.press('up') prev_y=y cv2.imshow('frame', frame) if cv2.waitKey(10) == ord('q'): break cap.release() cv2.destroyAllWindows()
true
50fe8efb534d572eb3082448ad7a39aa4f089091
Python
ankurgupta7/fast-rcnn-attributes
/data/attributes/Images/people_labels_parser_fcnn.py
UTF-8
977
2.59375
3
[ "MIT" ]
permissive
f = open('labels.txt') ft = open('../ImageSets/train.txt', 'w') j = 0 while True: l = f.readline() if len(l) == 0: break words = l.split() labels = ['is_male', 'has_long_hair', 'has_glasses', 'has_hat', 'has_t-shirt', 'has_long_sleeves', 'has_shorts', 'has_jeans', 'has_long_pants'] output_str = '' for word in words[1:5]: output_str += word + ' ' for i in range(words.__len__()): if (words[i] == '1'): output_str += labels[i - 5] + ' ' output_str = output_str[0:-1] output_str = output_str.replace('NaN NaN NaN NaN', '0.0 0.0 20.0 20.0') if len(output_str.split()) < 5: print 'ignoring file' + str(j) j+=1 continue output_str = output_str + '\n' f1 = open('../Annotations/'+ words[0].replace('jpg','txt'), 'w') f1.write(output_str) f1.close() ft.write('{:05d}\n'.format(int(words[0].replace('.jpg','\n')))) j+=1 #raw_input('Proceed?') ft.close()
true
da52ab252aafc16cb83748639bb0268f3503b03f
Python
shivekkhurana/learning
/python/generator_paradigm/bytes_transfered.py
UTF-8
315
2.71875
3
[ "MIT" ]
permissive
import re byte_regex = re.compile("""^.*]\s".*"\s[0-9]{3}\s([0-9]*)\s.*$""") log = (line for line in open('access.log')) byte_groups = (byte_regex.search(line) for line in log) bytes = (int(byte_group.group(1)) for byte_group in byte_groups if byte_group != None) print("Total bytes transfered : %d" % sum(bytes))
true
bc01c1bcbb4994926df81453b617c69e7df9931e
Python
hendrikvgl/RoboCup-Spielererkennung
/code-master/lib/bitbots/modules/behaviour/body/actions/throw.py
UTF-8
2,002
2.890625
3
[]
no_license
# -*- coding:utf-8 -*- """ Throw ^^^^^ Handling throwing of the goalie. History: '''''''' * ??.??.??: Created (Unknown) """ from bitbots.modules.abstract.abstract_action_module import AbstractActionModule import time from bitbots.util import get_config LEFT = "LEFT" MIDDLE = "MIDDLE" RIGHT = "RIGHT" BOTH_ARMS_HIGH = "BOTH" class Throw(AbstractActionModule): """ Basic version. Throwing to one direction and remembering where we trowed ourselfs. """ def __init__(self, args): super(Throw, self).__init__() config = get_config() self.richtung = args self.initializationTime = time.time() self.played = False self.left_animation = config["animations"]["goalie"]["throw_left"] self.middle_animation = config["animations"]["goalie"]["throw_middle"] self.right_animation = config["animations"]["goalie"]["throw_right"] def perform(self, connector, reevaluate=False): connector.blackboard_capsule().cancel_ball_tracking() if self.richtung == LEFT: # Returns true if can be performed if connector.animation_capsule().play_animation(self.left_animation): connector.blackboard_capsule().set_thrown(LEFT) return self.interrupt() elif self.richtung == RIGHT: if connector.animation_capsule().play_animation(self.right_animation): connector.blackboard_capsule().set_thrown(RIGHT) connector.blackboard_capsule().freeze_till(time.time() + 4) return self.interrupt() elif self.richtung == MIDDLE: # MIDDLE if connector.animation_capsule().play_animation(self.middle_animation): connector.blackboard_capsule().set_thrown(MIDDLE) connector.blackboard_capsule().freeze_till(time.time() + 4) return self.interrupt() else: raise ValueError('%s is not a possible throw direction.' % self.richtung)
true
46a80ff46b4690a5802b464aec76434bf74a916d
Python
Kalen-Ssl/shilu
/7.1.py
UTF-8
392
2.546875
3
[]
no_license
f = open('./Py7-1.txt', "w") f.writelines("秦时明月汉时关,\n") f.writelines("秦时明月汉时关。\n") f.writelines("但使龙城飞将在,\n") f.writelines("不教胡马度阴山。\n") f = open('./Py7-1.txt', "r+") flist = f.readlines() flist[1]='万里长征人未还。\n' f=open("./Py7-1.txt",'r+') f.writelines(flist) f=open("D:\Py7-1.txt",'r+') print(f.read()) f.close()
true
636cddf9f90621cd3f9340fb63f32dae743d95b0
Python
alancucki/recursive-convolutional-autoencoder
/logger.py
UTF-8
10,645
2.65625
3
[ "MIT" ]
permissive
# Code referenced from https://gist.github.com/gyglim/1f8dfb1b5c82627ae3efcfbbadb9f514 # and https://github.com/yunjey/pytorch-tutorial/blob/master/tutorials/04-utils/tensorboard/logger.py import datetime import glob import os import shutil import sys import time from collections import defaultdict import torch import numpy as np import tensorflow as tf def to_np(x): return x.data.cpu().numpy() class Writer(object): def __init__(self, logdir): """Create a summary writer logging to log_dir.""" self.__writer = tf.summary.FileWriter(logdir) def scalar_summary(self, tag, value, step): """Log a scalar variable.""" summary = tf.Summary( value=[tf.Summary.Value(tag=tag, simple_value=value)]) self.__writer.add_summary(summary, step) def histo_summary(self, tag, values, step, bins=1000): """Log a histogram of the tensor of values.""" # Create a histogram using numpy counts, bin_edges = np.histogram(values, bins=bins) # Fill the fields of the histogram proto hist = tf.HistogramProto() hist.min = float(np.min(values)) hist.max = float(np.max(values)) hist.num = int(np.prod(values.shape)) hist.sum = float(np.sum(values)) hist.sum_squares = float(np.sum(values**2)) # Drop the start of the first bin bin_edges = bin_edges[1:] # Add bin edges and counts for edge in bin_edges: hist.bucket_limit.append(edge) for c in counts: hist.bucket.append(c) # Create and write Summary summary = tf.Summary(value=[tf.Summary.Value(tag=tag, histo=hist)]) self.__writer.add_summary(summary, step) def flush(self): self.__writer.flush() class Logger(object): def __init__(self, initial_lr, log_interval, num_batches, logdir=None, log_weights=False, log_grads=False): """Create a training logger with summary writers logging to logdir.""" self.timestamp = datetime.datetime.now().isoformat().replace(':', '.') if not logdir: logdir = self.timestamp self.logdir = logdir.rstrip('/') + '/' os.makedirs(self.logdir) for py_file in glob.glob(r"*.py"): shutil.copy(py_file, self.logdir) self.model_path = self.logdir + "model.pt" self.current_model_path = self.logdir + "current_model.pt" self.writers = {name: Writer(self.logdir + name) for name in ['train', 'valid', 'test']} self.total_losses = None self.epoch = 0 self.lr = initial_lr self.log_interval = log_interval self.num_batches = num_batches self.log_weights = log_weights self.log_grads = log_grads self.minibatch_start_time = None self.epoch_start_time = None self.training_start_time = None def mark_epoch_start(self, epoch): self.epoch = epoch self.minibatch_start_time = self.epoch_start_time = time.time() self.total_losses = 0 def save_model_state_dict(self, model_state_dict, current=False): path = self.model_path if not current else self.current_model_path with open(path, 'wb') as f: torch.save(model_state_dict, f) def load_model_state_dict(self, current=False): path = self.model_path if not current else self.current_model_path with open(path, 'rb') as f: return torch.load(f) def save_training_state(self, optimizer, args): th = torch.cuda if args.cuda else torch # XXX Writers cannot be pickled -- are they stateful or stateless? _writers = self.writers self.writers = None state = {'random': th.get_rng_state(), 'optimizer': optimizer.state_dict(), 'args': args, 'logger': self, } torch.save(state, self.training_state_path(self.logdir)) self.writers = _writers @staticmethod def training_state_path(logdir): return os.path.join(logdir, 'training_state.pkl') @staticmethod def load_training_state(resume_path): state_path = Logger.training_state_path(resume_path) state = torch.load(open(state_path, 'rb')) # XXX Writers cannot be pickled -- are they stateful or stateless? state['logger'].writers = { name: Writer(state['logger'].logdir + name) \ for name in ['train', 'valid', 'test']} return state def set_training_state(self, state, optimizer): th = torch.cuda if state['args'].cuda else torch th.set_rng_state(state['random']) del state['random'] optimizer.load_state_dict(state['optimizer']) # https://discuss.pytorch.org/t/saving-and-loading-sgd-optimizer/2536 optimizer.state = defaultdict(dict, optimizer.state) state['optimizer'] = optimizer return state def save_model_info(self, classes_with_kwargs): kwargs_to_str = lambda kwargs: ','.join( ["%s=%s" % (key, str(kw) if type(kw) != str else '\\"%s\\"' % kw) \ for key,kw in kwargs.items()]) info = "" for field, (name, kwargs) in classes_with_kwargs.items(): info += "%s_class=%s\n" % (field, name) if kwargs: info += "%s_kwargs=%s\n" % (field, kwargs_to_str(kwargs)) with open(self.logdir+"model.info", 'w') as f: f.write(info.strip()) def train_log(self, batch, batch_losses, named_params): # logger.train_log(batch, {'nll_per_w': nll.data[0]}, # named_params=self.named_parameters) # if log_every and batch % log_every == 0: # print("Minibatch {0: >3} | loss {1: >5.2f} | err rate {2: >5.2f}%" \ # .format(batch, losses[-1], err_rate)) if not self.total_losses: self.total_losses = dict(batch_losses) else: for k, v in batch_losses.iteritems(): self.total_losses[k] += v if batch % self.log_interval == 0 and batch > 0: elapsed = (time.time() - self.minibatch_start_time ) * 1000 / self.log_interval cur_loss = {k: v / self.log_interval for k, v in self.total_losses.items()} # cur_loss['pplx'] = np.exp(cur_loss['nll_per_w']) loss_str = ' | '.join( [' {} {:5.2f}'.format(k, cur_loss[k]) \ for k in sorted(cur_loss.keys())]) print('| epoch {:3d} | {:5d}/{:5d} batches | lr {:02.5f} | ' 'ms/batch {:5.2f} | {}'.format( self.epoch, batch, self.num_batches, self.lr, elapsed, loss_str)) cur_loss["ms/batch"] = elapsed cur_loss["learning_rate"] = self.lr step = (self.epoch-1) * self.num_batches + batch self.tb_log(mode="train", info=cur_loss, step=step, named_params=named_params) self.total_losses = None self.minibatch_start_time = time.time() def valid_log(self, val_loss, batch=0): elapsed = time.time() - self.epoch_start_time losses = dict(val_loss) # losses['pplx'] = np.exp(val_loss['nll_per_w']) loss_str = ' : '.join( [' {} {:5.2f}'.format(k, v) for k, v in losses.items()]) loss_str = ('| end of epoch {:3d} | time: {:5.2f}s | ' 'valid {}'.format(self.epoch, elapsed, loss_str)) print('-' * len(loss_str)) print(loss_str) print('-' * len(loss_str)) losses['s/epoch'] = elapsed losses['learning_rate'] = self.lr step = self.epoch * self.num_batches + batch self.tb_log(mode="valid", info=losses, step=step, named_params=lambda: []) def mem_log(self, mode, named_params, batch): step = self.epoch * self.num_batches + batch for tag, value in named_params: self.writers[mode].histo_summary(tag, to_np(value), step, bins=20) # self.writers[mode].flush() def final_log(self, results, result_file="results/log_file.md"): if not os.path.exists(os.path.dirname(result_file)): os.makedirs(os.path.dirname(result_file)) #for losses in results.values(): # losses['pplx'] = np.exp(losses['nll_per_w']) log_line = ('| End of training | test losses {} |' ''.format(results['test'])) print('=' * len(log_line)) print(log_line) print('=' * len(log_line)) header = "|timestamp|args|train acc|valid acc|test acc|other|\n" header += "|---------|----|---------|---------|--------|-----|\n" if not results.has_key('train') or not results.has_key('valid'): log_line = "| %s | %s | not_evald | not_evald | %.2f | %s |\n" % ( self.timestamp, '<br>'.join(sys.argv[1:]), results['test']['acc'], results) else: log_line = "| %s | %s | %.2f | %.2f | %.2f | %s |\n" % ( self.timestamp, '<br>'.join(sys.argv[1:]), results['train']['acc'], results['valid']['pplx'], results['test']['acc'], results) with open(self.logdir+"results.md", 'w') as f: f.write(header + log_line) if not os.path.isfile(result_file): with open(result_file, 'a') as f: f.write(header) with open(result_file, 'a') as f: f.write(log_line) step = self.epoch * self.num_batches for mode in results.keys(): self.tb_log(mode=mode, info=results[mode], step=step, named_params=lambda: []) def tb_log(self, mode, info, step, named_params): # Log scalar values for tag, value in info.items(): self.writers[mode].scalar_summary(tag, value, step) # Log values and gradients of the parameters (histogram) if self.log_weights: for tag, value in named_params(): tag = tag.replace('.', '/') self.writers[mode].histo_summary(tag, to_np(value), step) if self.log_grads: for tag, value in named_params(): tag = tag.replace('.', '/') self.writers[mode].histo_summary(tag+'/grad', to_np(value.grad), step) self.writers[mode].flush()
true
6da5f9280ffd802899f2a5f99ce6a64ee2a6a359
Python
sabrikrdnz/LYK-17-Python-Examples
/machine_learning/1_intro.py
UTF-8
645
3.375
3
[]
no_license
from sklearn import datasets, neighbors import numpy as np # Load iris data from 'datasets module' iris = datasets.load_iris() # Get data-records and record-labels in arrays X and Y X = iris.data y = iris.target # Create an instance of KNeighborsClassifier and then fit training data clf = neighbors.KNeighborsClassifier() clf.fit(X, y) # Make class predictions for all observations in X Z = clf.predict(X) # Compare predicted class labels with actual class label accuracy = clf.score(X, y) print("Predicted model accuracy: "+ str(accuracy)) # Add a row of predicted classes to y-array for ease of comparison A = np.vstack([y, Z]) print(A)
true
bb8e08fd8648cfaf17aefe37a1acb710fcd95f42
Python
theemadnes/rPi_camera_indexer
/lambda_functions/rPi_index_photo/lambda_function.py
UTF-8
1,394
2.609375
3
[]
no_license
# import necessary modules from __future__ import print_function import json import boto3 import urllib dynamodb_table = 'mattsona-rpi-camera_metadata' # replace with your DDB table # connect to dynamodb & s3 dynamodb = boto3.resource('dynamodb') s3 = boto3.client('s3') region_name = s3.meta.region_name # need the region name for the object URL print('Loading function') def lambda_handler(event, context): # get details of s3 object & bucket bucket = event['Records'][0]['s3']['bucket']['name'] object_key = urllib.unquote_plus(event['Records'][0]['s3']['object']['key']).decode('utf8') # connect to the dynamoDB table table = dynamodb.Table(dynamodb_table) try: # grab the object print('Grabbing S3 object data') response = s3.get_object(Bucket=bucket, Key=object_key) # index metadata to dynamoDB print('Putting item to DynamoDB') table.put_item( Item = { 'device_id': response['Metadata']['rpi_id'], 'epoch_time': int(response['Metadata']['epoch_time_stamp']), 'image_time_stamp': response['Metadata']['image_time_stamp'], 's3_object_url': ('https://s3-' + region_name + '.amazonaws.com/' + bucket + '/' + object_key) } ) except Exception as e: print(e) raise e return "Done"
true
d6d0f9fee6bce8e6caf9c7184b8b017dee9fbe8d
Python
bballamudi/DataGristle
/scripts/gristle_slicer
UTF-8
13,920
2.765625
3
[ "BSD-3-Clause" ]
permissive
#!/usr/bin/env python """ Extracts subsets of input files based on user-specified columns and rows. The input csv file can be piped into the program through stdin or identified via a command line option. The output will default to stdout, or redirected to a filename via a command line option. The columns and rows are specified using python list slicing syntax - so individual columns or rows can be listed as can ranges. Inclusion or exclusion logic can be used - and even combined. Supported slicing specification: 'NumberN, StartOffset:StopOffset' - The specification is a comma- delimited list of individual offsets or ranges. Offsets are based on zero, and if negative are measured from the end of the record or file with -1 being the final item. There can be N number of individual offsets. Ranges are a pair of offsets separated by a colon. The first number indicates the starting offset, and the second number indicates the stop offset +1. Arguments: --long-help Print verbose help and exit. -i, --inputs=<files> One or more input files. Alternatively, could be piped in via stdin. -o, --output=<file> Specify the output file. The default is stdout. -c, --columns=<spec> Provide the column inclusion specification, Default is ':' which includes all columns. -C, --excolumns=<spec> Provide the column exclusion specification. Default is None which excludes nothing. -r, --records=<spec> Provide the record inclusion specification. Default is ':' which includes all records. -R, --exrecords=<spec> Provide the record exclusion specification. Default is None which excludes nothing. -d, --delimiter=<del> Provide a quoted single-character field delimiter. Typically useful if automatic csv dialect detection fails to correctly interpret file. Also required for STDIN input. If provided then quoting should also be provided. -q, --quoting=<qt> Specify quoting behavior. Typically used when automatic csv dialect detection fails or when processing data via stdin. Values: - quote_all - all fields are quoted - quote_none - no fields are quoted. This is the default used if the delimiter is overridden. - quote_minimal - only quoting of fields with special characters. - quote_nonnumeric - only quotes text fields. -h, --help Print help and exit. Examples: $ gristle_slicer -i sample.csv Prints all rows and columns $ gristle_slicer -i sample.csv -c":5, 10:15" -C 13 Prints columns 0-4 and 10,11,12,14 for all records $ gristle_slicer -i sample.csv -C:-1 Prints all columns except for the last for all records $ gristle_slicer -i sample.csv -c:5 -r-100: Prints columns 0-4 for the last 100 records $ gristle_slicer -i sample.csv -c:5 -r-100 -d'|' --quoting=quote_all: Prints columns 0-4 for the last 100 records, csv dialect info (delimiter, quoting) provided manually) $ cat sample.csv | gristle_slicer -c:5 -r-100 -d'|' --quoting=quote_all: Prints columns 0-4 for the last 100 records, csv dialect info (delimiter, quoting) provided manually) This source code is protected by the BSD license. See the file "LICENSE" in the source code root directory for the full language or refer to it here: http://opensource.org/licenses/BSD-3-Clause Copyright 2011,2012,2013,2017 Ken Farmer """ import sys import csv import fileinput from os.path import basename from pprint import pprint as pp from signal import signal, SIGPIPE, SIG_DFL from typing import List, Tuple, Dict, Any, Optional, IO import datagristle.location_slicer as slicer import datagristle.configulator as configulator import datagristle.file_io as file_io #Ignore SIG_PIPE and don't throw exceptions on it... (http://docs.python.org/library/signal.html) signal(SIGPIPE, SIG_DFL) NAME = basename(__file__) SHORT_HELP = 'Extract column and row subsets out of files using python string slicing notation\n' def main() -> int: config = get_args() try: input_handler = file_io.InputHandler(config['infiles'], config['delimiter'], config['quoting'], config['quotechar'], config['has_header']) except EOFError: print('Warning: empty file') return 0 (incl_rec_slicer, excl_rec_slicer, incl_col_slicer, excl_col_slicer) = setup_slicers(config['infiles'], input_handler.dialect, config['records'], config['exrecords'], config['columns'], config['excolumns']) output_handler = file_io.OutputHandler(config['outfile'], input_handler.dialect) for rec in input_handler: new_rec = process_rec(input_handler.rec_cnt - 1, incl_rec_slicer, excl_rec_slicer, rec, incl_col_slicer, excl_col_slicer) if new_rec: output_handler.write_rec(new_rec) input_handler.close() output_handler.close() return 0 def setup_slicers(infiles: List[str], dialect: csv.Dialect, config_records: str, config_exrecords: str, config_columns: str, config_excolumns: str) -> Tuple[slicer.SpecProcessor, slicer.SpecProcessor, slicer.SpecProcessor, slicer.SpecProcessor]: """ Sets up the 4 slicer objects: inclusion & exclusion for rec and column. Then counts records and columns if negative slice references exist and calls the spec adjuster. """ # first parse the config items; columns = config_columns.split(',') excolumns = config_excolumns.split(',') if config_excolumns else [] records = config_records.split(',') exrecords = config_exrecords.split(',') if config_exrecords else [] incl_rec_slicer = slicer.SpecProcessor(records, 'incl_rec_spec') excl_rec_slicer = slicer.SpecProcessor(exrecords, 'excl_rec_spec') incl_col_slicer = slicer.SpecProcessor(columns, 'incl_col_spec') excl_col_slicer = slicer.SpecProcessor(excolumns, 'excl_col_spec') rec_cnt = None if incl_rec_slicer.has_negatives or excl_rec_slicer.has_negatives: if infiles == '-': raise ValueError('ERROR: negative record slicing with stdin') rec_cnt = get_rec_count(infiles, dialect) incl_rec_slicer.spec_adjuster(loc_max=rec_cnt) excl_rec_slicer.spec_adjuster(loc_max=rec_cnt) col_cnt = None if incl_col_slicer.has_negatives or excl_col_slicer.has_negatives: if infiles == '-': raise ValueError('negative column slicing with stdin') col_cnt = get_col_count(infiles, dialect) incl_col_slicer.spec_adjuster(loc_max=col_cnt) excl_col_slicer.spec_adjuster(loc_max=col_cnt) return incl_rec_slicer, excl_rec_slicer, incl_col_slicer, excl_col_slicer def get_rec_count(files: List[str], dialect: csv.Dialect) -> Tuple[Optional[int], int]: """ Gets record counts for input files. - Counts have an offset of 0 """ rec_cnt = -1 for _ in csv.reader(fileinput.input(files), dialect): rec_cnt += 1 fileinput.close() return rec_cnt def get_col_count(files: List[str], dialect: csv.Dialect) -> int: """ Gets column counts for input files. - Counts have an offset of 0 """ for record in csv.reader(fileinput.input(files[0]), dialect): field_cnt = len(record) -1 break fileinput.close() return field_cnt def process_rec(rec_number: int, incl_rec_slicer: slicer.SpecProcessor, excl_rec_slicer: slicer.SpecProcessor, rec: List[str], incl_col_slicer: slicer.SpecProcessor, excl_col_slicer: slicer.SpecProcessor) -> Optional[List[str]]: """ Evaluates all the specifications against a single record from the input file. First it applies inclusion & exclusion specifications against the record, then it applies inclusion & exclusion specifications against each column. Input: - rec_number: used for rec specs - incl_rec_spec - excl_rec_spec - rec: a list of all columns from the record - incl_col_spec: which columns to include - excl_col_spec: which columns to exclude Output: - if the rec_number fails: None - if the rec_number passes: a list of the columns that qualified """ # minimal validation assert int(rec_number) >= 0 # reject record if it isn't in the inclusion spec if not incl_rec_slicer.spec_evaluator(rec_number): return None # reject record if it is in the exclusion spec if excl_rec_slicer.spec_evaluator(rec_number): return None output_rec = [] for col_number in range(len(rec)): if not incl_col_slicer.spec_evaluator(col_number): continue if excl_col_slicer.spec_evaluator(col_number): continue output_rec.append(rec[col_number]) if output_rec: return output_rec else: return None # don't return empty list class SlicerConfigulator(configulator.Config): def validate_custom_config(self, config: configulator.CONFIG_TYPE): if not config['delimiter'] and config['infiles'] == '-': self.parser.error('Provide delimiter and quoting when piping data into program via stdin') def get_args() -> Dict[str, Any]: config_mgr = SlicerConfigulator(NAME, SHORT_HELP, __doc__) config_mgr.add_standard_config('infiles') config_mgr.add_standard_config('outfile') config_mgr.add_standard_config('delimiter') config_mgr.add_standard_config('quoting') config_mgr.add_standard_config('quotechar') config_mgr.add_standard_config('escapechar') config_mgr.add_standard_config('has_header') config_mgr.add_standard_config('has_no_header') config_mgr.add_custom_config(name='columns', short_name='c', arg_type='option', default=':', config_type=str, help_msg='Specify the columns to include via a comma-separated ' 'list of columns and colon-separated pairs of column ' 'start & stop ranges. Default is to include all ' 'columns (":"). ') config_mgr.add_custom_config(name='excolumns', short_name='C', arg_type='option', default='', config_type=str, help_msg='Specify the columns to exclude via a comma-separated ' 'list of columns and colon-separated pairs of column ' 'start & stop ranges. Default is to exclude nothing.') config_mgr.add_custom_config(name='records', short_name='r', arg_type='option', default=':', config_type=str, help_msg='Specify the records to include via a comma-separated ' 'list of record numbers and colon-separated pairs of ' 'record start & stop ranges. Default is to include all ' 'records (":").') config_mgr.add_custom_config(name='exrecords', short_name='R', arg_type='option', default='', config_type=str, help_msg='Specify the records to exclude via a comma-separated list ' 'of record numbers and colon-separated pairs of record ' 'start & stop ranges. Default is to exclude nothing.') config_mgr.process_configs() return config_mgr.config if __name__ == '__main__': sys.exit(main())
true
ecfe1755b7f3f4f22762ba1b720e2e9e9a8cd885
Python
tm-hsgw/AtCoderRepos
/atcoder.jp/past201912-open/past201912_f/Main.py
UTF-8
413
3.359375
3
[]
no_license
s = input() dic = [] i0 = 0 st = False for i in range(len(s)): if s[i].islower(): continue if st: dic.append(s[i0 : i + 1]) st = False else: i0 = i st = True dic = [w.lower() for w in dic] dic.sort() for w in dic: w_ls = list(w) w_ls[0] = w_ls[0].upper() w_ls[len(w_ls) - 1] = w_ls[len(w_ls) - 1].upper() print("".join(w_ls), end="") print()
true
055444edb77a8cf4e79c6e1a57f7c9d4d00ba699
Python
Javacream/org.javacream.training.python
/org.javacream.training.python/src/3-Einfache Anwendungen/types_control_loop.py
UTF-8
351
3.890625
4
[]
no_license
even_message = "an even number: " odd_message = "an odd number: " numbers = range(1, 10) finished = False for i in numbers: print ("processing number " , i, ", finished: ", finished) if i % 2 == 0: print (even_message, i) else: print (odd_message, i) finished = True print ("all numbers processed, finished: ", finished)
true
ab3b91e9cbde7ffc08a4f2f086ca43ffbe991617
Python
Nadi0998/RIP
/Lab3/ex_2.py
UTF-8
647
3.078125
3
[]
no_license
#!/usr/bin/env python3 from librip.gens import gen_random from librip.iterators import Unique data1 = [1, 1, 1, 1, 1, 2, 2, 2, 2, 2] data2 = gen_random(1, 3, 10) data3 = gen_random(1,9,15) data = ['a', 'A', 'b', 'B'] # Реализация задания 2 for i in Unique(data1): print(i, end=', ') print() #for i in data2: # print(i, end=', ') #print() for i in Unique(data2): #print('a') print(i, end = ', ') print() for i in Unique(data3): #print('a') print(i, end = ', ') print() for i in Unique(data): print(i, end=', ') print() for i in Unique(data, ignore_case=True): print(i, end=', ')
true
1c7675bb81bceeab5f4befdb3b08b259de7c7931
Python
freirezinho/lp2-python-ac04
/physician.py
UTF-8
1,463
3.03125
3
[]
no_license
from person import Pessoa class Medico(Pessoa): __crm: str = '' __salario: int = 0 __especialidades: [str] = [] def __init__( self, nome: str, rg: str, cpf: str, crm: str, telefone: str, salario: int, especialidades: [str] ): super().__init__(nome, rg, cpf, telefone) self.__crm = crm self.__salario = salario self.__especialidades = especialidades def get_crm(self) -> str: return self.__crm def get_especialidade_principal(self) -> str: if (len(self.__especialidades) > 0): return self.__especialidades[0] else: return '' def get_nome(self) -> str: return super().get_nome() def get_salario(self) -> int: return self.__salario def get_todas_especialidades(self) -> [str]: return self.__especialidades def set_nova_especialidade(self, especialidade: str): self.__especialidades.append(especialidade) def set_salario(self, valor: int) -> None: self.__salario = valor def edit_crm(self, crm: str) -> None: self.__crm = crm def substituir_especialidades(self, especialidades: [str]): self.__especialidades = especialidades def remover_especialidade(self, especialidade: str) -> None: if especialidade in self.__especialidades: self.__especialidades.remove(especialidade)
true
ce9fab8bcb99e6e477b50f7b95a36780f59b1505
Python
bajjurisupraja/phytonprogram
/85.py
UTF-8
143
3.078125
3
[]
no_license
v= raw_input().rstrip() evenB = oddB = '' for l, m in enumerate(v): if l & 1 == 0: evenB += m else: oddB += m print(evenB + " " + oddB)
true
c06e66fb1e1684feb960ef71b3d55bde6e1b645c
Python
BinhMinhs10/learning_pyspark
/graphanalytics.py
UTF-8
2,101
2.8125
3
[]
no_license
# $SPARK_HOME/bin/spark-submit --packages graphframes:graphframes:0.7.0-spark2.4-s_2.11 graphanalytics.py from pyspark.sql import SparkSession import pyspark from graphframes import GraphFrame from pyspark.sql.functions import desc spark = SparkSession.builder.appName("Python Spark SQL basic example").getOrCreate() spark.sparkContext.setLogLevel("WARN") spark.sparkContext.setCheckpointDir("~/tmp/checkpoints") bikeStations = spark.read.option("header", "true").csv( "data/bike-data/201508_station_data.csv" ) # print(bikeStations.collect()) tripData = spark.read.option("header", "true").csv( "data/bike-data/201508_trip_data.csv" ) tripData.show(5) stationVertices = bikeStations.withColumnRenamed("name", "id").distinct() tripEdges = tripData.withColumnRenamed("Start Station", "src").withColumnRenamed( "End Station", "dst" ) stationGraph = GraphFrame(stationVertices, tripEdges) stationGraph.cache() print("\nTotal Number of Station: " + str(stationGraph.vertices.count())) print("\nTotal Number of Trips in Graph: " + str(stationGraph.edges.count())) print("\nTotal Number of Trips in Original Data: " + str(tripData.count())) # Query in graph # stationGraph.edges.groupBy("src", "dst").count()\ # .orderBy(desc("count")).show() stationGraph.edges.where("src = 'Townsend at 7th' OR dst = 'Townsend at 7th'").groupBy( "src", "dst" ).count().show(10) # # sub graph # townAnd7thEdges = stationGraph.edges.where("src = 'Townsend at 7th' OR dst = 'Townsend at 7th'") # subgraph = GraphFrame(stationGraph.vertices, townAnd7thEdges) # # motif finding "triangle" pattern # print("\nfind motif----------------") # motifs = stationGraph.find("(a)-[ab]->(b); (b)-[bc]->(c); (c)-[ca]->(a)") # motifs.show() # In-Degree and Out-Degree Metrics inDeg = stationGraph.inDegrees inDeg.orderBy(desc("inDegree")).show(5, False) # Connected component print("\nCalculate connected component---------") minGraph = GraphFrame(stationVertices, tripEdges.sample(False, 0.1)) cc = minGraph.connectedComponents() cc.where("component != 0").show() print("\nDONE======================\n")
true
22ab301a72223254e9fe581d608a5a2dd7cd1d84
Python
Sushmita00/class-5
/hw5.py
UTF-8
1,903
4.46875
4
[]
no_license
# write a programm to print the multiplication table of the number entered by the user. number=int(input("enter the number")) i=1 while i<=10: print(i*number) i=i+1 # ask the user to enter 10 number using only one input statement and add them to the list list=[] for name in range(10): number=input("enter the number:") list.append(number) print(list) else: print("that's all") # from a list of numbers make a new list containing only the even numbers. x=[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19] print("the value of x",x) list=[] for i in x: if i%2==0: list.append(i) print("even numbers are:",list) # from a list separate the integer,string and floats elements into three different lists. list=[1,"egg",2.50,5,"fish",3.9,6,"hen",6.9] print("list:",list) integer=[] string_list=[] float_value=[] for i in list: if type(i)==str: string_list.append(i) if type(i)==int: integer.append(i) if type(i)==float: float_value.append(i) print(integer) print(string_list) print(float_value) # from a list ask the user the number he wants to remove from the list and then print the list. list=[1,2,3,4,5,6,7,8,9,10] print("list is",list) n=int(input("enter the number want to remove from list")) list.remove(n) print("our new list",list) # make a calculator a=int(input("enter the number")) b=int(input("enter the number")) ch=input("a-Addition\n s-subtract\n m-multiplication\n d-division\n Q-quit") while ch!='q': if ch=='a': print("the sum of two number is",a+b) if ch=='s': print("the subtract of two number is",a-b) if ch=='m': print("the multiplication of two number is",a*b) if ch=='d': print("the division of two number is",a/b) if ch=='Q': print("quit") ch=input("enter choice again\n a-Addition\n s-subtract\n m-multiplay\n d-division\n Q-quit")
true
ec80618ad626a8e70ae574509b4c81a0bc4f3cfd
Python
uladkasach/Academic
/CSCI/gamedev/camera.py
UTF-8
1,233
2.90625
3
[]
no_license
import mathutils; import math; import bge; print(dir(bge.logic.getCurrentScene().objects)); player = bge.logic.getCurrentScene().objects['Snek']; # get a reference to player object playerRotationZ = player.localOrientation.to_euler()[2]; # get player direction as X,Y,Z (in radians not degrees) inverseRotationZ = playerRotationZ + math.pi; # to position camera: calculate opposite direction cameraDistance = 7.5; # camera will be 7.5 blender units on the XY plane away from player camera = bge.logic.getCurrentController().owner; # get a reference to camera object cameraX = player.position[0] + (math.cos(inverseRotationZ)*cameraDistance); # x position of camera cameraY = player.position[1] + (math.sin(inverseRotationZ)*cameraDistance); # y position of camera cameraZ = player.position[2] + 1.5; # z position of camera (1.5 units above player) cameraRotateX = math.pi/2-math.radians(15); # tip camera to look 15 degrees downward cameraRotateY = 0; # no sideways tilt cameraRotateZ = playerRotationZ+(math.pi/2*(-1)); # look same way in horizontal plane as player camera.position = (cameraX,cameraY,cameraZ); # set camera position camera.localOrientation = (cameraRotateX,cameraRotateY,cameraRotateZ); # set camera orientation
true
c660b66bf9a50960a02d7e38c5a1f9f69800ba90
Python
sdpython/botadi
/_unittests/ut_mokadi/test_grammar_mokadi.py
UTF-8
3,146
2.609375
3
[ "MIT" ]
permissive
# -*- coding: utf-8 -*- """ @brief test log(time=5s) """ import unittest from pyquickhelper.loghelper import fLOG class TestGrammarMokadi(unittest.TestCase): def test_mokadi_grammar(self): fLOG( __file__, self._testMethodName, OutputPrint=__name__ == "__main__") from botadi.mokadi.mokadi_parser import get_tree_string, parse_mokadi from botadi.mokadi.grammars import MokadiGrammar_frParser, MokadiGrammar_frLexer, MokadiGrammar_frListener codes = ["MOKADI a", "MOKADI lire mail"] expec = [[('MOKADI', ':MOKADI:'), ('a', ':word:'), ('<EOF>', ':P:')], [('MOKADI', ':MOKADI:'), ('lire', ':verb_voir:'), ('mail', ':mails:'), ('<EOF>', ':P:')] ] for i, code in enumerate(codes): fLOG("{0}/{1}: {2}".format(i + 1, len(codes), code)) parser = parse_mokadi( code, MokadiGrammar_frParser, MokadiGrammar_frLexer) tree = parser.parse() res, simple = get_tree_string( MokadiGrammar_frListener, tree, parser, code) if "error" in res: raise Exception("unable to parse '{0}'".format(code)) fLOG("SIMPLE", simple) fLOG("OUTPUT") def display(li, level=0): if isinstance(li, list): for el in li: display(el, level + 1) else: fLOG(" " * level, li) display(res) self.assertEqual(simple, expec[i]) def test_mokadi_interpret(self): fLOG( __file__, self._testMethodName, OutputPrint=__name__ == "__main__") from botadi.mokadi import interpret from botadi.mokadi.grammars import MokadiGrammar_frParser, MokadiGrammar_frLexer, MokadiGrammar_frListener codes = ["MOKADI a", "MOKADI lire mail"] expec = [[('MOKADI', ':MOKADI:'), ('a', ':word:'), ('<EOF>', ':P:')], [('MOKADI', ':MOKADI:'), ('lire', ':verb_voir:'), ('mail', ':mails:'), ('<EOF>', ':P:')] ] for i, code in enumerate(codes): fLOG("{0}/{1}: {2}".format(i + 1, len(codes), code)) simple = interpret(code, MokadiGrammar_frParser, MokadiGrammar_frLexer, MokadiGrammar_frListener) self.assertEqual(simple, expec[i]) def test_mokadi_interpret_exception(self): fLOG( __file__, self._testMethodName, OutputPrint=__name__ == "__main__") from botadi.mokadi import interpret from botadi.mokadi.grammars import MokadiGrammar_frParser, MokadiGrammar_frLexer, MokadiGrammar_frListener try: interpret("ROOCADI", MokadiGrammar_frParser, MokadiGrammar_frLexer, MokadiGrammar_frListener) raise AssertionError("should fail") except SyntaxError as e: fLOG(e) self.assertTrue("missing" in str(e)) if __name__ == "__main__": unittest.main()
true
9eacc24bd9010cf4d28417feb8a792ef7dc82e66
Python
wai030/Python-project
/sudoku_general.py
UTF-8
3,229
3.75
4
[]
no_license
################### ## Variable Domains ################### domain = (1,2,3,4) ###################################################### ## Definition of a state (i.e., what the variables are ###################################################### start_state = [ None,1 ,None,3 , 4 ,None,None,2 , None,2 ,None,None, 3 ,None,2 ,1 ] def display_solution (state): print ("[{},{},{},{},".format(state[0],state[1],state[2],state[3])) print (" {},{},{},{},".format(state[4],state[5],state[6],state[7])) print (" {},{},{},{},".format(state[8],state[9],state[10],state[11])) print (" {},{},{},{}]".format(state[12],state[13],state[14],state[15])) ########################################## ## Functions related to the problem domain ########################################## def is_goal(state): if 0 in state: return False if not satisfy_constraints(state): return False return True ########################################## ## Constraints ########################################## # If either is None (unassigned), or the two are not the same def check_constraint_1 (x, y): if x!=y: return True else: return False def satisfy_constraints(state): for i in range(16): j=i%4 h=i//4 if state[i]!= 0: for z in range(4): if (4*h+z == i): z+=1 elif (state[i] == state[4*h+z]): return False for g in range(4): if (4*g+j == i): g+=1 elif ( state[i] == state[4*g+j]): return False return True ################## ## Search Function ################## def find_children(state): if 0 in state: children=[] none_idx = state.index(0) for value in domain: child = state.copy() child[none_idx] = value children.append(child) return children else: return 0 def csp_search(start_state): to_visit = [] next_state = start_state end = False while not end: if is_goal(next_state): display_solution (next_state) print("Solution Found!") end = True else: for child_state in find_children(next_state): if satisfy_constraints(child_state): to_visit.append(child_state) if to_visit: next_state=to_visit.pop() else: print("Failed to find a goal state") end=True ################## ## Main ################## x=[] for i in range(1, 5): a = input("Enter {} row (enter 0 for space): ".format(i)) x += a.split( ) x= list(map(int, x)) csp_search(x) input()
true
e99e24102d582fe1f39c9295734e6651f391f8c7
Python
DJoseph11/pyjects
/coinflip.py
UTF-8
1,229
4.65625
5
[]
no_license
import random print(" I will flip a coin 1000 times. Guess how many times it will comp up heads. (Press Enter to begin") input() flips = 0 # a counter variable to keep track of how many flips has been made heads = 0 # another counter variable to keep track of how many heads pop from the while loop in the if statement. while flips < 1000: # if the flip is less then a 1000 cycles when true it recycles if false the program continues to line 20 if random.randint(0,1) == 1: # two options for 0 = tail 1 = heads heads += 1 # if line 7 is true where random = 1 it will go to line 8 where heads = heads + 1 line 5 get updated flips += 1 # regardless of line 7 is true or false the counter for flips is still added to line 4 if flips == 900: #once the flip count reach 900 the program will print line 12 print(" 900 flips and there have been {h} heads.".format(h = heads)) if flips == 100: print(" 100 flips and there have been {h} heads".format(h = heads)) if flips == 500: print(" 500 flips your halfway there and there have been {h} heads".format(h = heads)) print() print("Out of 1000 tosses, heads came up {h} heads times.".format(h = heads)) print("Where you close?")
