blob_id
stringlengths
40
40
language
stringclasses
1 value
repo_name
stringlengths
5
133
path
stringlengths
2
333
src_encoding
stringclasses
30 values
length_bytes
int64
18
5.47M
score
float64
2.52
5.81
int_score
int64
3
5
detected_licenses
listlengths
0
67
license_type
stringclasses
2 values
text
stringlengths
12
5.47M
download_success
bool
1 class
f2ee8a91493fc943872ab6c503c1edf2f7e73ea6
Python
GarrettMooney/moonpy
/tests/conftest.py
UTF-8
325
2.6875
3
[ "MIT" ]
permissive
import pytest @pytest.fixture(scope="module") def data(): return { "data": {"a": 1, "c": 3, "b": 2}, "file_contents": '{\n "hello": "world"\n}', "invalid_file_contents": '{\n "hello": world\n}', "file_name": "tmp.json", "sorted_file_contents": '{"a":1,"b":2,"c":3}', }
true
f152fa1ecf8d134c9da19aabc612e8427caffd9f
Python
Sarastro72/Advent-of-Code
/2019/16/puzzle2.py
UTF-8
586
3.09375
3
[]
no_license
#!/usr/local/bin/python3 with open("input") as fp: string = fp.readline().strip() input = list(map(int, list(string))) input = input * 10000 skip = int("".join([str(i) for i in input[:7]])) length = len(input) count = 1 for i in range(100): output = [0] * length for p in range(length-1, skip-1, -1): if (p == length-1): output[p] = input[p] else: output[p] = (input[p] + output[p + 1]) % 10 input = output print(f"{count}\r", end="") count += 1 ostr = "".join([str(d) for d in output[skip:skip+8]]) print(ostr)
true
98d5ed72f32044d030a84b51e1be48657e190fdd
Python
Paryaxify/450dsa
/Practice/LeetCode/97_interleaving_strings.py
UTF-8
1,395
3.953125
4
[]
no_license
def isInterleaving(s1: str, s2: str, s3: str) -> bool: l1 = len(s1) l2 = len(s2) l3 = len(s3) # check whether the length of s3 is comparable to s1 and s2 or not if l1 + l2 != l3: return False # set starting pointer to 0 for the strings queue = [(0, 0)] # add to visited set if the index has been visited visited = set((0, 0)) while queue: # starting from front of queue s1_index, s2_index = queue.pop(0) if s1_index + s2_index == l3: return True # check whether current index is less than the length of list # check if current index is the current index of the interleaved string # check whether the current queue exists in visited if s1_index + 1 <= l1 and s1[s1_index] == s3[s1_index + s2_index] and (s1_index + 1, s2_index) not in visited: # add the index to queue and mark it as visited queue.append((s1_index + 1, s2_index)) visited.add((s1_index + 1, s2_index)) if s2_index + 1 <= l2 and s2[s2_index] == s3[s1_index + s2_index] and (s1_index, s2_index + 1) not in visited: queue.append((s1_index, s2_index + 1)) visited.add((s1_index, s2_index + 1)) # loop continues until the queue isnt empty return False s1 = "aabcc" s2 = "dbbca" s3 = "aadbbcbcac" print(isInterleaving(s1, s2, s3))
true
9792aaf92212eddfc97e299cd331fc73b29a6f8c
Python
jainharshit27/P7_T
/P7_T.py
UTF-8
600
3.078125
3
[]
no_license
import pygame pygame.init() screen = pygame.display.set_mode((200, 200)) countdown = 10 font = pygame.font.Font("freesansbold.ttf", 32) # Add while condition such that the countdown will run until it is greater than 0 screen.fill((0,0,0)) for event in pygame.event.get(): if event.type == pygame.QUIT: pygame.quit() sys.exit() # render the number # paste the rendered number # decrease countdown by 1 pygame.display.update() # Delay the program by 1 if countdown == 0: pygame.quit() sys.exit()
true
46ed010784b55a81bde3a397700150a9f7d2c3c9
Python
vanyaeccles/Android-HumanActivityRecognition
/Networking/basicUDPSocket.py
UTF-8
1,126
3
3
[]
no_license