true
303501c4de4c8b61f4770376be368a8e8e6d717d
Python
dszokolics/reinforcement-learning
/Navigation.py
UTF-8
5,106
3.71875
4
[]
no_license
# --- # jupyter: # jupytext: # text_representation: # extension: .py # format_name: light # format_version: '1.5' # jupytext_version: 1.11.0 # kernelspec: # display_name: drlnd # language: python # name: drlnd # --- # # Navigation # # --- # # In this notebook, you will learn how to use the Unity ML-Agents environment for the first project of the [Deep Reinforcement Learning Nanodegree](https://www.udacity.com/course/deep-reinforcement-learning-nanodegree--nd893). # # ### 1. Start the Environment # # We begin by importing some necessary packages. If the code cell below returns an error, please revisit the project instructions to double-check that you have installed [Unity ML-Agents](https://github.com/Unity-Technologies/ml-agents/blob/master/docs/Installation.md) and [NumPy](http://www.numpy.org/). from unityagents import UnityEnvironment import numpy as np import sys # Next, we will start the environment! **_Before running the code cell below_**, change the `file_name` parameter to match the location of the Unity environment that you downloaded. # # - **Mac**: `"path/to/Banana.app"` # - **Windows** (x86): `"path/to/Banana_Windows_x86/Banana.exe"` # - **Windows** (x86_64): `"path/to/Banana_Windows_x86_64/Banana.exe"` # - **Linux** (x86): `"path/to/Banana_Linux/Banana.x86"` # - **Linux** (x86_64): `"path/to/Banana_Linux/Banana.x86_64"` # - **Linux** (x86, headless): `"path/to/Banana_Linux_NoVis/Banana.x86"` # - **Linux** (x86_64, headless): `"path/to/Banana_Linux_NoVis/Banana.x86_64"` # # For instance, if you are using a Mac, then you downloaded `Banana.app`. If this file is in the same folder as the notebook, then the line below should appear as follows: # ``` # env = UnityEnvironment(file_name="Banana.app") # ``` env = UnityEnvironment(file_name="Banana.app") # Environments contain **_brains_** which are responsible for deciding the actions of their associated agents. Here we check for the first brain available, and set it as the default brain we will be controlling from Python. # get the default brain brain_name = env.brain_names[0] brain = env.brains[brain_name] # ### 2. Examine the State and Action Spaces # # The simulation contains a single agent that navigates a large environment. At each time step, it has four actions at its disposal: # - `0` - walk forward # - `1` - walk backward # - `2` - turn left # - `3` - turn right # # The state space has `37` dimensions and contains the agent's velocity, along with ray-based perception of objects around agent's forward direction. A reward of `+1` is provided for collecting a yellow banana, and a reward of `-1` is provided for collecting a blue banana. # # Run the code cell below to print some information about the environment. # + # reset the environment env_info = env.reset(train_mode=True)[brain_name] # number of agents in the environment print('Number of agents:', len(env_info.agents)) # number of actions action_size = brain.vector_action_space_size print('Number of actions:', action_size) # examine the state space state = env_info.vector_observations[0] print('States look like:', state) state_size = len(state) print('States have length:', state_size) # - # ### 4. It's Your Turn! # # Now it's your turn to train your own agent to solve the environment! When training the environment, set `train_mode=True`, so that the line for resetting the environment looks like the following: # ```python # env_info = env.reset(train_mode=True)[brain_name] # ``` from src.dqn_agent import Agent agent = Agent(state_size, action_size, 1) def monitor(env, agent, n_episodes=1000): """Run the agent and monitor its performance""" scores = [] best_score = -np.inf for episode in range(n_episodes): env_info = env.reset(train_mode=True)[brain_name] state = env_info.vector_observations[0] score = 0 while True: action = agent.act(state, 1/(episode+1)) env_info = env.step(action)[brain_name] next_state = env_info.vector_observations[0] reward = env_info.rewards[0] done = env_info.local_done[0] agent.step(state, action, reward, next_state, done) score += reward state = next_state if done: scores.append(score) break if np.mean(scores[-100:]) > best_score: best_score = np.mean(scores[-100:]) print("\rEpisode {} || Best average reward {}".format(episode, best_score), end="") sys.stdout.flush() if (episode+1) % 50 == 0: print("\rEpisode: {} Mean score: {} ".format(episode+1, np.mean(scores[-50:]))) if np.mean(scores[-100:]) > 13: print("\rEnvironment solved in {} episodes! ".format(episode+1)) break return scores agent.load("checkpoints/") agent.set_mode("eval") score = monitor(env, agent, 1000) import seaborn as sns sns.lineplot(x=range(len(score)), y=np.array(score))
true
04a32402e7a7ea238076844b5c0fc31a304ac092
Python
mohamedalani/Other
/Challenge Sounds/python_code.py
UTF-8
1,249
3.4375
3
[]
no_license
import sys #Recursive function that returns a generator with all combinations def get_all_splits(array): if len(array) > 1: for sub in get_all_splits(array[1:]): yield [' '.join([array[0],sub[0]])] + sub[1:] yield [array[0]] + sub else: yield array def get_max_font(wide, height, words): max_found = 1 for words in get_all_splits(words): j=1 length_words = [len(word) for word in words] #Let's find the max font size while max(length_words)*j <= wide and (len(words)*j) <= height: if j > max_found: max_found = j j+=1 return max_found def process_file(filename): file = open("output.txt","w") with open(filename, "r") as input: lines = input.read().split("\n") for i, line in enumerate(lines[1:]): size = [int(item) for item in line.split()[:2]] sentence = " ".join(line.split()[2:]) print("Case #{}: {}".format(i, get_max_font(size[0], size[1], sentence.split()))) file.write("Case #{}: {}".format(i, get_max_font(size[0], size[1], sentence.split()))+"\n") file.close() process_file(sys.argv[1])
true
24eb0b9e106d0da9c07f92a852a0d78e119be5f7
Python
AwuorMarvin/Day-Three-Bootcamp
/WordCount/words_count.py
UTF-8
578
3.34375
3
[]
no_license
def words(sentence): lib = {} count = 0 sentence_list = sentence.split() length = len(sentence_list) for word in sentence_list: for i in range(length): if sentence_list[i].isdigit() == True: if sentence_list[i] == word: count+=1 lib[int(sentence_list[i])] = count else: if sentence_list[i] == word: count+=1 lib[sentence_list[i]] = count count = 0 return lib words('This is a test')
true
a757eb4617b82b72da2672f043c78d17e643c9cd
Python
pavelsimo/ProgrammingContest
/spoj/328_BISHOPS/P328.py
UTF-8
264
3.046875
3
[]
no_license
#!/usr/bin/python # @BEGIN_OF_SOURCE_CODE # @SPOJ BISHOPS C++ "Simple Math" from sys import stdin while True: line = stdin.readline() if line == '': break; n = int(line) if n == 1: print 1 else: print 2*n-2 # @END_OF_SOURCE_CODE
true
0480e74d00b77b7e62beebbcc016372a65214b9c
Python
JordanMcK5/Week_2_Classes_weekend_hw
/tests/guest_test.py
UTF-8
564
3.046875
3
[]
no_license
import unittest from src.guest import Guest from src.room import Room from src.song import Song class TestGuest(unittest.TestCase): def setUp(self): self.guest = Guest("Katy", 20) def test_guest_has_name(self): self.assertEqual("Katy", self.guest.guest_name) def test_guest_has_cash(self): self.assertEqual(20, self.guest.cash) def test_guest_pays_entry_fee(self): entry_fee = Room("lounge", 8, 100, 5) self.guest.pay_entry_fee(entry_fee) self.assertEqual(15, self.guest.cash)
true
aa8d379e321e6b62ba7991ec98408b87b41e5e21
Python
pombredanne/wespe
/wespe/batch_uploaders/facebook/facebook_batch.py
UTF-8
7,420
2.671875
3
[ "Apache-2.0" ]
permissive
import logging from functools import partial from typing import List, Union from facebook_business.api import FacebookAdsApi, FacebookRequest, FacebookResponse from tenacity import retry, retry_if_result, stop_after_attempt, wait_exponential from wespe.exceptions import ( NoFacebookRequestProvidedError, TooManyRequestsPerBatchError, ) from .facebook_batch_request_error import FacebookBatchRequestError from .facebook_batch_response import FacebookBatchResponse from .retries import should_retry_facebook_batch logger = logging.getLogger(__name__) class FacebookBatch: # Batch retrying parameters for transient errors MAX_ATTEMPTS = 5 # The max number of attempts a batch execution should retry WAIT_EXPONENTIAL_MULTIPLIER = 1 # The exponential multiplier WAIT_EXPONENTIAL_MIN_IN_SECONDS = ( 1 # The minimum waiting time derived from the exponential multiplier ) WAIT_EXPONENTIAL_MAX_IN_SECONDS = ( 10 # The maximum waiting time derived from the exponential multiplier ) def __init__(self, requests: List[FacebookRequest], api: FacebookAdsApi): if not requests: raise NoFacebookRequestProvidedError( "At least one facebook request must be provided" ) num_requests = len(requests) if num_requests > 50: # See more on https://developers.facebook.com/docs/graph-api/making-multiple-requests raise TooManyRequestsPerBatchError( "A maximum of 50 requests per batch is supported" ) self._api = api self._batch = None self._requests = requests self._responses = [None] * num_requests self._errors = [None] * num_requests @property def requests(self) -> List[FacebookRequest]: """ Returns all FacebookRequest instances. :return: a list of FacebookRequest instances. """ return self._requests @property def responses(self) -> List[Union[None, FacebookBatchResponse]]: """ Returns the responses for the executed FacebookRequest instances. The amount and order of elements will be the same as of FacebookRequest instances. FacebookRequest with errors will have None as their value in the respective index. :return: a list of FacebookBatchResponse instance and/or None. """ return self._responses @property def errors(self) -> List[Union[None, FacebookBatchRequestError]]: """ Returns the errors for the executed FacebookRequest instances. The amount and order of elements will be the same as of FacebookRequest instances. FacebookRequest without errors will have None as their value in the respective index. :return: a list of FacebookBatchRequestError instances and/or None. """ return self._errors @retry() def execute(self) -> "FacebookBatch": """ Execute all requests. This method will be retried for any failed transient errors. For such we employ an exponential backoff approach. The exponential back off defaults to wait 2^x * 1 seconds between each retry, up to 10 seconds, then 10 seconds afterwards for a maximum of 5 attempts. Those values can be tweaked by playing with MAX_ATTEMPTS, WAIT_EXPONENTIAL_MULTIPLIER, WAIT_EXPONENTIAL_MIN_IN_SECONDS, and WAIT_EXPONENTIAL_MAX_IN_SECONDS static variables. :raises: RetryError: when retries failed for MAX_ATTEMPTS. :return: self. """ # We set the retry settings during runtime, so don't worry about this method never finishing self._initialize_execution_retrial_conditions() self._batch = self._api.new_batch() for request_index, request in enumerate(self._requests): response = self.responses[request_index] error = self.errors[request_index] if (response is None and error is None) or (error and error.is_transient): self._batch.add_request( request, success=partial( self._default_success_callback, request_index=request_index ), failure=partial( self._default_failure_callback, request_index=request_index ), ) self._batch.execute() return self def _initialize_execution_retrial_conditions(self): """ This will re-initialize, during runtime, the arguments of the retry decorator wrapping the execute method with class-level retry settings. Those are MAX_ATTEMPTS, WAIT_EXPONENTIAL_MULTIPLIER, WAIT_EXPONENTIAL_MIN_IN_SECONDS, and WAIT_EXPONENTIAL_MAX_IN_SECONDS. :return: """ retry_settings = self.execute.retry retry_settings.retry = retry_if_result(should_retry_facebook_batch) retry_settings.stop = stop_after_attempt(self.MAX_ATTEMPTS) retry_settings.wait = wait_exponential( multiplier=self.WAIT_EXPONENTIAL_MULTIPLIER, min=self.WAIT_EXPONENTIAL_MIN_IN_SECONDS, max=self.WAIT_EXPONENTIAL_MAX_IN_SECONDS, ) def _default_failure_callback( self, response: FacebookResponse, request_index: int, object_id: int = None ): """ A method that can be used to raise exceptions when the batch object is used for bulk operations. This callback raises a custom FacebookAPIError. This is intended to be used as a default callback to fallback to in case a user does not provide one. :param response: Facebook response object. :param request_index: The index of the request in the whole batch. :param object_id: (Optional) The ID of the object being updated. """ request = self._requests[request_index] batch__error = FacebookBatchRequestError( request=request, request_error=response.error() ) self._responses[request_index] = None self._errors[request_index] = batch__error error_msg = ["#{} -".format(request_index)] if object_id: error_msg.append("Error updating object with id [{}].".format(object_id)) error_msg.append(str(batch__error)) logger.error(" ".join(error_msg)) def _default_success_callback( self, response: FacebookResponse, request_index: int, object_id: int = None ): """ A method that can be used to log when the batch object has completed successfully. This is intended to be used as a default callback to fallback to in case a user does not provide one. :param response: Facebook response object. :param request_index: The index of the request in the whole batch. :param object_id: The ID of the object being updated. """ request = self._requests[request_index] batch_response = FacebookBatchResponse(request=request, response=response) self._responses[request_index] = batch_response self._errors[request_index] = None if object_id is None: object_id = response.json().get("id") logger.debug( "Request #{}: Object with id [{}] updated successfully!".format( request_index, str(object_id) ) )
true
41c2d0575b769b055c5fb64ca6609d06f0ea0294
Python
Zhaoty96/lisatools
/MLDCpipelines2/bin/playXML.py
UTF-8
2,936
2.671875
3
[]
no_license
#!/usr/bin/env python __version__='$Id: $' import lisaxml import numpy import math import sys import re import wave from optparse import OptionParser def triang(windowsize,symmetric = 1): halfkernel = numpy.arange(windowsize) / (1.0 * windowsize) kernel = numpy.zeros(2 * windowsize + 1) kernel[0:windowsize] = halfkernel kernel[windowsize] = 1.0 kernel[-windowsize:] = halfkernel[::-1] if symmetric: return kernel else: return kernel[:-1] def normalize(sound,cadence,timewindow = 0.1): length = len(sound) windowsize = int(timewindow * cadence) # chop to a multiple of windowsize newlength = windowsize * int(length/windowsize) newsound = numpy.zeros(newlength,'d') normlength = int(length/windowsize) norms = numpy.zeros(normlength+1,'d') norms[0] = norms[-1] = 0.0 kernel = triang(windowsize,0) # normalize for i in range(1,normlength): ir = (i-1)*windowsize er = (i+1)*windowsize norm = 4.0 * numpy.sum(numpy.abs(sound[ir:er])) / (2 * windowsize) if norm != 0.0: newsound[ir:er] += kernel * sound[ir:er] / norm # clip newsound[newsound > 1.0] = 1.0 newsound[newsound < -1.0] = -1.0 # renormalize newsound[:] /= numpy.max(numpy.abs(newsound[:])) return newsound # begin parsing arguments parser = OptionParser(usage="usage: %prog [options] TDIFILE.xml WAVEFILE.wav ...", version="$Id: $") (options, args) = parser.parse_args() if len(args) < 1 or len(args) > 2: parser.error("You must specify one input file (XML), or an input file (XML) and an output file (WAV)!") inputfile = args[0] if len(args) == 2: outputfile = args[1] else: outputfile = re.sub('\.xml','.wav',inputfile) inputxml = lisaxml.readXML(inputfile) tdi = inputxml.getTDIObservables()[0] inputxml.close() DataType = tdi.DataType Length = tdi.TimeSeries.Length Cadence = tdi.TimeSeries.Cadence if tdi.DataType == 'FractionalFrequency': A = (2.0*tdi.Xf - tdi.Yf - tdi.Zf) / 3.0 E = (tdi.Zf - tdi.Yf) / math.sqrt(3.0) elif tdi.DataType == 'Strain': A = (2.0*tdi.Xs - tdi.Ys - tdi.Zs) / 3.0 E = (tdi.Zs - tdi.Ys) / math.sqrt(3.0) else: raise # standard frame rates: 44100, 22050, or 11025 # 2**21 samples (1 year @ 15 s) @ 44.1 kHz maps 1 year to 47 s # 1e-4 Hz -> 66 Hz, 1e-2 -> 6615 Hz (probably OK) wavefreq = 44100 print "Mapping 1e-4 -> %s, 1e-1 -> %s Hz" % (wavefreq*1.0e-4*Cadence,wavefreq*1.0e-1*Cadence) windowsize = int(0.1 * wavefreq) # normalize both channels independently A = normalize(A,wavefreq) E = normalize(E,wavefreq) # create integer buffer and fill it intbuffer = numpy.empty(2*len(A),numpy.short) intbuffer[::2] = 32768.0 * A[:] intbuffer[1::2] = 32768.0 * E[:] outputwave = wave.open(outputfile,'w') outputwave.setnchannels(2) outputwave.setsampwidth(2) outputwave.setnframes(Length) outputwave.setframerate(wavefreq) outputwave.writeframes(intbuffer.tostring()) outputwave.close() sys.exit(0)
true
9198ab706ae4d21e52c1e292da4dba2e8e0b210f
Python
windniw/just-for-fun
/leetcode/373.py
UTF-8
1,276
3.703125
4
[ "Apache-2.0" ]
permissive
""" link: https://leetcode.com/problems/find-k-pairs-with-smallest-sums problem: 用 nums1, nums2 中元素组成元素对 (u,v), 其中 u ∈ nums1,v ∈ nums2,求所有元素对中和最小的前 k 对 solution: 小根堆。因为 (nums[i], nums[j]) < (nums[i], nums[j+1]),可以肯定前者未出堆时后者入堆也没有意义,在前者出堆再将后者入堆 保持堆大小为 n,而不需要 mn,时间复杂度(klogn) """ class Solution: def kSmallestPairs(self, nums1: List[int], nums2: List[int], k: int) -> List[List[int]]: class T: def __init__(self, a: int, b: int, i: int): self.a = a self.b = b self.i = i def __lt__(self, t): return self.a + self.b < t.a + t.b if not nums1 or not nums2: return [] n, m = len(nums1), len(nums2) h = [] for i in range(n): heapq.heappush(h, T(nums1[i], nums2[0], 0)) res = [] for i in range(k): if not h: break t = heapq.heappop(h) res.append([t.a, t.b]) if t.i + 1 < m: heapq.heappush(h, T(t.a, nums2[t.i + 1], t.i + 1)) return res
true
6f9cab72c2f2b80fa79604062f14489f4c16ae43
Python
xiangzhi/hw-fall2015
/Math/projects/code/knnTest.py
UTF-8
372
2.859375
3
[]
no_license
#!/usr/bin/env python from sklearn.neighbors import NearestNeighbors import numpy as np X = np.array([[-1, -1],[0.2,0.5],[-2, -1], [-3, -2],[0.5,0.5],[1, 1], [2, 1], [3, 2]]) nbrs = NearestNeighbors(n_neighbors=2, algorithm='ball_tree').fit(X) test = np.array([0,0]) test = test.reshape(1,-1) distances, indices = nbrs.kneighbors(test) print distances, indices
true
0fdedf346c424199f989cedebcfc20b697f1efb6
Python
fagan2888/arviz
/arviz/plots/mcseplot.py
UTF-8
8,683
2.625
3
[ "Apache-2.0" ]
permissive
"""Plot quantile MC standard error.""" import numpy as np import xarray as xr from scipy.stats import rankdata from ..data import convert_to_dataset from ..stats import mcse from ..stats.stats_utils import quantile as _quantile from .plot_utils import ( xarray_var_iter, _scale_fig_size, make_label, default_grid, _create_axes_grid, get_coords, filter_plotters_list, ) from ..utils import _var_names def plot_mcse( idata, var_names=None, coords=None, errorbar=False, figsize=None, textsize=None, extra_methods=False, rug=False, rug_kind="diverging", n_points=20, ax=None, rug_kwargs=None, extra_kwargs=None, text_kwargs=None, **kwargs ): """Plot quantile or local Monte Carlo Standard Error. Parameters ---------- idata : obj Any object that can be converted to an az.InferenceData object Refer to documentation of az.convert_to_dataset for details var_names : list of variable names, optional Variables to be plotted. coords : dict, optional Coordinates of var_names to be plotted. Passed to `Dataset.sel` errorbar : bool, optional Plot quantile value +/- mcse instead of plotting mcse. figsize : tuple, optional Figure size. If None it will be defined automatically. textsize: float, optional Text size scaling factor for labels, titles and lines. If None it will be autoscaled based on figsize. extra_methods : bool, optional Plot mean and sd MCSE as horizontal lines. Only taken into account when ``errorbar=False``. rug : bool Plot rug plot of values diverging or that reached the max tree depth. rug_kind : bool Variable in sample stats to use as rug mask. Must be a boolean variable. n_points : int Number of points for which to plot their quantile/local ess or number of subsets in the evolution plot. ax : axes, optional Matplotlib axes. Defaults to None. rug_kwargs : dict kwargs passed to rug plot. extra_kwargs : dict, optional kwargs passed to ax.plot for extra methods lines. text_kwargs : dict, optional kwargs passed to ax.annotate for extra methods lines labels. It accepts the additional key ``x`` to set ``xy=(text_kwargs["x"], mcse)`` **kwargs Passed as-is to plt.hist() or plt.plot() function depending on the value of `kind`. Returns ------- ax : matplotlib axes References ---------- * Vehtari et al. (2019) see https://arxiv.org/abs/1903.08008 Examples -------- Plot quantile Monte Carlo Standard Error. .. plot:: :context: close-figs >>> import arviz as az >>> idata = az.load_arviz_data("centered_eight") >>> coords = {"school": ["Deerfield", "Lawrenceville"]} >>> az.plot_mcse( ... idata, var_names=["mu", "theta"], coords=coords ... ) """ if coords is None: coords = {} if "chain" in coords or "draw" in coords: raise ValueError("chain and draw are invalid coordinates for this kind of plot") data = get_coords(convert_to_dataset(idata, group="posterior"), coords) var_names = _var_names(var_names, data) probs = np.linspace(1 / n_points, 1 - 1 / n_points, n_points) mcse_dataset = xr.concat( [mcse(data, var_names=var_names, method="quantile", prob=p) for p in probs], dim="mcse_dim" ) plotters = filter_plotters_list( list(xarray_var_iter(mcse_dataset, var_names=var_names, skip_dims={"mcse_dim"})), "plot_mcse", ) length_plotters = len(plotters) rows, cols = default_grid(length_plotters) (figsize, ax_labelsize, titlesize, xt_labelsize, _linewidth, _markersize) = _scale_fig_size( figsize, textsize, rows, cols ) kwargs.setdefault("linestyle", kwargs.pop("ls", "none")) kwargs.setdefault("linewidth", kwargs.pop("lw", _linewidth)) kwargs.setdefault("markersize", kwargs.pop("ms", _markersize)) kwargs.setdefault("marker", "_" if errorbar else "o") kwargs.setdefault("zorder", 3) if extra_kwargs is None: extra_kwargs = {} extra_kwargs.setdefault("linestyle", extra_kwargs.pop("ls", "-")) extra_kwargs.setdefault("linewidth", extra_kwargs.pop("lw", _linewidth / 2)) extra_kwargs.setdefault("color", "k") extra_kwargs.setdefault("alpha", 0.5) if extra_methods: mean_mcse = mcse(data, var_names=var_names, method="mean") sd_mcse = mcse(data, var_names=var_names, method="sd") if text_kwargs is None: text_kwargs = {} text_x = text_kwargs.pop("x", 1) text_kwargs.setdefault("fontsize", text_kwargs.pop("size", xt_labelsize * 0.7)) text_kwargs.setdefault("alpha", extra_kwargs["alpha"]) text_kwargs.setdefault("color", extra_kwargs["color"]) text_kwargs.setdefault("horizontalalignment", text_kwargs.pop("ha", "right")) text_va = text_kwargs.pop("verticalalignment", text_kwargs.pop("va", None)) if ax is None: _, ax = _create_axes_grid( length_plotters, rows, cols, figsize=figsize, squeeze=False, constrained_layout=True ) for (var_name, selection, x), ax_ in zip(plotters, np.ravel(ax)): if errorbar or rug: values = data[var_name].sel(**selection).values.flatten() if errorbar: quantile_values = _quantile(values, probs) ax_.errorbar(probs, quantile_values, yerr=x, **kwargs) else: ax_.plot(probs, x, label="quantile", **kwargs) if extra_methods: mean_mcse_i = mean_mcse[var_name].sel(**selection).values.item() sd_mcse_i = sd_mcse[var_name].sel(**selection).values.item() ax_.axhline(mean_mcse_i, **extra_kwargs) ax_.annotate( "mean", (text_x, mean_mcse_i), va=text_va if text_va is not None else "bottom" if mean_mcse_i > sd_mcse_i else "top", **text_kwargs, ) ax_.axhline(sd_mcse_i, **extra_kwargs) ax_.annotate( "sd", (text_x, sd_mcse_i), va=text_va if text_va is not None else "bottom" if sd_mcse_i >= mean_mcse_i else "top", **text_kwargs, ) if rug: if rug_kwargs is None: rug_kwargs = {} if not hasattr(idata, "sample_stats"): raise ValueError("InferenceData object must contain sample_stats for rug plot") if not hasattr(idata.sample_stats, rug_kind): raise ValueError("InferenceData does not contain {} data".format(rug_kind)) rug_kwargs.setdefault("marker", "|") rug_kwargs.setdefault("linestyle", rug_kwargs.pop("ls", "None")) rug_kwargs.setdefault("color", rug_kwargs.pop("c", kwargs.get("color", "C0"))) rug_kwargs.setdefault("space", 0.1) rug_kwargs.setdefault("markersize", rug_kwargs.pop("ms", 2 * _markersize)) mask = idata.sample_stats[rug_kind].values.flatten() values = rankdata(values)[mask] y_min, y_max = ax_.get_ylim() y_min = y_min if errorbar else 0 rug_space = (y_max - y_min) * rug_kwargs.pop("space") rug_x, rug_y = values / (len(mask) - 1), np.full_like(values, y_min) - rug_space ax_.plot(rug_x, rug_y, **rug_kwargs) ax_.axhline(y_min, color="k", linewidth=_linewidth, alpha=0.7) ax_.set_title(make_label(var_name, selection), fontsize=titlesize, wrap=True) ax_.tick_params(labelsize=xt_labelsize) ax_.set_xlabel("Quantile", fontsize=ax_labelsize, wrap=True) ax_.set_ylabel( r"Value $\pm$ MCSE for quantiles" if errorbar else "MCSE for quantiles", fontsize=ax_labelsize, wrap=True, ) ax_.set_xlim(0, 1) if rug: ax_.yaxis.get_major_locator().set_params(nbins="auto", steps=[1, 2, 5, 10]) y_min, y_max = ax_.get_ylim() yticks = ax_.get_yticks() yticks = yticks[(yticks >= y_min) & (yticks < y_max)] ax_.set_yticks(yticks) ax_.set_yticklabels(["{:.3g}".format(ytick) for ytick in yticks]) elif not errorbar: ax_.set_ylim(bottom=0) return ax
true
2cfc1fa6b15e261a4804441fafe1c40b109b8488
Python
Redwoods/Py
/py2020/Code/ch2/ch2_01_numeric.py
UTF-8
421
3.703125
4
[]
no_license
# ch2_01_numeric.py # print("숫자형: 정수") a = 123 a = -178 a = 0 print("숫자형: 실수") a = 1.2 a = -3.48 a = 4.24e10 a = 4.24e-10 print("숫자형: 8진수와 16진수") a = 0o177 a a = 0x8FF a a = 0xABC a print("숫자형: 연산자와 연산") a = 3 b = 4 a + b a * b a / b a ** b a % b a // b 14 // 3 14 % 3 """ Author: redwoods 파이썬 코드: ch2_01_numeric.py """
true
c72e411a4bdee2ce6c8fa77434c24b8c732c22f9
Python
filyovaaleksandravl/geek-python
/lesson01_DZ/04_max_var.py
UTF-8
239
3.234375
3
[]
no_license
lists1 = [] n = 0 var_1 = int(input("Введите число: ")) var_lenth = int(len(str(var_1))) while n < var_lenth: var_01 = var_1 % 10 lists1.insert(n, var_01) var_1 = var_1 // 10 n += 1 print(max(lists1))
true
153dc578231109388ab7ebbbdea11db6f184f65d
Python
Pedro-H-Castoldi/descobrindo_Python
/pphppe/sessao17/heranca_multipla.py
UTF-8
2,653
4.5
4
[]
no_license
""" POO - Herança Múltipla É a possibilidade de uma classe herdar de múltiplas classes. Desse modo, a classe filha herda todos os atributos e métodos das super classes. OBS: A Herança Múltipla pode ser feita de duas maneiras: - Multiderivação Direta; - Multiderivação Indireta. # Exemplo de Multiderivação Direta class Base1(): pass class Base2(): pass class Base3(): pass class Multipladerivacao(Base1, Base2, Base3): # Note q a herança é dada diretamente na classe Multipladerivacao pass # Exemplo de Multipladerivação Indireta class Base1(): pass class Base2(Base1): pass class Base3(Base2): pass class Multipladerivacao(Base3): # Note q a classe Multipladerivacao herda de modo indiretamente as classe Base2 e Base 1 pass # OBS: N importa se a classe herdar diretamente ou n outra classe, a mesma herdará todos os atributos e métodos das super classes. """ # EX de Herança Múltipla class Animal: def __init__(self, nome): self.__nome = nome @property def nome(self): return self.__nome def cumprimentar(self): return f'Olá. Meu nome é {self.nome}.' class Terrestre(Animal): def __init__(self, nome): super().__init__(nome) def cumprimentar(self): return f'Olá. Meu nome é {self.nome} da Terra.' def andar(self): return f'{self.nome} está andando.' class Aquatico(Animal): def __init__(self, nome): super().__init__(nome) def cumprimentar(self): return f'Olá. Meu nome é {self.nome} do mar.' def nadar(self): return f'{self.nome} está nadando.' class TerestreAquatico(Aquatico, Terrestre): # Retornará: "Olá. Meu nome é pinguim do mar.". Isso pq a classe Aquatico foi chamada antes da Terrestre. def __init__(self, nome): super().__init__(nome) tatu = Terrestre('Tatu') print(tatu.cumprimentar()) print(tatu.andar()) print() tubarao = Aquatico('Tubarão') print(tubarao.cumprimentar()) print(tubarao.nadar()) print() pinguim = TerestreAquatico('Pinguim') print(pinguim.cumprimentar()) # Aparece pinguim do mar e não pinguim da terra. Isso pq a primeira classe está primeiro à esquerda na chamada de herança. print(pinguim.andar()) print(pinguim.nadar()) print() # Saber se um objeto é uma instância de uma classe print(f'Pinguim é instância de Terrestre? : {isinstance(pinguim, Terrestre)}') # True print(f'Tatu é instância de Aquatico? : {isinstance(tatu, Aquatico)}') # False print(f'Tubarão é instância de objeto? : {isinstance(tubarao, object)}') # True (todos as classes são instâncias de object).