import socket, traceback import time, os from datetime import datetime import keyboard #simple script that streams data from port 5555 to the terminal host = '' port = 5555 s = socket.socket(socket.AF_INET, socket.SOCK_DGRAM) s.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1) s.setsockopt(socket.SOL_SOCKET, socket.SO_BROADCAST, 1) s.bind((host, port)) print("Socket has been set up") #naming the file #activity_label = input("Please enter a label for the activity: \n") #get the time as a name timestr = time.strftime("%d,%m,%Y--%H,%M,%S") ##script_dir = os.path.dirname(__file__) #<-- absolute dir the script is in ##filename = "Data/" + activity_label + ',' + timestr +".csv" ##filename = os.path.join(script_dir, filename) while 1: if keyboard.is_pressed('q'):#if key 'q' is pressed print('You Pressed A Key!') break#finishing the loop #get the message as utf text message, address = s.recvfrom(8192) messageString = message.decode("utf-8") #print to console print(messageString) print() print("Done streaming")
true
0d960d2896624690a3c6de42e2e87016fb9db46b
Python
laurenah/image-downloader
/download_images.py
UTF-8
1,988
3.84375
4
[]
no_license
# imports import urllib.request import argparse # parser parser = argparse.ArgumentParser(description="Download multiple images from a URL into the folder where this file is located. For example: " + "using 'https://acnhapi.com/v1/icons/fish/' as the base URL, where every fish has an id from 1 to 80, " + "you would input the URL, maybe 'fish' as the image category, the starting id and the ending id. " + "This will save images named 'fish1.jpg', 'fish2.jpg' etc. into the folder where this file is executed") # add arguments parser.add_argument('-url', metavar='url', type=str, help='the base URL - should follow this format: https://site/image_category/') parser.add_argument('-img', metavar='img', type=str, help='the main image name/category - for example: animal, or person. This assumes the site hosts an image for each item given the item id') parser.add_argument('-start', metavar='start', type=int, help='the starting id of the images to download, must be a positive integer, and less than the end argument') parser.add_argument('-end', metavar='end', type=int, help='the ending id of the images to download, must be a positive integer, and greater than the start argument') # execute parse_args() method args = parser.parse_args() # collect args into variables base_url = args.url image_name = args.img start = args.start end = args.end if (start <= 0 or start > end): print('start must not be negative or greater than end argument') exit() if (end <= 0 or end < start): print('end must not be negative, or less than start argument') exit() # for each id in the range supplied, fetch the image for i in range(start, end+1): urllib.request.urlretrieve(base_url + str(i), image_name + str(i) + ".jpg") print("Downloaded " + image_name + str(i) + ".jpg") print("-- Finished! --")
true
294e88c3aea81842e5a0ad76ef6e63b1f8a2bc5e
Python
dongyifeng/algorithm
/python/interview/matrix/transposition.py
UTF-8
364
3.453125
3
[]
no_license
#coding:utf-8 # 矩阵倒置 # 将倒置矩阵 def transposition(matrix): if matrix is None and len(matrix) > 0:return n = len(matrix) m = len(matrix[0]) if m <= 0 :return r = [[0 for j in range(n)] for i in range(m)] for i in range(n): for j in range(m): r[j][i] = matrix[i][j] return r m = [[1,2,3],[4,5,6]] print m t = transposition(m) print t
true
e8cea498bf64d7ac16d4b2b8c218885b0d3a9c10
Python
gsi-upm/soba
/projects/GreenSOBA/agents/light.py
UTF-8
1,814
2.546875
3
[ "MIT" ]
permissive