true
5cde147d2956a83e241f066bb0e76f03c6042e21
Python
314H/competitive-programming
/marathon-codes/Algoritmos Complexos/aho-corasick.py
UTF-8
2,194
3.546875
4
[]
no_license
class AhoNode: def __init__(self): self.goto = {} self.out = [] self.fail = None def aho_create_forest(patterns): root = AhoNode() for path in patterns: node = root for symbol in path: node = node.goto.setdefault(symbol, AhoNode()) node.out.append(path) return root def aho_create_statemachine(patterns): root = aho_create_forest(patterns) queue = [] for node in root.goto.values(): queue.append(node) node.fail = root while len(queue) > 0: rnode = queue.pop(0) for key, unode in rnode.goto.items(): queue.append(unode) fnode = rnode.fail while fnode != None and not (key in fnode.goto): fnode = fnode.fail unode.fail = fnode.goto[key] if fnode else root unode.out += unode.fail.out return root def aho_find_all(s, root, callback): node = root for i in range(len(s)): while node != None and not (s[i] in node.goto): node = node.fail if node == None: node = root continue node = node.goto[s[i]] for pattern in node.out: callback(i - len(pattern) + 1, pattern) ############################ # Demonstration of work def on_occurence(pos, patterns): print("At pos: " + str(pos) + " found pattern: " + str(patterns) ) # patterns = ['a', 'ab', 'abc', 'bc', 'c', 'cba'] patterns = ['an', 'ant', 'cant', 'deca', 'decant', 'plant'] s = "ant" print("Input:", s) root = aho_create_statemachine(patterns) aho_find_all(s, root, on_occurence) # TESTE: ['an', 'ant', 'cant', 'deca', 'decant', 'plant'] # [ 1 , 2 , 3, , - , 4 , - ] # https://en.wikipedia.org/wiki/Trie # https://www.geeksforgeeks.org/aho-corasick-algorithm-pattern-searching/ # Para aplicar: ##### O aho-corasick deve ser aplicado sobre o proprio dicionário # Input: decant # At pos: 0 found pattern: deca # At pos: 3 found pattern: an # At pos: 0 found pattern: decant # At pos: 2 found pattern: cant # At pos: 3 found pattern: ant # Se você ordenar pelo patters, se cada elemento perte
true
be93690c12ca7443cd6fe6381f2cd2bb14a1864e
Python
chuta2323/Pythonista
/Mr Fujiwara.py
UTF-8
1,320
3.421875
3
[ "MIT" ]
permissive
# -*- coding: utf-8 -*- import appex import unicodedata import clipboard def erase_dakuten(char: chr) -> chr: myDict = { 'が': 'か', 'ぎ': 'き', 'ぐ': 'く', 'げ': 'け', 'ご': 'こ', 'ざ': 'さ', 'じ': 'し', 'ず': 'す', 'ぜ': 'せ', 'ぞ': 'そ', 'だ': 'た', 'ぢ': 'ち', 'づ': 'つ', 'で': 'て', 'ど': 'と', 'ば': 'は', 'び': 'ひ', 'ぶ': 'ふ', 'べ': 'へ', 'ぼ': 'ほ', 'ガ': 'カ', 'ギ': 'キ', 'グ': 'ク', 'ゲ': 'ケ', 'ゴ': 'コ', 'ザ': 'サ', 'ジ': 'シ', 'ズ': 'ス', 'ゼ': 'セ', 'ゾ': 'ソ', 'ダ': 'タ', 'ヂ': 'チ', 'ヅ': 'ツ', 'デ': 'テ', 'ド': 'ト', 'バ': 'ハ', 'ビ': 'ヒ', 'ブ': 'フ', 'ベ': 'ヘ', 'ボ': 'ホ', } if char in myDict.keys(): return myDict[char] else: return char def cnv_mr_fujiwara(str: str) -> str: cnvStr = '' for char in str: cnvStr += erase_dakuten(char) if char not in ['、', '。', '!', '?', '!', '?', 'ぱ', 'ぴ', 'ぷ', 'ぺ', 'ぽ', 'っ', 'パ', 'ピ', 'プ', 'ペ', 'ポ', 'ッ']: cnvStr += '゛' return cnvStr if __name__ == "__main__": input = appex.get_text() chars = list(input) output = cnv_mr_fujiwara(chars) print(output) clipboard.set(output)
true
469f502ba2b4798ff1e5417f628d72ac0f9d9a91
Python
sharky564/Codeforces
/CodeForces Problems 0101-0200/CodeForces Problem 0116A.py
UTF-8
210
3.078125
3
[]
no_license
# Tram a = int(input()) inputs = [input() for i in range(a)] min_cap = 0 num = 0 for i in inputs: c = i.split() num += int(c[1]) - int(c[0]) if num > min_cap: min_cap = num print(min_cap)
true
ef51f3e2131b3511165395e0bc816ade50685965
Python
Richardilemon/ORGANISE-FILES
/ORGANIZE FILES.py
UTF-8
1,472
3.4375
3
[]
no_license
#This python script automatically arranges the files in your folder #The files will be grouped according to their file type #The file type that can be grouped are audios, videos, images, and documents import os from pathlib import Path FILETYPE = { "AUDIO":['.m4a','.m4b','.mp3','.wav','.flac','.cda'], "DOCUMENTS": ['.pdf','.rtf','.txt','.odt','.ppt'], "VIDEOS": ['.mov','.avi','.mp4','.wmv','.flv','.ogv','.mkv','.m4v','.3gp'], "IMAGES": ['.jpg','.jpeg','.png'] } def SELECTFILETYPE(value): for file_format, extensions in FILETYPE.items():#This line is used to assign variables to the key and values in the dictionary for extension in extensions : if extension == value : return file_format return 'MISC' #This is for if the filetype and file extension is not added to the dictionary def ORGANIZEFILE(): for item in os.scandir():#scandir() calls the OS directory iteration system calls to get the names of the files in the given path if item.is_dir():#is_dir is basically used to check if the given path is an existing directory or not continue filePath = Path(item) filetype = filePath.suffix.lower() directory = SELECTFILETYPE(filetype) directoryPath = Path(directory) if directoryPath.is_dir() != True: directoryPath.mkdir() filePath.rename(directoryPath.joinpath(filePath)) ORGANIZEFILE()
true
b0d93b6e3278ad49433b177ce5d3f61b132b7eac
Python
cessorg/Hacktoberfest-Data-Structure-and-Algorithms
/Python/Stack/stack.py
UTF-8
420
3.796875
4
[]
no_license
class Stack(): def __init__(self,items=[]): self.items = [] def push(self,data): i = self.items.append(data) return i def pop(self): i = self.items.pop() return i def is_empty(self): return len(self.items)==0 def peek(self): if not self.is_empty(): return self.items[-1] def get_stack(self): return self.items
true
aa537e1b9d06847d4593564f87b36fa8bc8a27a9
Python
fobbytommy/Python-Assignments
/01_Basic/03_averageList/averageList.py
UTF-8
192
3.796875
4
[]
no_license
# Create a program that prints the average of the values in the list: # a = [1, 2, 5, 10, 255, 3] a = [1, 2, 5, 10, 255, 3] sum = 0 for count in a: sum += count avg = sum / len(a) print avg
true
92bc2756dfab7d11ef9b9be8f8a2d5909a01a4b6
Python
bongtrop/DIPhomwork
/cal.py
UTF-8
1,749
3.125
3
[]
no_license
import numpy as np import math # Gaussian Elimination Partial Pivoting # Input GEPP(Ax = b) def GEPP(A, b): n = len(A) if b.size != n: raise ValueError("Invalid argument: incompatible sizes between A & b.", b.size, n) for k in xrange(n-1): maxindex = abs(A[k:,k]).argmax() + k if A[maxindex, k] == 0: raise ValueError("Matrix is singular.") if maxindex != k: A[[k,maxindex]] = A[[maxindex, k]] b[[k,maxindex]] = b[[maxindex, k]] for row in xrange(k+1, n): multiplier = A[row][k]/A[k][k] A[row][k] = multiplier for col in xrange(k + 1, n): A[row][col] = A[row][col] - multiplier*A[k][col] b[row] = b[row] - multiplier*b[k] #print A #print b x = np.zeros(n) k = n-1 x[k] = b[k]/A[k,k] while k >= 0: x[k] = (b[k] - np.dot(A[k,k+1:],x[k+1:]))/A[k,k] k = k-1 return x # Bilinear Interpolate # Input bilinear(Matrix Image, Position y, Position x) def bilinear(mat, posy, posx): if posx>mat.shape[1]-1 or posy>mat.shape[0]-1: return mat[math.floor(posy)][math.floor(posx)] f00 = mat[math.floor(posy),math.floor(posx)] f01 = mat[math.floor(posy),math.ceil(posx)] f10 = mat[math.ceil(posy),math.floor(posx)] f11 = mat[math.ceil(posy),math.ceil(posx)] a = f01 - f00 b = f10 - f00 c = f11 + f00 - f01 - f10 d = f00 posx = posx-math.floor(posx) posy = posy-math.floor(posy) return a*posx + b*posy + c*posx*posy + d def rms(F, G): h = F.shape[0] w = F.shape[1] s = 0.0 for i in range(0,h): for j in range(0,w): s +=(F[i,j]-G[i,j])**2 return math.sqrt(s/(h*w))
true
94732ba40ad5b1cf6989c29be2410fb084908dd4
Python
CloudKing-GrowLearning/Int-Python-Resources
/Resources/T7 - DataFrame in Pandas/guided_activity/world_bank_df_part2_SOLUTION.py
UTF-8
559
2.640625
3
[]
no_license
import pandas as pd import os import Lib as cm file_dir = os.getcwd() file_name = file_dir + '/world_data_bank.csv' data = pd.read_csv(file_name, sep=';') df = pd.DataFrame() df = df.append(data.iloc[9:11]) employment_data = data.iloc[[9, 10]] del employment_data['Country Name'] del employment_data['Country Code'] del employment_data['Indicator Name'] del employment_data['Indicator Code'] print(cm.compare(employment_data.iloc[0]['2015'], employment_data.iloc[1]['2015'])) print(employment_data.iloc[0]['2015']) print(employment_data.iloc[1]['2015'])
true
ea9699d5f3d6c616dde028372822a56b6227f598
Python
conejo1995/pythonLabs
/room_nav/room_nav.py
UTF-8
1,951
3.90625
4
[]
no_license
from room import Room from character import Character def battle(player, npc): fighting = True print("You are now battling " + npc.name) while fighting: user_input = input("What would you like to do?") if user_input == 'fight': npc.take_damage(player.attack) print(npc.name + " took " + str(player.attack) + ' damage') if npc.health <= 0: print("You have defeated " + npc.name) fighting = False def players_room(player, player_room): input_strings = [] player_room.things_in_room() while True: user_input = input("What would you like to do? ") user_input = user_input.lower() input_strings = user_input.split() if 'down' in input_strings and 'stairs' in input_strings or 'downstairs' in input_strings: return 2 def players_home(player, player_home): input_strings = [] player_home.things_in_room() while True: user_input = input() user_input = user_input.lower() input_strings = user_input.split() if 'talk' in input_strings and player_home.characters[0].name.lower() in input_strings: player_home.characters[0].speak() if 'fight' in input_strings and player_home.characters[0].name.lower() in input_strings: battle(player, player_home.characters[0]) user_input = 1 turns = 0 stranger = Character('Stranger') player = Character() player_room = Room("This is your room, you recognize all the things in it as being your own. There is a staircase in this room leading downstairs.") player_home = Room("This is your living room, there is a door leading outside and a staircase leading up stairs to your room.") player_home.add_character(stranger) while True: if user_input ==1: user_input = players_room(player, player_room) elif user_input ==2: user_input = players_home(player, player_home)
true
9c076a465b966c53e72c7b9e1d5030d02bf91e8a
Python
Ukelili/testxiaoshu
/testCode.py
GB18030
4,223
2.875
3
[]
no_license
#!/usr/bin/env python # -*- coding: gb2312 -*- import os import urllib from PIL import Image from pytesser import * from pytesseract import * # ͼƬ for i in range(1): url = 'http://test.xiaoshushidai.com/verify.php' # ֤ĵַ print "download", i file("./pic/%04d.gif" % i, "wb").write(urllib.urlopen(url).read()) '''һ''' # ͼֵ dir="./pic/" path = "./font/" for f in os.listdir(dir): if f.endswith(".gif"): img = Image.open(dir+f) # ͼƬ img = img.convert("RGBA") pixdata = img.load() # ֵ for y in xrange(img.size[1]): for x in xrange(img.size[0]): if pixdata[x, y][0] < 90: pixdata[x, y] = (0, 0, 0, 255) for y in xrange(img.size[1]): for x in xrange(img.size[0]): if pixdata[x, y][1] < 136: pixdata[x, y] = (0, 0, 0, 255) for y in xrange(img.size[1]): for x in xrange(img.size[0]): if pixdata[x, y][2] > 0: pixdata[x, y] = (255, 255, 255, 255) img.save(path+f, "GIF") # ͼָ j = 0 dir="./font/" for f in os.listdir(dir): if f.endswith(".gif"): img = Image.open(dir+f) for i in range(4): x = 4 + i*10 # ֲҪԼ y = 6 # ֤ͼƬؽ img.crop((x, y, x+13, y+17)).save("fonts/%d.gif" % j) # ʵ޸ print "j=",j j += 1 # ͼĶֵ def binary(f): print f img = Image.open(f) # img = img.convert('1') img = img.convert("RGBA") # ο޸У޸Уᱨ pixdata = img.load() for y in xrange(img.size[1]): for x in xrange(img.size[0]): if pixdata[x, y][0] < 90: pixdata[x, y] = (0, 0, 0, 255) for y in xrange(img.size[1]): for x in xrange(img.size[0]): if pixdata[x, y][1] < 136: pixdata[x, y] = (0, 0, 0, 255) for y in xrange(img.size[1]): for x in xrange(img.size[0]): if pixdata[x, y][2] > 0: pixdata[x, y] = (255, 255, 255, 255) return img nume = 0 # ͼķָ֤밴ַָ def division(img): global nume font=[] for i in range(4): x=4+i*10 # úеֵҪԼ΢ y=5 temp = img.crop((x,y,x+13,y+17)) temp.save("./temp/%d.gif" % nume) nume=nume+1 font.append(temp) return font # ַָԤȶеĽؽжԱҳС def recognize(img): fontMods = [] for i in range(1): fontMods.append((str(i), Image.open("./fonts/%d.gif" % i))) result = "" font = division(img) for i in font: target=i points = [] for mod in fontMods: diffs = 0 for yi in range(10): for xi in range(7): if 0 in target.getpixel((xi, yi)): compare = 0 else: compare = 255 if mod[1].getpixel((xi, yi)) != compare: diffs += 1 print "diffs" + str(diffs) points.append((diffs, mod[0])) points.sort() result += points[0][1] return result if __name__ == '__main__': codedir="./pic/" for imgfile in os.listdir(codedir): if imgfile.endswith(".gif"): dir="./result/" img=binary(codedir+imgfile) num=recognize(img) dir += (num+".gif") print "save to", dir img.save(dir) images = Image.open("./result/0000.gif") text = image_to_string(images) print "text:" + text #¶ΪԼ޸ģοеֵԱȴ #print "mod[1].getpixel((xi, yi)):"+str(mod[1].getpixel((xi, yi))) #print "target.getpixel((xi, yi)):"+str(target.getpixel((xi, yi)))
true
d276deaadca11085de13ec883bca57fbb5b6cbfa
Python
A-ZGJ/Hilbert
/hilbert/tests/test_wavelet.py
UTF-8
1,516
3.375
3
[ "LicenseRef-scancode-public-domain" ]
permissive
""" Testing for Hilbert transform methods that use wavelets at their core Using the math relation a^2 / (a^2 + x^2) (Lorentz/Cauchy) has an analytical Hilbert transform: x^2 / (a^2 + x^2) """ import numpy as np from numpy.testing import assert_array_almost_equal from hilbert.wavelet import hilbert_haar, _haar_matrix import pytest def test_haar(): # Not power-of-2 n = np.linspace(-100, 100, 1000) x = 2/(2**2 + n**2) hilb_x = hilbert_haar(x) hilb_x_analytical = n/(2**2 + n**2) assert_array_almost_equal(hilb_x_analytical, hilb_x, decimal=1) # Power-of-2 n = np.linspace(-100, 100, 1024) x = 2/(2**2 + n**2) hilb_x = hilbert_haar(x) hilb_x_analytical = n/(2**2 + n**2) assert_array_almost_equal(hilb_x_analytical, hilb_x, decimal=1) # 2D version x2 = np.vstack((x, x/2)) hilb_x = hilbert_haar(x2) hilb_x_analytical = np.vstack((n/(2**2 + n**2), 0.5*n/(2**2 + n**2))) assert_array_almost_equal(hilb_x_analytical, hilb_x, decimal=1) def test_haar_errors(): n = np.linspace(-100, 100, 1000) x = 2/(2**2 + n**2) # Wrong axis with pytest.raises(NotImplementedError): _ = hilbert_haar(x, axis=0) # > 2 dimensions with pytest.raises(ValueError): _ = hilbert_haar(np.random.randn(3,3,3)) def test_haar_matrix(): hm, hilb_hm = _haar_matrix(4) assert hm.shape == (4,4) assert hilb_hm.shape == (4,4) # Wrong dimensionsal size with pytest.raises(ValueError): _haar_matrix(3)
true
f52f5ed35bc4d7f7763cb69127ae3339df27c939
Python
dimelik/army
/weapon/gunshot_weapon/pistol.py
UTF-8
287
2.90625
3
[]
no_license
from gunshot_weapon import GunshotWeapon class Pistol(GunshotWeapon): __armorPiercing = None @property def armor_piercing(self): return self.__armorPiercing @armor_piercing.setter def armor_piercing(self, value: int): self.__armorPiercing = value
true
48b163e22353c5503f0d77044502f4cacb37d4b9
Python
HugoHF/dark_matter
/paper_graphs.py
UTF-8
2,037
2.796875
3
[]
no_license
import numpy as np from hff import get_hff from get_freqs import get_freqs from create_data import create_data from chisquared_stuff import get_significance from autocorrelation import autocorrelation import matplotlib.pyplot as plt from scipy.fft import fftfreq test_stds = [0.001, 0.03, 0.1] test_freqs = np.arange(2, 100, 1) time_interval = 0.001 fig_num = 1 detected_1 = [] detected_2 = [] detected_3 = [] detected = [detected_1, detected_2, detected_3] significance_1 = [] significance_2 = [] significance_3 = [] significance = [significance_1, significance_2, significance_3] for idx, test_freq in enumerate(test_freqs): for idx2, std in enumerate(test_stds): sig = create_data(m_phi=test_freq * np.pi, deviation=std, time_interval=time_interval) sig = autocorrelation(sig, i=1) # uncomment this to do autocorrelation plus HFF idx, freq = get_hff(sig) freqs_domain = fftfreq(len(sig[1]), time_interval)[:len(sig[1])//2] idx = np.where(np.isclose(freqs_domain, freq / 2, atol=0.5)) fhat, _, _ = get_freqs(sig, 0.5) prob = get_significance(fhat, idx[0][0]) detected[idx2].append(freq) significance[idx2].append(prob) fig, ax = plt.subplots(2, 3) fig.tight_layout(h_pad=2) # figure spacing label = ['a', 'b', 'c'] for j in range(3): ax[0, j].plot(test_freqs, detected[j]) ax[0, j].set_title(fr"Fig {fig_num} ({label[j]}). Detected frequencies with $\sigma={test_stds[j]}$") ax[0, j].set_xlabel('Frequency of clean signal') ax[0, j].set_ylabel('Frequency detected with HFF') ax[0, j].set_ylim([0, 501]) label = ['d', 'e', 'f'] for j in range(3): ax[1, j].plot(test_freqs, significance[j]) ax[1, j].set_title(fr"Fig {fig_num} ({label[j]}). Confidence of det. frequencies with $\sigma={test_stds[j]}$") ax[1, j].set_xlabel('Frequency of clean signal') ax[1, j].set_ylabel('Confidence of signal detected with HFF') ax[1, j].set_ylim([-0.1, 1.1]) plt.show()
true
b2416baa2737a4367fac2a334b5b29da773a8e25
Python
sakella1/Traffic-Sign-Recognition-Deep-Learning-on-Edge
/car_class.py
UTF-8
3,131
3.046875
3
[]
no_license
import paho.mqtt.client as mqtt import sys import json local_broker = "broker" # broker is host name local_port = 1883 # standard mqtt port local_topic = "signs" # topic is image with open("keys.json") as json_file: keys = json.load(json_file) # dictionary of signs signs = { "30": { "label": "30_kph", "speed":30 }, "50": { "label": "50_kph", "speed":50 }, "60": { "label": "60_kph", "speed": 60 }, "70": { "label": "70_kph", "speed": 70 }, "80": { "label": "80_kph", "speed": 80 }, "100": { "label": "100_kph", "speed": 100 }, "120": { "label": "120_kph", "speed": 120 }, "Deer": { "label": "Deer", "speed": 0 }, "Stop": { "label": "Stop", "speed": 0 }, "Yield": { "label": "Yield", "speed": 0 } } car_status = { 1: "staying the same speed", 2: "speeding up", 3: "slowing down", 4: "stopping" } class Car: """ class the simulates are self driving car """ def __init__(self): """ initiation class for self driving car sets speed to 0 mph and status as staying the same speed """ self.speed = 0 self.status = 1 return None def new_status(self, input): """ setter that allows for the self driving car to change state based on inputs :param input: integer from mqtt :return: None """ print("The sign seen is ", signs[input]["label"]) new_speed = signs[input]["speed"] if new_speed < self.speed: print("slowing down") self.status = 3 elif new_speed == self.speed: print("staying the same speed") self.status = 1 elif new_speed == 0: print("stopping the car") self.status = 4 else: print("speeding up") self.status = 2 self.speed = new_speed return None # end new status def on_connect_local(client, userdata, flags, rc): print("connected to local broker with rc: " + str(rc)) client.subscribe("signs") # subscribe to local topic return None # end function def on_message(client,userdata, msg): try: print("message received!") msg = msg.payload.decode("utf-8") # create message #print(msg) # confirm message receipt, turn off for production #print("The corresponding key is ") new_status = keys[msg] #print(new_status) car.new_status(new_status) # change car status except: print("Unexpected error:", sys.exc_info()[0]) car = Car() local_mqttclient = mqtt.Client() # instantiate local client local_mqttclient.on_connect = on_connect_local # connect using function call local_mqttclient.connect("broker", local_port, 240) # connect with inputs local_mqttclient.on_message = on_message # execute when message is received # go into a loop local_mqttclient.loop_forever()
true
8efe234477e2cd1452b6d065f2446c3fb6280730
Python
zhaolixiang/my-all
/网络爬虫实战/35、 Ajax数据爬取.py
UTF-8
1,425
2.609375
3
[]
no_license
# 爬取女朋友的微博 import json import requests from urllib.parse import urlencode from pyquery import PyQuery base_url = 'https://m.weibo.cn/api/container/getIndex?' uid='3098454065' headers = { 'Host': 'm.weibo.cn', 'Referer': 'https://m.weibo.cn/u/'+uid, 'User-Agent': 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_12_3) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/58.0.3029.110 Safari/537.36', 'X-Requested-With': 'XMLHttpRequest', } def get_page(page): params = { 'type': 'uid', 'value': uid, 'containerid': '107603'+uid, 'page': page } url=base_url+urlencode(params) print(url) result = requests.get(url, headers=headers) if result.status_code==200: return result.json() def parse_json(json): if json: cards=json.get('data').get('cards') print(cards) for card in cards: mblog=card.get('mblog') weibo={} weibo['text']=PyQuery(mblog.get('text')).text() weibo['created_at']=mblog.get('created_at') yield weibo def write_2_text(weibo): with open('face.txt','a') as file: file.write(json.dumps(weibo,indent=2,ensure_ascii=False)) file.write('\n') if __name__ == '__main__': for index in range(12): result = get_page(index) print(result) for x in parse_json(result): write_2_text(x)
true
afe050ee8f9fe342d3f413e9453aec9a720f08e5
Python
wbing520/COVID-away
/COVID-away_dataset_visualization/visualize_data_patterns_in_COVID-away.py
UTF-8
2,347
2.65625
3
[]
no_license