from transitions import Machine from mesa import Agent, Model from transitions import State import configuration.settings class Light(Agent): states = [ State(name='off', on_enter=['set_off']), State(name='on', on_enter=['set_on']) ] def __init__(self, unique_id, model, room): super().__init__(unique_id, model) self.room = room self.consume = configuration.settings.consume_light_byroom_medium self.wait_off = int(configuration.settings.time_to_off_light * 60 * 100 /configuration.settings.time_by_step) self.machine = Machine(model=self, states=Light.states, initial='off') self.machine.add_transition('switch_on', '*', 'on') self.machine.add_transition('switch_off', '*', 'off') def sensorCheck(self): userInRoom = self.model.ThereIsSomeOccupantInRoom(self.room) if userInRoom == True: if self.state == 'on': pass else: self.switch_on() else: if self.state == 'on': if self.wait_off > 0: self.wait_off = self.wait_off - 1 else: self.switch_off() self.wait_off = int(configuration.settings.time_to_off_light * 60 * 100 /configuration.settings.time_by_step) else: pass def regularBehaviour(self): pass def step(self): #print('light: ', self.unique_id, self.state, self.room.name) self.model.consumeEnergy(self) if (self.model.modelWay != 0): self.sensorCheck() else: self.regularBehaviour() def set_off(self): self.model.lightsOn.remove(self) def set_on(self): self.model.lightsOn.append(self)
true
20ef51f2dbb8e3f48f4b3dd0baebb73d8834500f
Python
3dankateers/nitrogenspider
/pro_match.py
UTF-8
9,504
2.65625
3
[]
no_license
## Model for match ## matches: id, team1_name, team2_name, map_number, match_day, champs1, champs2, win, match_date, is_test, tournament_id, first_blood, kills_5, status ##odds (is embedded inside ProMatch) ## status possibilities: "nitrogen" or "csv or "both" or None from nitrogen_db_client import NitrogenDbClient from odd import Odd from tournament import Tournament PATCH = "6.13" class ProMatch: ##Required on creation: team1_name, team2_name, map_number, match_day ##Possibly populated later by csv file: champs1, champs2, win, first_blood, kills_5, red_side ##Possibly populated later by nitrogen scraper: tournament_id, match_date, odds ## set programmatically: id, is_test, status def __init__(self, team1_name, team2_name, map_number, match_day, red_side = None, champs1 = None, champs2 = None, win = None, match_date = None, odds = [], is_test = None, tournament_id = None, first_blood = None, kills_5 = None, status = None, id = None, patch = PATCH): self.id = id self.team1_name = team1_name self.team2_name = team2_name self.map_number = map_number self.match_day = match_day self.red_side = red_side self.champs1 = champs1 self.champs2 = champs2 self.win = win self.match_date = match_date self.odds = odds self.is_test = is_test self.tournament_id = tournament_id self.first_blood = first_blood self.kills_5 = kills_5 self.status = status self.to_invert = False self.patch = patch ##constructor from Cursor @classmethod def from_dict(cls, c): id = c["_id"] team1_name = c["team1_name"] team2_name = c["team2_name"] map_number = c["map_number"] match_day = c["match_day"] red_side = c["red_side"] champs1 = c["champs1"] champs2 = c["champs2"] win = c["win"] match_date = c["match_date"] odds = c["odds"] is_test = c["is_test"] tournament_id = c["tournament_id"] first_blood = c["first_blood"] kills_5 = c["kills_5"] status = c["status"] patch = c["patch"] return cls(team1_name, team2_name, map_number, match_day, red_side, champs1, champs2, win, match_date, odds, is_test, tournament_id, first_blood, kills_5, status, id, patch) ## Uniquely defined by: team1_name, team2_name, map_number, match_day ## if match already exists in db return it, else create new match using required information @classmethod def find_match(cls, team1_name, team2_name, map_number, match_day, caller): cursor1 = cls.lookup_match(team1_name, team2_name, map_number, match_day) cursor2 = cls.lookup_match(team2_name, team1_name, map_number, match_day) ## pretty sure nitrogen lists teams alphabetically so need to check both since csv find_match uses red_side/blue_side order if cursor1.count() != 0: ##no inversion neccesary match = cls.from_dict(cursor1[0]) match.to_invert = False return match elif cursor2.count() != 0: ##inversion might be neccesary match = cls.from_dict(cursor2[0]) match.set_should_invert(caller) return match else: return cls(team1_name, team2_name, map_number, match_day) @classmethod def find_corrupted_match(cls, team1_name, team2_name, map_number, match_day, champs1): print team1_name, team2_name, map_number, match_day cursor1 = cls.lookup_corrupted_match(team1_name, team2_name, map_number, match_day, champs1) if cursor1.count() == 0: print "corrupted" return True else: print "corrupted" return False @staticmethod def lookup_corrupted_match(team1_name, team2_name, map_number, match_day, champs1): cursor = NitrogenDbClient.get_db().matches.find({"team1_name" : team1_name, "team2_name" : team2_name, "map_number" : map_number, "match_day" : match_day, "champs1" : champs1}) return cursor ## check if inversion neccesary(same match but team1 and team2 are swapped) def set_should_invert(self, caller): ## if both means inversion was done already if self.status == "both": self.to_invert = False elif self.status == caller: print "wtf should not be possible" self.to_invert = False else: self.to_invert = True ## create new match based on model, returns match_id def create_match(self): record = NitrogenDbClient.get_db().matches.insert_one({ "team1_name" : self.team1_name, "team2_name" : self.team2_name, "map_number" : self.map_number, "match_day" : self.match_day, "red_side" : self.red_side, "champs1" : self.champs1, "champs2" : self.champs2, "win" : self.win, "match_date" : self.match_date, "odds" : self.odds, "is_test" : self.is_test, "tournament_id" : self.tournament_id, "first_blood" : self.first_blood, "kills_5" : self.kills_5, "status" : self.status, "patch" : self.patch }) return record.inserted_id ## update existing match with new values in model def update_match(self): NitrogenDbClient.get_db().matches.update_one( {"_id" : self.id},{ "$set": { "team1_name" : self.team1_name, "team2_name" : self.team2_name, "map_number" : self.map_number, "match_day" : self.match_day, "red_side" : self.red_side, "champs1" : self.champs1, "champs2" : self.champs2, "win" : self.win, "match_date" : self.match_date, "odds" : self.odds, "is_test" : self.is_test, "tournament_id" : self.tournament_id, "first_blood" : self.first_blood, "kills_5" : self.kills_5, "status" : self.status, "patch" : self.patch } }) ## set is_test to whatever is_test value is passed in, for all pro matches that have csv data @staticmethod def reset_all_tests(is_test = True): NitrogenDbClient.get_db().matches.update_many( {"status" : "csv", "patch" : PATCH},{ "$set": { "is_test" : is_test } }) NitrogenDbClient.get_db().matches.update_many( {"status" : "both", "patch" : PATCH},{ "$set": { "is_test" : is_test } }) ## return cursor to match found based on id @staticmethod def get_match(id): cursor = NitrogenDbClient.get_db().matches.find({"_id" : id}) return cursor ## find match that has same teams and date @staticmethod def lookup_match(team1_name, team2_name, map_number, match_day): cursor = NitrogenDbClient.get_db().matches.find({"team1_name" : team1_name, "team2_name" : team2_name, "map_number" : map_number, "match_day" : match_day}) return cursor ## return all matches not marked as is_test @staticmethod def get_training_set(): cursor = NitrogenDbClient.get_db().matches.find({"is_test" : False, "patch" : PATCH}) return cursor ## return all matches that are labeled is_test @staticmethod def get_test_set(): cursor = NitrogenDbClient.get_db().matches.find({"is_test" : True, "patch" : PATCH}) return cursor ##returns all matches that have csv data @staticmethod def get_csv_set(): cursor = NitrogenDbClient.get_db().matches.find({"$or":[ {"status" : "both"}, {"status" : "csv", "patch" : PATCH}]}) return cursor @staticmethod def get_testable_set(): cursor = NitrogenDbClient.get_db().matches.find({"$or":[ {"status" : "both"}, {"status" : "csv", "patch" : PATCH}]}) return cursor ##should always be passed in either status == "both_old" or "both" @staticmethod def get_bettable_set(): cursor = NitrogenDbClient.get_db().matches.find({"status" : "both", "patch" : PATCH}) return cursor @staticmethod def get_by_status(status): cursor = NitrogenDbClient.get_db().matches.find({"status" : status, "patch" : PATCH}) return cursor ## passed in status, prints basic informatin about pro matches @staticmethod def print_by_status(status): cursor = ProMatch.get_by_status(status) for d in cursor: match = ProMatch.from_dict(d) match.pprint() ##passed in status and a string from tourny required @staticmethod def print_by_status_tournament(status, tournament_string): cursor = Tournament.get_all() t_id_requested = 0 for d in cursor: tournament = Tournament.from_dict(d) if tournament_string in tournament.name: t_id_requested = tournament.id break cursor = NitrogenDbClient.get_db().matches.find({"status" : status, "tournament_id" : t_id_requested, "patch" : PATCH}) for d in cursor: match = ProMatch.from_dict(d) match.pprint() def pprint(self): print self.team1_name, self.team2_name, self.match_day, self.map_number, self.status ## return all matches @staticmethod def get_all_matches(): cursor = NitrogenDbClient.get_db().matches.find({"patch" : PATCH}) return cursor def get_latest_ML_T1(self): ##sorted by date when returned latest_odd = self.odds[-1] return latest_odd["ML_T1"] def get_latest_ML_T2(self): ##sorted by date when returned latest_odd = self.odds[-1] return latest_odd["ML_T2"] def save(self): ##if found already in db if self.id != None: ##should only ever run once per match(sometimes 0 times) if self.to_invert == True: self.invert() self.update_match() ## else it's a new match that needs to be created else: ##print "new" self.id = self.create_match() ##invert team names and MLS when nitrogen.team1_name = csv.team2_name and vice versa def invert(self): assert (self.status == "both") print "inverting" temp = self.team1_name self.team1_name = self.team2_name self.team2_name = temp for o in self.odds: temp = o["ML_T1"] o["ML_T1"] = o["ML_T2"] o["ML_T2"] = temp @staticmethod def print_statuses(): cursor = ProMatch.get_all_matches() for d in cursor: match = ProMatch.from_dict(d) print match.status
true
9bb934b9a72bcfcd9f27be0857bae2003881f11e
Python
Piropoo/dashboard
/dashboard/blueprints/views.py
UTF-8
2,847
2.625
3
[ "MIT" ]
permissive
from flask import Blueprint, session, redirect, render_template, url_for, request, flash from dashboard.ext.database import Usuario bp = Blueprint('views', __name__) @bp.route('/') def index(): if 'usuario_logado' not in session: session['usuario_logado'] = False if not session['usuario_logado']: return redirect(url_for('views.login')) else: return redirect(url_for('views.dashboard')) @bp.route('/login') def login(): if not session['usuario_logado']: return render_template('login.html', titulo_da_pagina='Dashboard - Login', usuario_logado=session['usuario_logado'] or False, stylesheets=['login.css'], scripts=['validar_campos_form.js']) def autenticar_login(login_digitado, password_digitado): users = Usuario.query.all() usuario = None usuario_existe = False if '@' in login_digitado: campo = 'email' for user in users: if login_digitado == user.email: usuario = user usuario_existe = True else: campo = 'username' for user in users: if login_digitado == user.username: usuario = user usuario_existe = True if usuario_existe: if password_digitado == usuario.password: senha_correta = True else: senha_correta = False if senha_correta: dados = {'nome': usuario.nome, 'logado': True} return