import matplotlib as mpl import matplotlib.pyplot as plt import numpy as np import pandas as pd plt.rcParams.update({'xtick.bottom' : False, 'axes.titlepad':5}) from scipy import signal import matplotlib.pyplot as plt fig, axes = plt.subplots(4,1, figsize=(4, 10), sharex=True, dpi=120) b, a = signal.butter(3, 0.05) pattern = input("Enter the pattern number (0-2071) of hand-to-face motion data you want to visualize from the COVID-away dataset: ") Acc_file ='./COVID-away_dataset/Pattern_'+ pattern + '/Accelerometer.csv' Gyro_file = './COVID-away_dataset/Pattern_'+ pattern + '/Gyroscope.csv' Pressure_file = './COVID-away_dataset/Pattern_'+ pattern + '/Pressure.csv' RVect_file ='./COVID-away_dataset/Pattern_'+ pattern + '/RotationVector.csv' df_orig = pd.read_csv(Acc_file, index_col= 1) df_orig2 = pd.read_csv(Gyro_file, index_col= 1) df_orig3 = pd.read_csv(Pressure_file, index_col= 1) df_orig4 = pd.read_csv(RVect_file, index_col= 1) x = signal.filtfilt(b, a, df_orig['X']) y = signal.filtfilt(b, a, df_orig['Y']) z = signal.filtfilt(b, a, df_orig['Z']) x = pd.DataFrame(x) y = pd.DataFrame(y) z = pd.DataFrame(z) x.plot(ax=axes[0], color = 'C0', legend = None) y.plot(ax=axes[0], color = 'C1', legend = None) z.plot(ax=axes[0], color = 'C2', legend = None, title='Accelerometer.csv') x = signal.filtfilt(b, a, df_orig2['X']) y = signal.filtfilt(b, a, df_orig2['Y']) z = signal.filtfilt(b, a, df_orig2['Z']) x = pd.DataFrame(x) y = pd.DataFrame(y) z = pd.DataFrame(z) x.plot(ax=axes[1], color = 'C7', legend = None) y.plot(ax=axes[1], color = 'C8', legend = None) z.plot(ax=axes[1], title='Gyroscope.csv', color = 'C9', legend = None) x = pd.DataFrame(x) y = pd.DataFrame(y) z = pd.DataFrame(z) x = signal.filtfilt(b, a, df_orig3['Millibars']) x = pd.DataFrame(x) x.plot(ax=axes[2], title='Pressure.csv', color = 'C6', legend = None) x = signal.filtfilt(b, a, df_orig4['X']) y = signal.filtfilt(b, a, df_orig4['Y']) z = signal.filtfilt(b, a, df_orig4['Z']) c = signal.filtfilt(b, a, df_orig4['cos']) x = pd.DataFrame(x) y = pd.DataFrame(y) z = pd.DataFrame(z) c = pd.DataFrame(c) x.plot(ax=axes[3], color = 'C7', legend = None) y.plot(ax=axes[3], color = 'C8', legend = None) z.plot(ax=axes[3], color = 'C9', legend = None) c.plot(ax=axes[3], title='RotationVector.csv', color = 'C3', legend = None) plt.show()
true
9140e54a047d8b1f6f1c2de01377f0d972b21ceb
Python
pytutorial/py2103
/Day23/vd3.py
UTF-8
959
3.09375
3
[]
no_license
from flask import Flask from flask.globals import request app = Flask(__name__) productList = [ {'id': 1, 'name': 'IPhone X', 'price': 10500000}, {'id': 2, 'name': 'IPhone 11', 'price': 11500000}, {'id': 3, 'name': 'IPhone 12', 'price': 12500000}, ] @app.route('/') def index(): html = '<ul>' for p in productList: pid = p['id'] html += f'<li><a href="/view-product-detail?id={pid}"> {p["name"]} </a></li>' html += '</ul>' return html #http://127.0.0.1:5000/view-product-detail?id=1 @app.route('/view-product-detail') def viewProduct(): productId = int(request.args.get('id', -1)) if productId < 1 or productId > len(productList): return 'Not found' p = productList[productId-1] return f''' <div> <p>Sản phẩm: <b> {p['name']} </b> </p> <p>Đơn giá : <b> {p['price']} đ </b> </p> </div> ''' app.run(debug=True) # hot reload
true
ff76481145c0c6d00c6c8a1f35f5a7d9b2d71a27
Python
rainmayecho/applemunchers
/47.py
UTF-8
945
3.171875
3
[]
no_license
def get_primes(n): numbers = set(range(n, 1, -1)) primes = [] while numbers: p = numbers.pop() primes.append(p) numbers.difference_update(set(range(p*2, n+1, p))) return primes def pfactorize(a,primes,b,pfactors = []): if a==1: return pfactors if a==2: pfactors.append(2) return pfactors if a==3: pfactors.append(3) return pfactors for x in primes: if a%x==0: pfactors.append(x) prod = 1 for y in pfactors: prod *= y if not prod == b: pfactorize(b/prod,primes,b,pfactors) return pfactors primes = get_primes(1000000) count = 0 fourfact = [] for x in range(133000,1000000): numfactors = len(list(set(pfactorize(x,primes,x,[])))) if x in primes: continue if numfactors == 4: count += 1 else: count = 0 if count == 4: print x-3 break
true
dd7347215cef3d966585e2ad8b278eae86b09375
Python
jorgegarba/CodiGo9
/BackEnd/Semana4/Dia3/12-codigos-extra-impresion-escape-codes.py
UTF-8
270
4.3125
4
[]
no_license
# \r sirve para eliminar lo anterior escrito print("Hola \r mundo") # \n sirve para generar un salto de linea print("Hola \n mundo") # \t sirve para una tabulacion print("\tHola mundo") # \\ si queremos usar el caracter \ o algun caracter especial print("Hola \\ mundo")
true
6513ab2907da9fc02158a9e2de33fe2b4b1307e4
Python
beluga13/ChoreBoard
/participants_list_module.py
UTF-8
6,889
3.71875
4
[]
no_license
class Participants(): ## Constants used for validation MINIMUM_NAME_LENGTH = 3 # Used to validate team member's name MAXIMUM_NAME_LENGTH = 10 MINIMUM_HOUSEHOLD_SIZE = 2 MAXIMUM_HOUSEHOLD_SIZE = 5 ## Constructor for the set containing participant's names. # @param the_participants a set containing the names # def __init__(self, the_participants) : self.participants = the_participants ## Return the participants' list. # @property def participants(self): return self._participants ## Sets the participants' list attribute. # @param name the participants set # @exception ValueError raised if: # - any of the names in the list are invalid # - the set is too long or too short @participants.setter def participants(self, the_participants) : try : self.valid_participants(the_participants) self._participants = the_participants except (ValueError,TypeError) as err : raise def __str__(self): participant_length = len(self.participants) i = 1 participant_string = "" for participant in self.participants : participant_string = participant_string + str(participant) if i < participant_length : participant_string = participant_string + ", " i = i + 1 return participant_string ## Check the set of participants. # Verifies that the set of partcipants is a valid length. # Verifies that each participants is valid. # # @param the_participants the set of participants to be validated # @return True if the set conforms to the validation conditions # and raise exception if it does not. # @staticmethod def valid_participants(the_participants) : # check that the the_participants is a set if not isinstance(the_participants, set) : raise TypeError("List of particpants is not a set.") try : Participants.is_valid_length(the_participants) Participants.is_valid_name_set(the_participants) except (ValueError,TypeError) as err : raise return True ## Check the name contains only alphanumeric characters and check that it is the right length. # # @param name the string to be validated # @return True if the string conforms to the validation conditions and # generate an exception if not. # @staticmethod def is_valid_name_set(name) : for i in name: if len(i) < Participants.MINIMUM_NAME_LENGTH \ or len(i) > Participants.MAXIMUM_NAME_LENGTH : raise ValueError(("Participant Name: {}, is not valid. It should be " + "more than {} characters long " + "and less than {} characters long.") .format(i, Participants.MINIMUM_NAME_LENGTH, Participants.MAXIMUM_NAME_LENGTH)) if not i.isalnum(): raise ValueError(("{}, is not valid. Names in the ParticipantList should be " + "alphanumeric.").format(i)) return True @staticmethod def is_valid_name_indiv(name) : if len(name) < Participants.MINIMUM_NAME_LENGTH \ or len(name) > Participants.MAXIMUM_NAME_LENGTH : raise ValueError(("Participant Name: {}, is not valid. It should be " + "more than {} characters long " + "and less than {} characters long.") .format(name, Participants.MINIMUM_NAME_LENGTH, Participants.MAXIMUM_NAME_LENGTH)) for i in name: if not i.isalnum(): raise ValueError(("{}, is not valid. Names in the ParticipantList should be " + "alphanumeric.").format(name)) return True ## Check the number of participants in the set is the right length. # # @return True if valid and generate an exception if not. # @staticmethod def is_valid_length(the_participants) : if len(the_participants) < Participants.MINIMUM_HOUSEHOLD_SIZE or \ len(the_participants) > Participants.MAXIMUM_HOUSEHOLD_SIZE : raise ValueError (("\n\t\tThe number of participants in the household must be" + " be more than {} and less than {}.") .format(Participants.MINIMUM_HOUSEHOLD_SIZE - 1, Participants.MAXIMUM_HOUSEHOLD_SIZE + 1)) # If we reached this point then the checks passed return True @staticmethod def is_valid_participant(the_participants) : for participant in the_participants : if not isinstance(participant, Participants) : raise TypeError ("The ParticipantList does not contain objects which are Participants.") # If we reached this point, the participants are valid. return True ## main method # # Contains some simple tests # def main(): print("Test 1: Create a valid participants list") try: names = set(["personA","personB","personC"]) p1 = Participants(names) print("\n\tVALID: ", p1) except Exception as err: print("\tERROR: ", err) print("\nTest 2: Create a set of participants with the wrong data type: list") try: names = ["personA","personB","personC"] p2 = Participants(names) print("\tVALID: ", p2) except Exception as err: print("\tERROR: ", err) print("\nTest 3: Create a set of participants which is too short") try: names = set(["personA"]) p2 = Participants(names) print("\tVALID: ", p2) except Exception as err: print("\tERROR: ", err) print("\nTest 4: Create a set of participants which is too long") try: names = set(["personA","personB","personC", "personD", "personE", "personF"]) p = Participants(names) print("\tVALID: ", p) except Exception as err: print("\tERROR: ", err) print("\nTest 5: Create a set of participants with invalid name, punctuation character") try: names = set(["***","personB","personC"]) p = Participants(names) print("\tVALID: ", p) except Exception as err: print("\tERROR: ", err) print("\nTest 6: Create a set of participants with name too long") try: names = set(["tooooooolongggggg","personB","personC"]) p = Participants(names) print("\tVALID: ", p) except Exception as err: print("\tERROR: ", err) if __name__ == "__main__": main()
true
6c406bd72947bbdcb6001c46f0f5a106d1ba3a48
Python
KaloObr/Python-Fundamentals
/p5_list_advanced/lab_1_trains.py
UTF-8
609
3.640625
4
[]
no_license
wagons_n = int(input()) train = [0] * wagons_n while True: command = input() if command == 'End': break tokens = command.split(" ") instructions = tokens[0] if instructions == 'add': count = int(tokens[1]) train[-1] += count elif instructions == 'insert': index = int(tokens[1]) count = int(tokens[2]) train[index] += count elif instructions == 'leave': index = int(tokens[1]) count = int(tokens[2]) # Code sanitalization: if count <= train[index]: train[index] -= count print(train)
true
131b9c4eb96f84ab818923afdfff562d89edb283
Python
Tornike-Skhulukhia/IBSU_Masters_Files
/code_files/__PYTHON__/lecture_1/basic data structures/stack.py
UTF-8
844
4.375
4
[]
no_license
''' We do not need it in Python, but... ''' class Stack: def __init__(self): self._data = [] self._top = 0 def __len__(self): return self._top def __repr__(self): return f"<Stack: [{', '.join([str(i) for i in self._data[:self._top]])}]>" def push(self, item): self._top += 1 self._data += [item] def pop(self): if self._top == 0: raise Exception('Stack has 0 elements') self._top -= 1 last_item = self._data[-1] self._data = self._data[:-1] return last_item # # test stack = Stack() print("1)", stack) assert len(stack) == 0 stack.push(89) stack.push(False) stack.push("I am in stack :)") stack.push(120) assert len(stack) == 4 print("2)", stack) stack.pop() stack.pop() assert len(stack) == 2 print("3)", stack)
true
9e5bd945cfc8adf1358a22f53e16e1a7c4f99934
Python
akieight5/python-experiments
/3.7projects/images.py
UTF-8
1,682
3.34375
3
[]
no_license
''' Created on 25 Nov 2020 @author: aki ''' """ import tkinter as tk root = tk.Tk() root.title("image demonstration") #iconbitmap only works with black and white images # root.iconbitmap("/home/aki/Downloads/icons/antenna.xbm") img = tk.PhotoImage(file='/home/aki/Downloads/icons/antenna.png') root.tk.call('wm', 'iconphoto', root._w, img) """ """ This is an old question, and there is lots of stuff written about it on the web, but all of it is either incorrect or incomplete, so having gotten it to work I thought it would be good to record my actual working code here. First, you'll need to create an icon and save it in two formats: Windows "ico" and Unix "xbm". 64 x 64 is a good size. XBM is a 1-bit format--pixels just on or off, so no colors, no grays. Linux implementations of tkinter only accept XBM even though every Linux desktop supports real icons, so you're just out of luck there. Also, the XBM spec is ambiguous about whether "on" bits represent black or white, so you may have to invert the XBM for some desktops. Gimp is good for creating these. Then to put the icon in your titlebar, use this code (Python 3): """ #""" import os, sys from tkinter import * from tkinter.ttk import * root = Tk() root.title("My Application") if "nt" == os.name: root.wm_iconbitmap(bitmap = "myicon.ico") else: root.wm_iconbitmap(bitmap = "/home/aki/Downloads/icons/antenna.xbm") root.mainloop() #""" """ #something else to try import sys, os from tkinter import * root = Tk() root.title("My Application") program_directory="/home/aki/Downloads/icons" root.iconphoto(True, PhotoImage(file=os.path.join(program_directory, "antenna.png"))) """ root.mainloop()
true
93a2551b2a5a0bd79bbac0a5e011c65ce04dd686
Python
wilsonwong2014/MyDL
/Tensorflow/demo/opencv/demo_image_segmentation.py
UTF-8
1,342
2.890625
3
[]
no_license
#!/usr/bin/env python3 # -*- coding: utf-8 -*- ''' 图像分割 ------------------------------------------------ ''' #K-means方法进行分割 # 以灰色导入图像 img = cv2.imread('messi5.jpg',0)#image read be 'gray' plt.subplot(221),plt.imshow(img,'gray'),plt.title('original') plt.xticks([]),plt.yticks([]) # 改变图像的维度 img1 = img.reshape((img.shape[0]*img.shape[1],1)) img1 = np.float32(img1) # 设定一个criteria, criteria = (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER,10,1.0) # 设定一个初始类中心flags flags = cv2.KMEANS_RANDOM_CENTERS # 应用K-means compactness,labels,centers = cv2.kmeans(img1,2,None,criteria,5,flags) compactness_1,labels_1,centers_1 = cv2.kmeans(img1,2,None,criteria,10,flags) compactness_2,labels_2,centers_2 = cv2.kmeans(img1,2,None,criteria,15,flags) img2 = labels.reshape((img.shape[0],img.shape[1])) img3 = labels_1.reshape((img.shape[0],img.shape[1])) img4 = labels_2.reshape((img.shape[0],img.shape[1])) plt.subplot(222),plt.imshow(img2,'gray'),plt.title('kmeans_attempts_5') plt.xticks([]),plt.yticks([]) plt.subplot(223),plt.imshow(img3,'gray'),plt.title('kmeans_attempts_10') plt.xticks([]),plt.yticks([]) plt.subplot(224),plt.imshow(img4,'gray'),plt.title('kmeans_attempts_15') plt.xticks([]),plt.yticks([]) plt.savefig("kmeans_attempts.png") plt.show()
true
ce657f14292763873c441e37b3589f8acd9d38c4
Python
snip-animesh/Dynamic-Programming
/freecodecamp.org/fibTabulation.py
UTF-8
305
3.40625
3
[]
no_license
def fibTab(n): table=[0]*(n+1) table[1]=1 i,j,k=0,1,2 while (k<=n+1): if k==n+1: table[j]+=table[i] break table[j]+=table[i] table[k]+=table[i] i+=1;j+=1;k+=1 return table[n] print(fibTab(50)) # Time and space Complexity O(n)
true
8bb3365b7ef14775682b5bc92d6b78fd7a7fbe04
Python
AYWG/RedditBots
/askreddit_tracker/askreddit_tracker.py
UTF-8
1,184
2.640625
3
[]
no_license
# reddit bot that messages me every time there is a post on r/askreddit/hot that has 10000+ comments import praw import OAuth2Util import time user_agent = "AskReddit tracker 1.0 by /u/TheMaou" r = praw.Reddit(user_agent) o = OAuth2Util.OAuth2Util(r) # connect via OAuth2 o.refresh(force=True) # automatically refresh token when necessary already_received = [] subreddit = r.get_subreddit('askreddit') popularity_threshold = 10000 while True: try: for submission in subreddit.get_hot(limit=25): # look at most recent 25 posts in r/askreddit/hot if (submission.id not in already_received and submission.num_comments >= popularity_threshold): msg = '[AskReddit Thread](%s)' % submission.short_link r.send_message('TheMaou', 'Popular AskReddit Thread!', msg) already_received.append(submission.id) time.sleep(1800) # execute every 30 minutes except KeyboardInterrupt: print ("Shutting down.") break except praw.errors.HTTPException as e: exc = e._raw print ("Something bad happened! HTTPError", exc.status_code) except Exception as e: print("Something bad happened!", e) traceback.print_exc()
true
1de328d0c8a0529c1f1388fcbe1256433030f215
Python
mmore500/dishtiny
/postprocessing/tabulate_and_stitch_stint_thread_profiles.py
UTF-8
5,221
2.609375
3
[ "MIT" ]
permissive
#!/usr/bin/env python3 """Combines all available collated data on s3 for a single stint. Collated data is tabulated (reformatted and processed) and stitched into a single dataframe. Uploads output to a programatically-generated s3 url. Usage: ./tabulate_and_stitch_stint_thread_profiles.py [bucket] [endeavor] [stint] """ import boto3 from functools import reduce from iterdub import iterdub as ib from iterpop import iterpop as ip from keyname import keyname as kn import os import pandas as pd import sys import tempfile from dishpylib.pyassemblers import \ assemble_config_records, \ assemble_evolve_dpp_metrics ################################################################################ print( ) print( 'running tabulate_and_stitch_stint_thread_profiles.py' ) print( '---------------------------------------------------------------------' ) ################################################################################ try: bucket = sys.argv[1] endeavor, stint = map(int, sys.argv[2:]) except: print(__doc__) sys.exit(1) print(f'bucket {bucket}') print(f'endeavor {endeavor}') print(f'stint {stint}') ################################################################################ print( ) print( 'running data assemblers' ) print( '---------------------------------------------------------------------' ) ################################################################################ assemblers = [ assemble_evolve_dpp_metrics, ] dataframes = [] sources = [] for assembler in assemblers: res = assembler( bucket=bucket, endeavor=endeavor, stint=stint, ) if res is not None: res_df, res_sources = res dataframes.append( res_df ) sources += res_sources ################################################################################ print( ) print( 'stitching data' ) print( '---------------------------------------------------------------------' ) ################################################################################ print(f'{len(dataframes)} dataframes to merge') print(f'dataframes have {[len(df.index) for df in dataframes]} rows') df_stitched = reduce( lambda left, right: pd.merge( left, right, on=list(left.columns & right.columns), how='outer', ), dataframes, ) print(f'merged dataframe has {len(df_stitched.index)} rows') # there should only be one entry for each series/stint/thread/proc assert len(res_df.groupby([ 'Series', 'Stint', 'thread', 'proc', ])) == len(res_df) ################################################################################ print( ) print( 'calculating upload path' ) print( '---------------------------------------------------------------------' ) ################################################################################ # common_keys = set.intersection(*[ # set( kn.unpack(source).keys() ) # for source in sources # ]) out_filename = kn.pack({ # **{ # key : ib.dub( # kn.unpack(source)[key] # for source in sources # ) # for key in common_keys # }, # **{ 'a' : 'thread_profiles', 'stint' : stint, 'ext' : '.csv.xz', # }, }) out_prefix = f'endeavor={endeavor}/thread-profiles/stage=6+what=tabulated_and_stitched/stint={stint}/' out_path = out_prefix + out_filename print(f'upload path will be s3://{bucket}/{out_path}') ################################################################################ print( ) print( 'dumping and uploading' ) print( '---------------------------------------------------------------------' ) ################################################################################ # have to work with filename or pandas compression doesn't work with tempfile.TemporaryDirectory() as tmp: temp_path = os.path.join(tmp, 'data.xz') print(f'temp path is {temp_path}') df_stitched.to_csv( temp_path, index=False, compression='xz', ) with open(temp_path, 'rb') as f: client = boto3.client('s3', region_name='us-west-2',) client.upload_fileobj( f, bucket, out_path, ) ################################################################################ print( ) print( 'tabulation and stitching complete' ) print( '---------------------------------------------------------------------' ) ################################################################################
true
22be274d4b540791097785dd857ddb68f65ce998
Python
cmput401-fall2018/web-app-ci-cd-with-travis-ci-forgeno
/Selenium_test.py
UTF-8
762
2.8125
3
[ "MIT" ]
permissive
from selenium import webdriver from selenium.webdriver.common.keys import Keys def test_home(): selenium = webdriver.Chrome() selenium.get('http://162.246.157.221:8000') name = selenium.find_element_by_id('name') about = selenium.find_element_by_id('about') education = selenium.find_element_by_id('education') skills = selenium.find_element_by_id('skills') work = selenium.find_element_by_id('work') contact = selenium.find_element_by_id('contact') assert name.text == "Ivan Ma" assert about.text == "4th year Computer Science Student" assert education.text == "University of Alberta 2014-2019" assert skills.text == "Java, Python, C" assert work.text == "Unemployed" assert contact.text == "ima@ualberta.ca"
true
d53447be0a558a362459b283d53cc1e7938fe6e9
Python
Modulus/AmmoFinder
/ammo_finder/core/category.py
UTF-8
700
2.890625
3
[]
no_license
# Python standard library imports from enum import Enum class Category(Enum): RIFLE = 1 HANDGUN = 2 RIMFIRE = 3 SHOTGUN = 4 AIR = 5 @staticmethod def extract(url): if "rifle" in url: return Category.RIFLE elif "hagle" in url: return Category.SHOTGUN elif "haandvaapen" in url or "handvapen" in url or "pistol" in url: return Category.HANDGUN elif "rimfire" in url or "22lr" in url or "salong" in url: return Category.RIMFIRE elif "air" in url or "luft" in url or "luftvapen" in url: return Category.AIR else: raise ValueError("Category incorrect!")
true
6a935e64bf9e98ec2a449856cb78418b11ca551b
Python
bluestone029/dxf-ruler-generator
/dxf_ruler_generator.py
UTF-8
2,397
3.25
3
[ "MIT" ]
permissive
"""DXF Ruler Generator. This module generates DXF files for laser cutting and engraving custom sized rulers, which can be easily manufactured at the nearest FabLab. Example ------- Generate a 7cm ruler: $ python -m dxf_ruler_generator 7 This will create a 'ruler_7cm.dxf' on the current working directory. """ import os.path from argparse import ArgumentParser import ezdxf parser = ArgumentParser(description="Generate rulers for digital fabrication.") parser.add_argument("length", metavar="L", type=int, help="an integer for the ruler's length, in centimeters.") parser.add_argument("width", metavar="W", type=int, nargs="?", default=30, help="an integer for the ruler's width, in milimeters.") parser.add_argument("tick_width", metavar="TW", type=float, nargs="?", default=.25, help="a float for the tick's width, in milimeters.") args = parser.parse_args() def run(): """Draw the ruler.""" dwg = ezdxf.new('R2010') dwg.layers.new(name='CUT', dxfattribs={'color': 7}) dwg.layers.new(name='SCAN', dxfattribs={'color': 5}) msp = dwg.modelspace() ruler_outline = [(0, 0), (10*(args.length+1), 0), (10*(args.length+1), args.width), (0, args.width), (0, 0)] msp.add_lwpolyline(ruler_outline, dxfattribs={'layer': 'CUT'}) for mm in range(10*args.length+1): x = mm + 5 - args.tick_width / 2 if mm == 0 or mm % 10 == 0: tick_height = args.width / 3 msp.add_text( str(mm//10), dxfattribs={'rotation': 90, 'height': 2, 'layer': 'SCAN'} ).set_pos((x-1, args.width-tick_height)) elif mm % 5 == 0: tick_height = args.width / 6 else: tick_height = args.width / 12 ruler_tick = [(x, args.width), (x, args.width-tick_height), (x+.25, args.width-tick_height), (x+.25, args.width), (x, args.width)] msp.add_lwpolyline(ruler_tick, dxfattribs={'layer': 'SCAN'}) filename = f'ruler_{args.length}cm.dxf' dwg.saveas(filename) print(os.path.abspath(filename), end='') if __name__ == "__main__": run()
true
0a591936785a9d2ebbda5fa77d60361d42917258
Python
fsevero/python-oo
/003 - Inheritance/inheritance.py
UTF-8
717
3.625
4
[]
no_license
class MyClass (object): # class MyClass and, by default, inherits from object pass class Person: def __init__(self, name, age): self.name = name self.age = age def __repr__(self): return 'Person: {} - Age: {}'.format(self.name, self.age) class PF(Person): def __init__(self, cpf, name, age): Person.__init__(self, name, age) self.cpf = cpf class PJ(Person): def __init__(self, cnpj, name, age): Person.__init__(self, name, age) self.cnpj = cnpj pf = PF('00000000000', 'Severo', 29) print(pf.name) print(pf.age) print(pf.cpf) print(pf) pj = PJ('0000000000000', 'Severo Ltda', 1) print(pj.name) print(pj.age) print(pj.cnpj) print(pj)
true
d40b8d853d04c530c388dbda40d984b74ffb61ee
Python
Stomach-ache/Codeforces
/round_236/A.py
UTF-8
192
2.96875
3
[]
no_license
k, a, b, v = map(int, raw_input().split()) cnt = 0 while a > 0: section = 1 if b >= k-1: section = k b -= (k - 1) else: section = b + 1 b = 0 a -= (v * section) cnt += 1 print cnt
true
8010703a48c8a63d85f23daba8772419add576e6
Python
davparra/Kinases
/old/kinase-hc.py
UTF-8
702
2.890625
3
[]
no_license
#%% [markdown] # ## Libraries import pandas as pd import scipy.spatial.distance as ssd from scipy.cluster.hierarchy import linkage, dendrogram from matplotlib import pyplot as plt import plotly.plotly as py import plotly.offline #%% [markdown] # ## preparing data to be processed data_path = 'data/human_protein_distance_matrix.csv' df = pd.read_csv(data_path, delimiter=',', index_col=0) print(df.info()) print(df.shape) print(df.head(8)) # converting redundant distance matrix to condensed matrix condensed_matrix = ssd.squareform(df) #%% [markdown] # ## Hierarchical clustering of the condensed matrix H = linkage(condensed_matrix, 'ward') fig = plt.figure(figsize=(25, 10)) dn = dendrogram(H)
true
2fbe905e555b43c6cacbc64ed47e135e5c3c2caf
Python
cash2one/xai
/xai/brain/wordbase/adjectives/_accountable.py
UTF-8
493
2.609375
3
[ "MIT" ]
permissive
#calss header class _ACCOUNTABLE(): def __init__(self,): self.name = "ACCOUNTABLE" self.definitions = [u'Someone who is accountable is completely responsible for what they do and must be able to give a satisfactory reason for it: '] self.parents = [] self.childen = [] self.properties = [] self.jsondata = {} self.specie = 'adjectives' def run(self, obj1, obj2): self.jsondata[obj2] = {} self.jsondata[obj2]['properties'] = self.name.lower() return self.jsondata
true
2ce85cbca86621f2ca308d7b9f33285b7679b953
Python
jaciyu/MouseTrackGAN
/dataprocsess.py
UTF-8
1,990
2.53125
3
[]
no_license
import numpy as np with open('E:\Workspace\GANproject\data_origin.txt', 'r') as f: data = f.readlines() fdata0 = np.zeros([3000, 300, 3], dtype=float) fdata1 = np.zeros([3000, 4], dtype=float) fdata_mark = np.zeros([3000, ], dtype=float) # 提取特征 for i in range(len(data)): data[i] = data[i].split() data0 = data[i][1].split(';')[0:-1] for j in range(len(data0)): data0[j] = data0[j].split(',') data0 = np.array(data0).astype(int) data0 = np.pad(data0, [[0, 300-len(data0)], [0, 0]], 'constant') fdata0[i]=data0 fdata1[i][0:2]=data0[0,0:2] fdata1[i][2:4] = data[i][2].split(',') fdata_mark[i] = data[i][3] #数据扩充 times=12 angle=2*np.pi/times edata0=np.zeros([3000*times,300,3]) edata1=np.zeros([3000*times,4]) for i in range(times): edata0[3000*i:3000*(i+1),:,0]=np.cos(angle*i)*fdata0[:,:,0]-np.sin(angle*i)*fdata0[:,:,1] edata0[3000*i:3000*(i+1),:,1]=np.cos(angle*i)*fdata0[:,:,1]+np.sin(angle*i)*fdata0[:,:,0] edata0[3000*i:3000*(i+1),:,2]=fdata0[:,:,2] edata1[3000*i:3000*(i+1),[0,2]]=np.cos(angle*i)*fdata1[:,[0,2]]-np.sin(angle*i)*fdata1[:,[1,3]] edata1[3000*i:3000*(i+1),[1,3]]=np.cos(angle*i)*fdata1[:,[1,3]]+np.sin(angle*i)*fdata1[:,[0,2]] edata_mark=np.tile(fdata_mark,times) # 用随机数生成负样本 negNumber = 2000 rand_data0 = np.cumsum(np.random.normal(10, 50, [negNumber, 300,3]),axis=1) rand_data1 = np.random.uniform(-2000, 2000, [negNumber, 4]) edata0=np.concatenate((edata0,rand_data0),axis=0) edata1=np.concatenate((edata1,rand_data1),axis=0) edata_mark=np.concatenate((edata_mark,np.zeros([negNumber,]))) # 保存特征 x_fdata=np.concatenate((fdata0.reshape([3000,300*3],order='F'),fdata1),axis=1) x_edata=np.concatenate((edata0.reshape([3000*times+negNumber,300*3],order='F'),edata1),axis=1) #np.save('x_fdata.npy',x_fdata) #np.save('y_fdata.npy',fdata_mark) np.save('x_edata.npy',x_edata) np.save('y_edata.npy',edata_mark)
true
2cfea324cf9d82ab554fa9ea27f74001ba18a6c1
Python
robertbsnook/booking_quote
/src/booking/Package_booking.py
UTF-8
8,727
3.375
3
[ "MIT" ]
permissive
#!/usr/bin/env python import datetime import pandas as pd from tabulate import tabulate class TravelRoute: def __init__(self, destination, dangerous, urgency, dimension, weight): self.destination = destination self.dangerous = dangerous self.urgency = urgency self.dimension = float(dimension) self.weight = float(weight) def __str__(self): return str(self.charge) class Air(TravelRoute): def __init__(self, destination, dangerous, urgency, dimension, weight): super().__init__(destination, dangerous, urgency, dimension, weight) def charge(self): if self.dangerous == "unsafe": return 0 elif self.weight*10 > self.dimension*20: return float(self.weight*10) else: return float(self.dimension * 20) class Truck(TravelRoute): def __init__(self, destination, dangerous, urgency, dimension, weight): super().__init__(destination, dangerous, urgency, dimension, weight) def charge(self): if self.destination == 'overseas': return 0 elif self.urgency == 'urgent': return 45 else: return 25 class Boat(TravelRoute): def __init__(self, destination, dangerous, urgency, dimension, weight): super().__init__(destination, dangerous, urgency, dimension, weight) def charge(self): if self.destination == 'in-country': return 0 elif self.urgency == 'urgent': return 0 else: return 30 def urgent_check(delivery_date): future = datetime.datetime.today() + datetime.timedelta(days=3) if delivery_date > future: return "not urgent" else: return "urgent" def destination_check(): while True: dest = input("Is this package remaining in (c)ountry, or (o)verseas: ").lower() if dest == 'c': return 'in-country' elif dest == 'o': return 'overseas' else: print("Use 'c' or 'o'.") def danger_check(): while True: danger = input("Does the package contain anything dangerous (y/n): ").lower() if danger == 'n': return 'Safe' elif danger == 'y': return 'unsafe' else: print("Is it safe or unsafe? (y/n)") def next_customer(): next_c = input("Is there another customer: (y/n)").lower() if next_c == 'y': return True else: return False def delivery_options(destination, dangerous, urgency, dimension, weight): options = {} air_option = Air(destination, dangerous, urgency, dimension, weight) truck_option = Truck(destination, dangerous, urgency, dimension, weight) boat_option = Boat(destination, dangerous, urgency, dimension, weight) if air_option.charge() > 0.0: options['Air'] = air_option.charge() if truck_option.charge() > 0.0: options['Truck'] = truck_option.charge() if boat_option.charge() > 0.0: options['Boat'] = boat_option.charge() df2 = pd.DataFrame(list(options.items()), columns=['Option', 'Cost']) print(tabulate(df2, tablefmt='psql')) selection = 0 while selection == 0: try: delivery_choice = input("Choose the delivery method:") delivery_choice = int(delivery_choice) if delivery_choice < 0 or delivery_choice > df2.last_valid_index(): print("Please select a valid method of transport") else: selection = 1 except ValueError: print('Please enter a valid shipping option') df2_option = df2.at[delivery_choice, 'Option'] df2_cost = df2.at[delivery_choice, 'Cost'] return df2_option, df2_cost def print_customer(df): row = df.tail(1).transpose() print("Order ID:", df.last_valid_index()) print(tabulate(row, tablefmt='psql')) def get_name(): while True: try: name = input("Please enter customer name: ") if not name: raise ValueError("Please enter a valid name. Cannot be blank") else: break except ValueError as e: print(e) return name def get_description(): while True: try: description = input("General description of package: ") if not description: raise ValueError("Please enter a description. Cannot be blank") else: break except ValueError as e: print(e) return description def get_delivery_date(): day = 0 while day == 0: d_date = input("When do they want the package to arrive: yyyy/dd/mm ") try: d_date = datetime.datetime.strptime(d_date, '%Y/%m/%d') if d_date <= datetime.datetime.today(): print("Please enter a delivery date at least one day in advance.") else: day = 1 except ValueError: print("Incorrect date format, should be YYYY/MM/DD.") return d_date def get_dimensions(): print("Minimum dimension size is 0.1 meter.\n " "Anything smaller should be rounded up to 0.1.\n" "Minimum overall size is 0.5m") while True: try: length = float(input("L: ")) if not length: raise ValueError("Please enter a length.") elif length < 0.1: print("Please enter a dimension greater than 0.0999.") else: break except ValueError as e: print(e) while True: try: width = float(input("W: ")) if not width: raise ValueError("Please enter a width.") elif width < 0.1: print("Please enter a dimension greater than 0.0999.") else: break except ValueError as e: print(e) while True: try: height = float(input("H: ")) if not height: raise ValueError("Please enter a height.") elif height < 0.1: print("Please enter a dimension greater than 0.0999.") else: break except ValueError as e: print(e) if length*width*height < 0.5: dimension = 0.5 else: dimension = length*width*height return dimension def size_check(dimension): if dimension > 124.999: print("Sorry, but this package is too large to be shipped by our methods. Please reduce the size to less " "than 5x5x5") return False else: return True def get_weight(): while True: try: weight = float(input("How many kilograms does it weigh: ")) if not weight: raise ValueError("Please enter a weight. Cannot be blank") elif weight <= 0: print("Please enter a positive weight.") else: break except ValueError as e: print(e) return weight def weight_check(weight): if weight > 9.999: print("Sorry, but this package weighs too much. Please reduce the weight to under 10kg") return False else: return True def main(): customer = True while customer: customer_name = get_name() destination = destination_check() package_desc = get_description() dangerous = danger_check() delivery_date = get_delivery_date() urgency = urgent_check(delivery_date) weight = get_weight() weight_check(weight) dimension = get_dimensions() df = pd.read_csv('booking_quotes.csv', index_col=0) df.index.name = 'ID' df = df.reset_index(drop=True) new_row = {'Customer_Name': customer_name.title(), 'Destination': destination, 'Package_desc': package_desc, 'Dangerous': dangerous, 'Delivery_date': delivery_date.date(), 'Urgency': urgency, 'Weight': weight, 'Size': round(dimension,2), 'Shipping_option': '', 'Cost': ''} df = df.append(new_row, ignore_index=True) print_customer(df) d_option, d_cost = delivery_options(destination, dangerous, urgency, dimension, weight) df.at[df.last_valid_index(), 'Shipping_option'] = d_option df.at[df.last_valid_index(), 'Cost'] = d_cost df.to_csv('booking_quotes.csv', index=True) print_customer(df) customer = next_customer() if __name__ == "__main__": main()
true
a523dfb92df7c9364165cecc81c4a48e4f58e944
Python
MiracleOfFate/WebUITest
/action_chains/drag_and_drop_by_offset_demo.py
UTF-8
1,351
2.875
3
[]
no_license
from time import sleep from selenium import webdriver # 打开浏览器,并加载项目地址 driver = webdriver.Chrome() driver.get("https://passport.ctrip.com/user/reg/home") sleep(2) # 点击同意并继续 element_agree = driver.find_element_by_css_selector("div.pop_footer>a.reg_btn.reg_agree") element_agree.click() sleep(3) # important!!! from selenium.webdriver.common.action_chains import ActionChains # 定位滑块的位置 element_hk = driver.find_element_by_css_selector('div.cpt-drop-box>div.cpt-drop-btn') # print(element_hk.size) # {'height': 40, 'width': 40} # print(element_hk.size['height'], element_hk.size['width']) # 定义滑块条的位置 element_hkt = driver.find_element_by_css_selector('div.cpt-drop-box>div.cpt-bg-bar') # print(element_hkt.size) # {'height': 40, 'width': 268} # print(element_hkt.size['height'], element_hkt.size['width']) # 实现滑块操作 # ActionChains.drag_and_drop_by_offset(开始移动的元素——原始元素,鼠标对元素拖到另外一个元素的x坐标,鼠标对元素拖到另外一个元素的y坐标) x_location = element_hk.size['width'] + element_hkt.size['width'] y_location = element_hkt.size['height'] # print(x_location, y_location) # 308 40 ActionChains(driver).drag_and_drop_by_offset(element_hk, x_location, y_location).perform() sleep(2) driver.quit()
true
bcfc119db38fd6c471f0c248dd04dd23b01e5c70
Python
loganmeetsworld/advent-of-code
/2021/5/solution.py
UTF-8
1,847
3.109375
3
[]
no_license
import re from collections import Counter from aoc_utils import aoc_utils from tests import cases def find_all_coordinates(x1, y1, x2, y2, part_one=False): points = [] dx = x1 - x2 dy = y1 - y2 # Like 2,2 -> 2,1 if dx == 0: for y in range(min([y2, y1]), max([y2, y1]) + 1): points.append(str([x1, y])) # Like 0,9 -> 5,9 if dy == 0: for x in range(min([x2, x1]), max([x2, x1]) + 1): points.append(str([x, y1])) if part_one: return points # Like 1,1 -> 3,3 if dx < 0 and dy < 0: for i in range(abs(dx) + 1): points.append(str([x1 + i, y1 + i])) # Like 3,3 -> 1,1 if dx > 0 and dy > 0: for i in range(abs(dx) + 1): points.append(str([x1 - i, y1 - i])) # Like 9,7 -> 7,9 if dx > 0 and dy < 0: for i in range(abs(dx) + 1): points.append(str([x1 - i, y1 + i])) # Like 7,9 > 9,7 if dx < 0 and dy > 0: for i in range(abs(dx) + 1): points.append(str([x1 + i, y1 - i])) return points def horrizontal_points(x1, y1, x2, y2): points = [] if x1 - x2 == 0: for y in range(min([y2, y1]), max([y2, y1]) + 1): points.append(str([x1, y])) if y1 - y2 == 0: for x in range(min([x2, x1]), max([x2, x1]) + 1): points.append(str([x, y1])) return points def answer(problem_input, level, test=False): coordinates = [] for line in problem_input.splitlines(): coords = [int(i) for i in re.findall(r'(\d+)', line)] if level == 1: coordinates += find_all_coordinates(*coords, part_one=True) else: coordinates += find_all_coordinates(*coords) return len([k for k,v in Counter(coordinates).items() if v > 1]) aoc_utils.run(answer, cases)
true
e68d7d561bd15a5cff8065ce63e25d4e8dcf5ebe
Python
akki8087/HackerRank
/Binary Numbers.py
UTF-8
528
2.640625
3
[]
no_license
# -*- coding: utf-8 -*- """ Created on Tue Jun 26 17:53:03 2018 @author: NP """ #!/bin/python3 import math import os import random import re import sys if __name__ == '__main__': import sys n = int(input().strip()) tst = str(bin(n)) tst = tst[2:] ones = 0 maxOnes = 0 for i in tst: if i == '1': ones += 1 if maxOnes < ones: maxOnes = ones else: ones = 0 print(maxOnes)
true
22824cec8886ddd756c96fc252fc65541d80de6b
Python
sinx-wang/dealCourtDocs
/deal.py
UTF-8
2,301
3.203125
3
[]
no_license
"""Convert downloaded documents format to .docx and select """ #-*-coding:utf-8-*- import os from docx import Document import win32com.client as wc class DealDocuments: """ 把下载下来的文书转为docx格式,方便后面根据关键字检索 """ def __init__(self, text, docx_text): self.text = text self.docx_text = docx_text # python-dox can not deal with .doc, must convert to .docx @staticmethod def convert_doc_to_docx(filename: str): """ 文件由doc转为docx格式 """ word = wc.Dispatch('Word.Application') # 用相对路径会有问题 absolute_read_path = 'D:\\Documents\\dealDocs\\text\\' + filename absolute_write_path = 'D:\\Documents\\dealDocs\\docx_text\\' + filename + 'x' doc = word.Documents.Open(absolute_read_path, False, False, True) doc.SaveAs(absolute_write_path, 12) doc.Close() word.Quit() def convert(self): """ 批量转换 """ for file in os.listdir(self.text): self.convert_doc_to_docx(file) def deal_content(self, filename: str): """ 检索文书中是否同时含有"贵阳银行"和"被告",若没有则删除 """ delete_flag = 1 file_path = self.docx_text + filename doc1 = Document(file_path) pl = [paragraph.text for paragraph in doc1.paragraphs] for sentence in pl: # 含有冒号且不以冒号结尾,且字符串中含有“被告”和“贵阳银行” if sentence.endswith(":"): break else: if (":" in sentence) and ("贵阳银行" in sentence) and ("被告" in sentence): delete_flag = 0 if delete_flag: os.remove(file_path) def deal(self): """ 批量检索 """ for file in os.listdir(self.docx_text): self.deal_content(file) # FILENAME_LIST = os.listdir('docx_text') # for file in FILENAME_LIST: # deal_content(file) if __name__ == '__main__': DEAL_DOCUMENT = DealDocuments('text\\', 'docx_text\\') DEAL_DOCUMENT.convert() DEAL_DOCUMENT.deal()
true
feb4b8b6128ed7aa44f774516380dc3a8803f2d1
Python
kanta-ishii/math_in_python
/線形代数/コサイン類似度.py
UTF-8
383
3.671875
4
[]
no_license
'''ベクトル同士の向きの近さを表す''' import numpy as np def cos_sim(vec_1, vec_2): return np.dot(vec_1, vec_2) / (np.linalg.norm(vec_1) * np.linalg.norm(vec_2)) a = np.array([2,2,2,2]) b = np.array([1,1,1,1]) c = np.array([-1,-1,-1,-1]) print(cos_sim(a, b)) print(cos_sim(a, c)) '''↑ベクトルの向きがどれだけ揃っているかの指標になる'''
true
c670004e5215c5e2fa4e539393d9c8c21b32cbb7
Python
anuvarsh/CMSI282
/hw2/9-lcm.py
UTF-8
179
3.375
3
[]
no_license
def lcm(x, y): if (x > y): greater = x else: greater = y while(True): if((greater % x == 0) and (greater % y == 0)): lcm = greater break greater += 1 return lcm
true
82b68b6f0cf0e349650e61423730cac74b6db352
Python
CySpiegel/CS5402-Data-Mining
/Part 1/DictCounter.py
UTF-8
704
3.046875
3
[]
no_license
import os import glob from collections import OrderedDict import csv ValuesDictionary = {} fields = [] rows = [] csvLocation = ("originalDataset.csv") with open(csvLocation, mode='r') as csvfile: csvreader = csv.reader(csvfile) fields = next(csvreader) for row in csvreader: rows.append(row) Correct = True for i in range(30,31): values = [] valueCounts = [] print(fields[i+1]) for j in range(14996): ValuesDictionary[rows[j][i+1]] = ValuesDictionary.get( rows[j][i+1], 0) + 1 ValuesDictionarySorted = OrderedDict(sorted(ValuesDictionary.items(), key=lambda x: x[1], reverse=True)) for k, v in ValuesDictionarySorted.items(): print("Value: ",k, "\t Appears: ", v) print(Correct)
true
7e925d1317f8ffaaefe237993e8cec2511626126
Python
Top1Miami/ITMO_FS
/ITMO_FS/utils/information_theory.py
UTF-8
1,449
2.9375
3
[ "MIT", "BSD-3-Clause" ]
permissive
from math import log import numpy as np def conditional_entropy(x_j, y): countX = {x: 0 for x in x_j} dictYByX = {x: {} for x in x_j} for i in range(len(y)): x_val = x_j[i] y_val = y[i] countX[x_val] += 1 dictYByX[x_val].update({y_val: dictYByX[x_val].get(y_val, 0) + 1}) entropy = 0.0 for x in countX.keys(): partEntropy = 0.0 curDict = dictYByX[x] partEntropy = sum(map(lambda inClass: elog(inClass / countX[x]), curDict.values())) entropy += countX[x] / len(y) * partEntropy return -entropy def matrix_mutual_information(x, y): return np.apply_along_axis(mutual_information, 0, x, y) def mutual_information(x, y): return entropy(y) - conditional_entropy(x, y) def conditional_mutual_information(x, y, z): return entropy(list(zip(x, z))) + entropy(list(zip(y, z))) - entropy(list(zip(x, y, z))) - entropy(z) def joint_mutual_information(x, y, z): return mutual_information(x, z) + conditional_mutual_information(y, z, x) def interaction_information(x, y, z): return mutual_information(x, z) + mutual_information(y, z) - joint_mutual_information(x, y, z) def elog(x): if x <= 0. or x >= 1.: return 0 else: return x * log(x) def entropy(x): d = dict() for obj in x: d[obj] = d.get(obj, 0) + 1 probs = map(lambda z: float(z) / len(x), d.values()) return -sum(map(elog, probs))
true
a1901b55c34bccf27ff675f32d8149cf64370862
Python
Arnukk/TDS
/main_assignment1.py
UTF-8
8,251
2.828125
3
[ "MIT" ]
permissive
__author__ = 'akarapetyan' import matplotlib.pyplot as plt from wnaffect import WNAffect from emotion import Emotion from nltk.corpus import wordnet as wn from cursor_spinning import SpinCursor import time import sys import numpy as np import PorterStemmer as ps from scipy.interpolate import interp1d #CONSTANTS #array of inapproriate words to be excluded toexclude = ["world", "blue", "weight", "self", "hero", "identification", "will", "sympathy", "empathy", "preference", "compatibility", "softheartedness", "puppy"] def fancy_output(msg, command, starting_time, *args): """ Just a fancy way of outputting the progress of a command @param msg, command, params: the message to output, command to be executed, params @return output: the result of the command """ spin = SpinCursor(msg=msg, minspin=5, speed=5) spin.start() output = command(*args) if output: spin.stop() sys.stdout.write("Elapsed time - %3.6f seconds" % (time.time()-starting_time)) print '\n' return output def preprocess_database(year_range): """ Filter the database of 1-grams according to the year range chosen @param year_range @return filtered_db """ path_pattern = "data\googlebooks-eng-1M-1gram-20090715-" filtered_db = {} for source in [path_pattern + '%d.csv' % i for i in range(10)]: #df = pd.read_csv(source, names=['word', 'year', 'occurred', 'pages', 'books'], sep='\t', error_bad_lines=False) #if len(df[(df['word'] == word) & (df['year'] == year)].index.tolist()) > 0: #occur_count = df.loc[[df[(df['word'] == word) & (df['year'] == year)].index.tolist()[0]]].iloc[0]['occurred'] #return occur_count with open(source) as f: for line in f: data = line.split('\t') if int(data[1]) in year_range: if int(data[1]) in filtered_db: filtered_db[int(data[1])].append(line) else: filtered_db[int(data[1])] = [] filtered_db[int(data[1])].append(line) return filtered_db def get_mood_score(mood, year, filtered_db): """ Calculates the mood score of the give mood for a given year :param mood, year, filtered_db: :return moodscore """ moodcount = 0 the_count = 0 for item in filtered_db[year]: data = item.split('\t') if data[0] in mood or data[0].lower() in mood: moodcount += int(data[2]) if data[0] == "the" or data[0].lower() == "the": the_count += int(data[2]) moodscore = (1.0 * moodcount/the_count)/1.0*len(mood) return moodscore def get_emotion_terms(emotion): """ Given the emotion, the function returns all the terms related to that emotion @param emotion: name of the emotion - string @return terms_array """ terms_array = [emotion] for term in Emotion.emotions[emotion].get_children([]): if "-" in term: for t in term.split("-"): if t not in toexclude: terms_array.append(t.lower()) if t not in terms_array and t.lower() not in terms_array else None else: terms_array.append(term) if term not in terms_array and term.lower() not in terms_array else None if "-" in term: for t in term.split("-"): if t not in toexclude: for synset in wn.synsets(t): for lemma in synset.lemmas(): if "_" not in str(lemma.name()): terms_array.append(str(lemma.name()).lower()) if str(lemma.name()) not in terms_array and str(lemma.name()).lower() not in terms_array else None else: for synset in wn.synsets(term): for lemma in synset.lemmas(): if "_" not in str(lemma.name()): terms_array.append(str(lemma.name()).lower()) if str(lemma.name()) not in terms_array and str(lemma.name()).lower() not in terms_array else None return terms_array def get_stems(): """ Returns the array of the filtered stems according to the conditions mentioned in the paper @return: stemarray """ stemarray = [] p = ps.PorterStemmer() infile = open("./part-of-speech.txt", 'r') while 1: output = '' line = infile.readline() line = line.split('\t')[0] if line == '': break for c in line: if c.isalpha(): word += c.lower() else: if word: output += p.stem(word, 0,len(word)-1) word = '' output += c.lower() stemarray.append(output) if (len(output) > 2 and output not in stemarray) else None infile.close() return stemarray if __name__ == "__main__": starting_time = time.time() print "\n+++++++++++++++++++++++++++++++++++" print "TDS - Assignment 1" print "+++++++++++++++++++++++++++++++++++\n" """ Inittializing Wordnet-Affect @DEPENDENCIES: NLTK 3.1 or higher, WordNet 1.6 (unix-like version is utilised), WordNet-Domains 3.2 """ YEAR_RANGE = range(1907, 2001, 4) wna = fancy_output("Initializing Wordnet", WNAffect, starting_time, './wordnet-1.6/', './wn-domains-3.2/') joy_terms = fancy_output("Getting the terms for the mood category JOY", get_emotion_terms, starting_time, 'joy') joy_terms.extend([term for term in fancy_output("", get_emotion_terms, starting_time, 'liking') if term not in joy_terms]) joy_terms.extend([term for term in fancy_output("", get_emotion_terms, starting_time, 'love') if term not in joy_terms]) #joy_terms.extend([term for term in fancy_output("", get_emotion_terms, starting_time, 'levity') if term not in joy_terms]) #joy_terms.extend([term for term in fancy_output("", get_emotion_terms, starting_time, 'gratitude') if term not in joy_terms]) sadness_terms = fancy_output("Getting the terms for the mood category SADNESS", get_emotion_terms, starting_time, 'sadness') filtered_dataset = fancy_output("Preprocessing the dataset", preprocess_database, starting_time, YEAR_RANGE) spin = SpinCursor(msg="Computing the mood scores", minspin=5, speed=5) spin.start() joy_mood_scores = {} sadness_mood_scores = {} for year in YEAR_RANGE: joy_mood_scores[year] = get_mood_score(joy_terms, year, filtered_dataset) sadness_mood_scores[year] = get_mood_score(sadness_terms, year, filtered_dataset) if len(joy_mood_scores) == len(YEAR_RANGE): spin.stop() sys.stdout.write("Elapsed time - %3.6f seconds" % (time.time()-starting_time)) print '\n' joy_mood_scores_mean = np.mean(joy_mood_scores.values()) joy_mood_scores_std = np.std(joy_mood_scores.values()) sadness_mood_scores_mean = np.mean(sadness_mood_scores.values()) sadness_mood_scores_std = np.std(sadness_mood_scores.values()) normalize = lambda mood_val: (mood_val - joy_mood_scores_mean)/(1.0 * joy_mood_scores_std) joy_normalized = {} for key in joy_mood_scores.keys(): joy_normalized[key] = normalize(joy_mood_scores[key]) normalize = lambda mood_val: (mood_val - sadness_mood_scores_mean)/(1.0 * sadness_mood_scores_std) sadness_normalized = {} for key in sadness_mood_scores.keys(): sadness_normalized[key] = normalize(sadness_mood_scores[key]) x = [year for year in YEAR_RANGE] y = [joy_normalized[key] - sadness_normalized[key] for key in YEAR_RANGE] f2 = interp1d(x, y, kind='cubic') xnew = range(1907, 2001, 2) plt.plot(xnew, f2(xnew)) markerline, stemlines, baseline = plt.stem(x, y, '-.') plt.grid() axes = plt.gca() axes.set_xlim([1897, 2003]) plt.title('Historical periods of positive and negative moods') plt.xlabel('Year') plt.ylabel('Joy - Sadness (Z scores)') plt.setp(markerline, 'markerfacecolor', 'b') plt.setp(baseline, 'color', 'r', 'linewidth', 2) plt.setp(stemlines, linewidth=1, color=[0.08,0.4,1]) plt.grid() print "====== Simulation finished in ", time.time() - starting_time, " seconds =========\n" plt.show()
true
1b18ad35deb475d40a14519becc1a7287439db7e
Python
15831944/skiaming
/SkiaCode/tools/test_pictures.py
UTF-8
6,084
2.546875
3
[ "BSD-3-Clause" ]
permissive
''' Compares the rendererings of serialized SkPictures to expected images. Launch with --help to see more information. Copyright 2012 Google Inc. Use of this source code is governed by a BSD-style license that can be found in the LICENSE file. ''' # common Python modules import os import optparse import sys import shutil import tempfile USAGE_STRING = 'Usage: %s input... expectedDir' HELP_STRING = ''' Compares the renderings of serialized SkPicture files and directories specified by input with the images in expectedDir. Note, files in directoriers are expected to end with .skp. ''' def RunCommand(command): """Run a command. @param command the command as a single string """ print 'running command [%s]...' % command os.system(command) def FindPathToProgram(program): """Return path to an existing program binary, or raise an exception if we cannot find one. @param program the name of the program that is being looked for """ trunk_path = os.path.abspath(os.path.join(os.path.dirname(__file__), os.pardir)) possible_paths = [os.path.join(trunk_path, 'out', 'Release', program), os.path.join(trunk_path, 'out', 'Debug', program), os.path.join(trunk_path, 'out', 'Release', program + ".exe"), os.path.join(trunk_path, 'out', 'Debug', program + ".exe")] for try_path in possible_paths: if os.path.isfile(try_path): return try_path raise Exception('cannot find %s in paths %s; maybe you need to ' 'build %s?' % (program, possible_paths, program)) def RenderImages(inputs, render_dir, options): """Renders the serialized SkPictures. Uses the render_pictures program to do the rendering. @param inputs the location(s) to read the serlialized SkPictures @param render_dir the location to write out the rendered images """ renderer_path = FindPathToProgram('render_pictures') inputs_as_string = " ".join(inputs) command = '%s %s %s' % (renderer_path, inputs_as_string, render_dir) if (options.mode is not None): command += ' --mode %s' % ' '.join(options.mode) if (options.device is not None): command += ' --device %s' % options.device RunCommand(command) def DiffImages(expected_dir, comparison_dir, diff_dir): """Diffs the rendered SkPicture images with the baseline images. Uses the skdiff program to do the diffing. @param expected_dir the location of the baseline images. @param comparison_dir the location of the images to comapre with the baseline @param diff_dir the location to write out the diff results """ skdiff_path = FindPathToProgram('skdiff') RunCommand('%s %s %s %s %s' % (skdiff_path, expected_dir, comparison_dir, diff_dir, '--noprintdirs')) def Cleanup(options, render_dir, diff_dir): """Deletes any temporary folders and files created. @param options The OptionParser object that parsed if render_dir or diff_dir was set @param render_dir the directory where the rendered images were written @param diff_dir the directory where the diff results were written """ if (not options.render_dir): if (os.path.isdir(render_dir)): shutil.rmtree(render_dir) if (not options.diff_dir): if (os.path.isdir(diff_dir)): shutil.rmtree(diff_dir) def ModeParse(option, opt_str, value, parser): """Parses the --mode option of the commandline. The --mode option will either take in three parameters (if tile or pow2tile) or a single parameter (otherwise). """ result = [value] if value == "tile": if (len(parser.rargs) < 2): raise optparse.OptionValueError(("--mode tile mising width" " and/or height parameters")) result.extend(parser.rargs[:2]) del parser.rargs[:2] elif value == "pow2tile": if (len(parser.rargs) < 2): raise optparse.OptionValueError(("--mode pow2tile mising minWidth" " and/or height parameters")) result.extend(parser.rargs[:2]) del parser.rargs[:2] setattr(parser.values, option.dest, result) def Main(args): """Allow other scripts to call this script with fake command-line args. @param The commandline argument list """ parser = optparse.OptionParser(USAGE_STRING % '%prog' + HELP_STRING) parser.add_option('--render_dir', dest='render_dir', help = ("specify the location to output the rendered files." " Default is a temp directory.")) parser.add_option('--diff_dir', dest='diff_dir', help = ("specify the location to output the diff files." " Default is a temp directory.")) parser.add_option('--mode', dest='mode', type='string', action="callback", callback=ModeParse, help = ("specify how rendering is to be done.")) parser.add_option('--device', dest='device', help = ("specify the device to render to.")) options, arguments = parser.parse_args(args) if (len(arguments) < 3): print("Expected at least one input and one ouput folder.") parser.print_help() sys.exit(-1) inputs = arguments[1:-1] expected_dir = arguments[-1] if (options.render_dir): render_dir = options.render_dir else: render_dir = tempfile.mkdtemp() if (options.diff_dir): diff_dir = options.diff_dir else: diff_dir = tempfile.mkdtemp() try: RenderImages(inputs, render_dir, options) DiffImages(expected_dir, render_dir, diff_dir) finally: Cleanup(options, render_dir, diff_dir) if __name__ == '__main__': Main(sys.argv)
true
8daae6df89ec054ae3b94a39f2e7eac9d791f15c
Python
zhangmingcheng28/pomdp-py
/pomdp_py/utils/templates.py
UTF-8
4,150
3.109375
3
[ "MIT" ]
permissive
""" Some particular implementations of the interface for convenience """ import pomdp_py import random class SimpleState(pomdp_py.State): """A SimpleState is a state that stores one piece of hashable data and the equality of two states of this kind depends just on this data""" def __init__(self, data): self.data = data def __hash__(self): return hash(self.data) def __eq__(self, other): if isinstance(other, SimpleState): return self.data == other.data return False def __ne__(self, other): return not self.__eq__(other) def __str__(self): return str(self.data) def __repr__(self): return "SimpleState({})".format(self.data) class SimpleAction(pomdp_py.Action): """A SimpleAction is an action defined by a string name""" def __init__(self, name): self.name = name def __hash__(self): return hash(self.name) def __eq__(self, other): if isinstance(other, SimpleAction): return self.name == other.name return False def __ne__(self, other): return not self.__eq__(other) def __str__(self): return self.name def __repr__(self): return "SimpleAction({})".format(self.name) class SimpleObservation(pomdp_py.Observation): """A SimpleObservation is an observation with a piece of hashable data that defines the equality.""" def __init__(self, data): self.data = data def __hash__(self): return hash(self.data) def __eq__(self, other): if isinstance(other, SimpleObservation): return self.data == other.data return False def __ne__(self, other): return not self.__eq__(other) def __str__(self): return str(self.data) def __repr__(self): return "SimpleObservation({})".format(self.data) class DetTransitionModel(pomdp_py.TransitionModel): """A DetTransitionModel is a deterministic transition model. A probability of 1 - epsilon is given for correct transition, and epsilon is given for incorrect transition.""" def __init__(self, epsilon=1e-12): self.epsilon = epsilon def probability(self, next_state, state, action): """According to problem spec, the world resets once action is open-left/open-right. Otherwise, stays the same""" if self.sample(state, action) == next_state: return 1.0 - self.epsilon else: return self.epsilon def sample(self, state, action): raise NotImplementedError class DetObservationModel(pomdp_py.ObservationModel): """A DetTransitionModel is a deterministic transition model. A probability of 1 - epsilon is given for correct transition, and epsilon is given for incorrect transition.""" def __init__(self, epsilon=1e-12): self.epsilon = epsilon def probability(self, observation, next_state, action): """According to problem spec, the world resets once action is open-left/open-right. Otherwise, stays the same""" if self.sample(next_state, action) == observation: return 1.0 - self.epsilon else: return self.epsilon def sample(self, next_state, action): raise NotImplementedError class DetRewardModel(pomdp_py.RewardModel): """A DetRewardModel is a deterministic reward model (the most typical kind).""" def reward_func(self, state, action, next_state): raise NotImplementedError def sample(self, state, action, next_state): # deterministic return self.reward_func(state, action, next_state) def argmax(self, state, action, next_state): return self.sample(state, action, next_state) class UniformPolicyModel(pomdp_py.RolloutPolicy): def __init__(self, actions): self.actions = actions def sample(self, state, **kwargs): return random.sample(self.actions, 1)[0] def get_all_actions(self, state=None, history=None): return self.actions def rollout(self, state, history=None): return random.sample(self.actions, 1)[0]
true
4caa42ead0b819cf666a5ecd8a8af28e0360963a
Python
vijoin/AtosPythonCourseExamples
/ex09-Dictionary.py
UTF-8
1,861
4.03125
4
[]
no_license
def print_dictionaries(): #Add a country countries = {'Uruguay': {'official_name': 'República Oriental del Uruguay', 'capital': 'Montevideo', 'population': 3_457_000, } } print(countries) #Add a second key countries['Venezuela'] = {'official_name': 'República Bolivariana de Venezuela', 'capital': 'Caracas', 'population': 31_980_000, } print(countries) #access to a specific key print(countries['Venezuela']) print(countries['Uruguay']) #Access multilevel key print(countries['Uruguay']['population']) print(countries['Venezuela']['capital']) country = 'Venezuela' print("The Capital of {} is {}".format(country, countries[country]['capital'])) #What if I ask for a non existing key country = 'Uruguay' #language = Countries[country]['language'] ## I can catch the error with the get() method language = countries[country].get('language', 'Not Specified') print(f'The Population of {country} is {language}') population = countries[country].get('population', 'NULL') print(f'The Population of {country} is {population}') #Access to the keys countries_keys = countries.keys() print(countries_keys) #Access to the values countries_values = countries.values() print(countries_values) #Access both keys and items countries_items = countries['Uruguay'].items() print(countries_items) del countries['Venezuela']['population'] print(countries['Venezuela']) print("Los datos de Venezuela son {official_name}, {capital}, {population}".format(**countries['Venezuela'])) if __name__ == '__main__': print_dictionaries()
true
eda2ba7b3d8592a8ab1569f8766f320003a5c9ee
Python
DXV-HUST-SoICT/data_mining_mini_projects
/neural network/emnist-tensorflow/recognize.py
UTF-8
2,915
2.546875
3
[]
no_license
from __future__ import absolute_import from tensorflow.keras.models import load_model from tensorflow.keras.models import model_from_json from matplotlib import pyplot as plt import cv2 import numpy as np import sys, os WORKING_DIR = './' characters = ['0','1','2','3','4','5','6','7','8','9', 'A','B','C','D','E','F','G','H','I','J', 'K','L','M','N','O','P','Q','R','S','T', 'U','V','W','X','Y','Z'] def load_model(): json_file = open(os.path.join(WORKING_DIR, 'results/model_0.0.1.json'), 'r') loaded_model_json = json_file.read() json_file.close() loaded_model = model_from_json(loaded_model_json) loaded_model.load_weights(os.path.join(WORKING_DIR, 'results/model_0.0.1.h5')) print('Model successfully loaded') return loaded_model def recognize(filepath): model = load_model() image = cv2.imread(filepath) height, width, depth = image.shape #resizing the image to find spaces better image = cv2.resize(image, dsize=(width*5,height*4), interpolation=cv2.INTER_CUBIC) #grayscale gray = cv2.cvtColor(image,cv2.COLOR_BGR2GRAY) #binary ret, thresh = cv2.threshold(gray,127,255,cv2.THRESH_BINARY_INV) #dilation kernel = np.ones((5,5), np.uint8) img_dilation = cv2.dilate(thresh, kernel, iterations=1) #adding GaussianBlur gsblur=cv2.GaussianBlur(img_dilation,(5,5),0) cv2.imwrite('1_preprocess.png', gsblur) #find contours ctrs, hier = cv2.findContours(gsblur.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) m = list() #sort contours sorted_ctrs = sorted(ctrs, key=lambda ctr: cv2.boundingRect(ctr)[0]) dp = image.copy() for i, ctr in enumerate(sorted_ctrs): # Get bounding box x, y, w, h = cv2.boundingRect(ctr) height_pad = int(0.2*h) weight_pad = int(0.2*w) cv2.rectangle(dp,(x-weight_pad,y-height_pad),( x + w + weight_pad, y + h + height_pad ),(36,255,12), 9) cv2.imwrite('2_contours.png', dp) for i, ctr in enumerate(sorted_ctrs): # Get bounding box x, y, w, h = cv2.boundingRect(ctr) # Getting ROI height_pad = int(0.2 * h) weight_pad = int(0.2 * w) roi = image[y-height_pad:y+h+height_pad, x-weight_pad:x+w+weight_pad] try: roi = cv2.resize(roi, dsize=(64,64), interpolation=cv2.INTER_CUBIC) except: continue roi = cv2.cvtColor(roi,cv2.COLOR_BGR2GRAY) roi = np.array(roi) t = np.copy(roi) t = t / 255.0 t = 1-t t = t.reshape(1,64,64,1) m.append(roi) pred = model.predict_classes(t) # cv2.rectangle(dp,(x-weight_pad,y-height_pad),( x + w + weight_pad, y + h + height_pad ),(36,255,12), 9) cv2.putText(dp, characters[pred[0]] , (x, y-height_pad) , cv2.FONT_HERSHEY_SIMPLEX, 3, (90,0,255),9) print(characters[pred[0]]) cv2.imwrite('3_recognized.png', dp) print("recognized") plt.imshow(dp) plt.show() if __name__ == '__main__': if len(sys.argv) > 1: file_location = sys.argv[1].strip() recognize(file_location) else: print('you have to pass a path of image as a argument')
true
b2752ac06aab4e0f283d0c9c6cf23dc2f77df68d
Python
mir-sam-ali/SEProject2021
/PyStackBot/AnswerSearch/preprocessor/preprocessor.py
UTF-8
10,026
2.609375
3
[]
no_license
import os import re from textblob import TextBlob import software_tokenizer as tokenizer import nltk from nltk.stem import WordNetLemmatizer # used for stemming from remove_stopwords import remove_stopwords nltk.download('punkt',quiet=True) nltk.download('wordnet',quiet=True) class PreprocessPostContent(object): """ Contains relevant methods for Preprocessing Phase """ code_snippet = re.compile(r"<pre>.*?</pre>") code_insider = re.compile(r"<code>.*?</code>") html_tag = re.compile(r"<.*?>") comment_bracket = re.compile(r"\(.*?\)") quotation = re.compile(r"(\'\')|(\")|(\`\`)") href_resource = re.compile(r"<a.*?>.*?</a>") paragraph = re.compile(r"<p>.*?</p>") equation1 = re.compile(r"\$.*?\$") equation2 = re.compile(r"\$\$.*?\$\$") integers = re.compile(r"^-?[1-9]\d*$") floats = re.compile(r"^-?([1-9]\d*\.\d*|0\.\d*[1-9]\d*|0?\.0+|0)$") operators = re.compile(r"[><\+\-\*/=]") email = re.compile(r"\w+([-+.]\w+)*@\w+([-.]\w+)*\.\w+([-.]\w+)*") web_url = re.compile(r"[a-zA-z]+://[^\s]*") punctuation = re.compile("[,!?:#$%^&*\']") @staticmethod def filterNILStr(s): def filterFunc(s): return s and s.strip() s = ' '.join(filter(filterFunc, s.split())).strip() return s def __init__(self): self.max_quote_rate = 1.5 self.max_quote_diff = 5 self.min_words_sent = 5 self.min_words_paragraph = 10 self.max_number_pragraph = 5 self.num_token = "[NUM]" self.code_token = "[CODE]" self.max_code = 5 # lemmatize self.lemmatizer = WordNetLemmatizer() def remove_bracket(self, txt): cleaned = [] for sent in TextBlob(txt).sentences: s = sent.string s_c = re.sub(self.comment_bracket, "", s) s_c_words = TextBlob(s_c).words if len(s_c_words) == 0 or len(sent.words) / len(s_c_words) > self.max_quote_rate or \ len(sent.words) - len(s_c_words) > self.max_quote_diff: continue cleaned.append(s_c) return " ".join(cleaned) def remove_quotation(self, txt): cleaned = [] for sent in TextBlob(txt).sentences: s_c = re.sub(self.quotation, "", sent.string) cleaned.append(s_c) return " ".join(cleaned) def remove_href(self, txt): cleaned = [] for sent in TextBlob(txt).sentences: s = sent.string s_c = re.sub(self.href_resource, "", s) if sent.words != TextBlob(s_c).words: continue cleaned.append(s) return " ".join(cleaned) def remove_code(self, txt): cleaned = re.sub(self.code_snippet, "", txt) return cleaned def remove_equation(self, txt): cleaned = [] for sent in TextBlob(txt).sentences: s = sent.string s_c = re.sub(self.equation2, "", s) s_c = re.sub(self.equation1, "", s_c) if sent.words != TextBlob(s_c).words: continue cleaned.append(s) return " ".join(cleaned) def remove_numbers(self, txt): cleaned = [] for sent in TextBlob(txt).sentences: s_tokens = sent.string.split() s_tokens = list( map(lambda t: re.sub(self.floats, "", t), s_tokens)) s_tokens = map(lambda t: re.sub(self.integers, "", t), s_tokens) s_c = " ".join(s_tokens) if len(sent.words) - len(TextBlob(s_c).words) > self.max_number_pragraph: continue s_tokens = sent.string.split() s_tokens = map(lambda t: re.sub(self.floats, " %s " % self.num_token, t), s_tokens) s_tokens = map(lambda t: re.sub(self.integers, " %s " % self.num_token, t), s_tokens) s_c = " ".join(s_tokens) cleaned.append(s_c) cleaned = " ".join(cleaned) return cleaned def remove_operators(self, txt): cleaned = [] for sent in TextBlob(txt).sentences: s = sent.string s_c = re.findall(self.operators, s) if len(s_c) > 3: continue cleaned.append(s) return " ".join(cleaned) def remove_hmtltag(self, txt): cleaned = re.sub(self.html_tag, "", txt) return cleaned def remove_email(self, txt): cleaned = [] for sent in TextBlob(txt).sentences: s = sent.string s_c = re.sub(self.email, "", s) if sent.words != TextBlob(s_c).words: continue cleaned.append(s) return " ".join(cleaned) def remove_url(self, txt): cleaned = [] for sent in TextBlob(txt).sentences: s = sent.string s_c = re.sub(self.web_url, "", s) if sent.words != TextBlob(s_c).words: continue cleaned.append(s) return " ".join(cleaned) def remove_useless(self, txt): cleaned = [] for sent in TextBlob(txt).sentences: if len(sent.words) < self.min_words_sent: continue if sent[-1] not in ('.', '?', '!') and len(sent.words) < 2 * self.min_words_sent: continue cleaned.append(sent.string) return " ".join(cleaned) def remove_punctuation(self, txt): cleaned = re.sub(self.punctuation, "", txt) return cleaned def __process(self, txt): txt = self.remove_href(txt) txt = self.remove_email(txt) txt = self.remove_url(txt) txt = self.remove_hmtltag(txt) txt = self.remove_equation(txt) txt = self.remove_bracket(txt) txt = self.remove_numbers(txt) txt = self.remove_operators(txt) txt = self.remove_quotation(txt) return txt def getParagraphs(self, raw_txt): raw_txt = self.filterNILStr(raw_txt) paragraphs_candidates = re.findall(self.paragraph, raw_txt) # paragraphs_candidates = [p[3:-4] # for p in paragraphs_candidates if len(p[3:-4]) > 0] paragraphs = [] for p in paragraphs_candidates: if len(TextBlob(p).words) < self.min_words_paragraph: continue paragraphs.append(p) return paragraphs def filter_wordlist(self, wordlist): def condition(t): return len(t) > 1 or t.upper() == 'I' filter_list = list(filter(condition, wordlist)) return filter_list def lemmatize(self, text): text = [self.lemmatizer.lemmatize(token) for token in text] return text # [ [word1, word2, ...], [word1, word2, ...], [word1, word2, ...], ... ] def get_mul_para_wordlist_list(self, raw_txt): # return a list of paragraphs of plain text(word list) raw_txt = raw_txt.lower() txt = self.remove_code(raw_txt) paragraphs = self.getParagraphs(txt) wordlist_list = [] for p in paragraphs: cleaned = self.__process(p) if len(cleaned.split()) == 0: continue wordlist = self.filterNILStr(cleaned) wordlist = tokenizer.tokenize(wordlist) wordlist = self.filter_wordlist(wordlist) wordlist = remove_stopwords(wordlist) wordlist = self.lemmatize(wordlist) wordlist_list.append(' '.join(wordlist)) return ' '.join(wordlist_list) # [word1, word2, ...] def get_single_para_word_list(self, raw_txt): # return a list of plain text(word list) # filter code raw_txt = raw_txt.lower() cleaned = self.__process(raw_txt) text = self.filterNILStr(cleaned) word_list = tokenizer.tokenize(text) word_list = self.filter_wordlist(word_list) word_list = remove_stopwords(word_list) word_list = self.lemmatize(word_list) return ' '.join(word_list) if __name__ == '__main__': ans = ''' <p>It is saied that Whenever<code>code</code> a problem becomes solvable by a computer, people start arguing that it does not require intelligence . </p> <p>[CLS] "Whenever a problem becomes solvable by a computer , people start arguing that it does not require intelligence . [SEP] John McCarthy is often quoted : `` As soon as it works , no one calls it AI anymore '' ( Referenced in CACM )[SEP] ."</p> <p>"One of my teachers in <code>jet.listen</code>college said that in the 1950 's , a professor was asked what he thought was intelligent for a machine . The professor reputedly answered that if a vending machine gave him the right change , that would be intelligent ."</p> <p>"Later , playing chess was considered intelligent . However , computers can now defeat grandmasters at chess , and people are no longer saying that it is a form of intelligence ."</p> <p>"Now we have OCR . It 's already stated in another answer that our methods do not have the recognition facilities of a 5 year old . As soon as this is achieved , people will say `` meh , that 's not intelligence , a 5 year old can do that ! ''"</p> <p>"A psychological bias , a need to state that we are somehow superior to machines , is at the basis of this ."</p> ''' answer = PreprocessPostContent().get_mul_para_wordlist_list(ans)
true
f68ab18c169f189297a72ee16fcd6971b922075c
Python
rafaelperazzo/programacao-web
/moodledata/vpl_data/3/usersdata/2/797/submittedfiles/ex1.py
UTF-8
237
3.703125
4
[]
no_license
# -*- coding: utf-8 -*- from __future__ import division a = input('Digite a: ') b = input('Digite b: ') c = input('Digite c: ') if a>=b and a>=c: print('%.2f' % a) elif b>=a and b>=c: print('%.2f' %b) else: print('%.2f' % c)
true
76b2f0b221c3bac3e1e9848d7972b1e0a0282193
Python
kosta324/algo_and_structures_python
/Lesson_2/6.py
UTF-8
1,499
4.1875
4
[]
no_license
""" 6. В программе генерируется случайное целое число от 0 до 100. Пользователь должен его отгадать не более чем за 10 попыток. После каждой неудачной попытки должно сообщаться больше или меньше введенное пользователем число, чем то, что загадано. Если за 10 попыток число не отгадано, то вывести загаданное число. """ from random import random min_number = 0 max_number = 100 def random_number(min, max): return int(random() * (max - min + 1)) def extrasens(counter=1, secret_number=None): if secret_number is None: return extrasens(secret_number=random_number(min_number, max_number)) if counter == 11: return print(f'К сожалению, вы проиграли. Загаданное число: {secret_number}') user_answer = int(input(f'Попытка №{counter}\nВведите число: ')) if user_answer == secret_number: return print(f'Поздравляем! Вы отгадали число {secret_number} с {counter} попыток') elif user_answer > secret_number: print('Загаданное число меньше') else: print('Загаданное число больше') counter += 1 return extrasens(counter, secret_number) extrasens()
true
a4fdec93922ec50a48a7bc99c4cbe7c2647dbecd
Python
cristinasewell/mongo_db
/about_pymongo.py
UTF-8
1,386
2.90625
3
[]
no_license
import pymongo import datetime # create a connection conn = "mongodb://localhost:27017" client = pymongo.MongoClient(conn) # define the travel_db database in Mongo db = client.travel_db # quering all destinations dest = db.destinations.find() for d in dest: print(d) # inserting a document into the destination collection db.destinations.insert_one( { "continent": "Europe", "country": "Moldova", "major_cities": ["Chisinau", "Stefan-Voda", "Causeni"] } ) # updating a document - adding an item to a document array # db.destinations.update_one( # { # "country": "Moldova" # }, # {"$push": # {"major_cities": "Antonesti"} # } # ) # # deleting a field from document # db.destinations.update_one( # {"country": "Moldova"}, # {"$unset": # {"major_cities": ""} # } # ) # deleting a document from a collection # db.destinations.delete_one( # { # "country": "Moldova" # } # ) # A dictionary that represents the document to be inserted post = { "continent": "Europe", "country": "Romania", "major_cities": ["Bucuresti", "Cluj-Napoca", 'Iasi', 'Timisoara'], "date": datetime.datetime.utcnow() } # Insert the document into the database # The database and collection, if they don't already exist, will be created at this point. db.destinations.insert_one(post)
true
42b91b8ab0d88bf62259f495d0ded3ae32f2931e
Python
JoaoGabrielDamasceno/Estudo_Python
/Lambdas/lambdas.py
UTF-8
445
4.15625
4
[]
no_license
""" Funções Lambdas são funções sem nome, ou seja, funções anônimas FORMATO lambda entrada: retorno """ exemplo = lambda x: x*3 y = input() print(y) print(exemplo(y)) nome_completo = lambda nome, sobrenome: nome.strip().title() + ' ' + sobrenome.strip().title() print(nome_completo('Joao ', ' GABRIEL ')) autores = ['Joao Gabriel', 'Joao Damasceno', 'Ana Silva', 'Carlos Botelho'] autores.sort(key= lambda sobrenome: sobrenome.split()[-1]) print(autores)
true
68a075c81d629a6cc46a162ce2182bbbf059a39e
Python
YasirHabib/data_science_deep_learning_in_python
/Section5/ann_train_6.py
UTF-8
2,175
3.09375
3
[]
no_license
# Section 5, Lecture 37 # This is extension of logistic_softmax_train_5.py import numpy as np import matplotlib.pyplot as plt from sklearn.utils import shuffle from process_2 import get_data def target2indicator(Target, K): N = len(Target) T = np.zeros((N,K)) for x in range(N): T[x, Target[x]] = 1 return T X, Target = get_data() X, Target = shuffle(X, Target) D = len(X[0]) # dimensionality of input M = 5 # hidden layer size K = len(set(Target)) # number of unique values in Y or number of classes X_train = X[:-100] Target_train = Target[:-100] Target_train_ind = target2indicator(Target_train, K) X_test = X[-100:] Target_test = Target[-100:] Target_test_ind = target2indicator(Target_test, K) # randomly initialize weights w1 = np.random.randn(D, M) b1 = np.zeros(M) w2 = np.random.randn(M, K) b2 = np.zeros(K) def softmax(a): expA = np.exp(a) return expA / expA.sum(axis = 1, keepdims = True) def forward(X, w, b, v, c): z = np.tanh(np.dot(X, w) + b) A = np.dot(z, v) + c return softmax(A), z def predict(P_Y_given_X): return np.argmax(P_Y_given_X, axis = 1) def classification_rate(Y, P): return np.mean(Y == P) def cost(T, pY): return -np.mean(T*np.log(pY)) learning_rate = 1e-3 epochs = 10000 train_costs = [] test_costs = [] for t in range(epochs): pY_train, Z_train = forward(X_train, w1, b1, w2, b2) pY_test, Z_test = forward(X_test, w1, b1, w2, b2) c_train = cost(Target_train_ind, pY_train) c_test = cost(Target_test_ind, pY_test) train_costs.append(c_train) test_costs.append(c_test) w2 -= learning_rate * Z_train.T.dot(pY_train - Target_train_ind) b2 -= learning_rate * (pY_train - Target_train_ind).sum(axis = 0) dZ = (pY_train - Target_train_ind).dot(w2.T) * (1 - Z_train*Z_train) w1 -= learning_rate * X_train.T.dot(dZ) b1 -= learning_rate * dZ.sum(axis = 0) if t % 1000 == 0: print(t, c_train, c_test) print("Final train classification_rate:", classification_rate(Target_train, predict(pY_train))) print("Final test classification_rate:", classification_rate(Target_test, predict(pY_test))) plt.plot(train_costs, label='train cost') plt.plot(test_costs, label='test cost') plt.legend() plt.show()
true
4ee3e4047e91f030f039d91123fb135764fd5f5a
Python
mobeets/FOMOBot
/bin/next_location.py
UTF-8
967
2.921875
3
[]
no_license
from collections import namedtuple from random import choice import csv INFILE = 'locs.csv' BIG_CITIES_FILE = 'loc_pops.csv' RNG = 0.025 HEADER = 'locId,country,region,city,postalCode,latitude,longitude,metroCode,areaCode' Location = namedtuple('Location', HEADER) def location(infile=INFILE, bigfile=BIG_CITIES_FILE): with open(bigfile, 'rb') as csvfile: rows = list(csv.reader(csvfile)) city, state = choice(rows) with open(infile, 'rb') as csvfile: rows = list(csv.reader(csvfile)) for row in rows: loc = Location(*row) if not loc.latitude: continue if loc.city.lower() == city.lower(): if loc.region == state: return loc def bounding_box(loc, rng=RNG): lat, lon = float(loc.latitude), float(loc.longitude) lat_1, lat_2 = lat - rng, lat + rng lon_1, lon_2 = lon - rng, lon + rng return [lon_1, lat_1, lon_2, lat_2]
true