dados else: dados = {'erro': 'A senha está incorreta.', 'logado': False} return dados else: if campo == 'email': dados = {'erro': 'Este email não está cadastrado.', 'logado': False} return dados elif campo == 'username': dados = {'erro': 'Este usuário não está cadastrado.', 'logado': False} return dados @bp.route('/autenticar', methods=['POST']) def autenticar(): login_digitado = request.form['login'].strip().lower() password_digitado = request.form['senha'] dados = autenticar_login(login_digitado, password_digitado) logado = dados['logado'] if logado: session['usuario_logado'] = True session['nome'] = dados['nome'] else: flash(dados['erro']) return redirect(url_for('views.index')) @bp.route('/dashboard') def dashboard(): primeiro_nome = session['nome'].split()[0] return render_template('dashboard.html', nome=primeiro_nome, usuario_logado=session['usuario_logado'], stylesheets=['dashboard.css']) @bp.route('/logout') def logout(): session['usuario_logado'] = False return redirect(url_for('views.index')) def init_app(app): app.register_blueprint(bp)
true
000e8412ebef8e7ac02231097df7b325babda5f1
Python
liuwang1/tefla
/tefla/core/losses.py
UTF-8
13,373
2.953125
3
[ "MIT" ]
permissive
# -------------------------------------------------------------------# # Written by Mrinal Haloi # Contact: mrinal.haloi11@gmail.com # Copyright 2016, Mrinal Haloi # -------------------------------------------------------------------# import tensorflow as tf import numpy as np log_loss = tf.contrib.losses.log_loss def log_loss_custom(predictions, labels, eps=1e-7, name='log'): """Define a log loss. Args: predictions: 2D tensor or array, [batch_size, num_classes] predictions of the network . labels: 2D or array tensor, [batch_size, num_classes] ground truth labels or target labels. eps: a constant to set upper or lower limit for labels, smoothening factor name: Optional scope/name for op_scope. Returns: A tensor with the log loss. """ with tf.name_scope(name): predictions = tf.to_float(predictions) labels = tf.to_float(labels) predictions = tf.clip_by_value(predictions, eps, 1 - eps) predictions.get_shape().assert_is_compatible_with(labels.get_shape()) loss = -tf.reduce_mean(labels * tf.log(predictions)) return loss def kappa_loss(predictions, labels, y_pow=1, eps=1e-15, num_ratings=5, batch_size=32, name='kappa'): """Define a kappa loss, Its a continuous differentiable approximation of discrete kappa loss. Args: predictions: 2D tensor or array, [batch_size, num_classes] predictions of the network . labels: 2D tensor or array,[batch_size, num_classes] ground truth labels or target labels. y_pow: int, to whcih the labels should be raised; useful if model diverge. e.g. y_pow=2 num_ratings: numbers of rater to used, typically num_classes of the model batch_size: batch_size of the training or validation ops eps: a float, prevents divide by zero name: Optional scope/name for op_scope. Returns: A tensor with the kappa loss. """ with tf.name_scope(name): labels = tf.to_float(labels) repeat_op = tf.to_float(tf.tile(tf.reshape( tf.range(0, num_ratings), [num_ratings, 1]), [1, num_ratings])) repeat_op_sq = tf.square((repeat_op - tf.transpose(repeat_op))) weights = repeat_op_sq / tf.to_float((num_ratings - 1) ** 2) pred_ = predictions ** y_pow try: pred_norm = pred_ / \ (eps + tf.reshape(tf.reduce_sum(pred_, 1), [-1, 1])) except Exception: pred_norm = pred_ / \ (eps + tf.reshape(tf.reduce_sum(pred_, 1), [batch_size, 1])) hist_rater_a = tf.reduce_sum(pred_norm, 0) hist_rater_b = tf.reduce_sum(labels, 0) conf_mat = tf.matmul(tf.transpose(pred_norm), labels) nom = tf.reduce_sum(weights * conf_mat) denom = tf.reduce_sum(weights * tf.matmul(tf.reshape(hist_rater_a, [ num_ratings, 1]), tf.reshape(hist_rater_b, [1, num_ratings])) / tf.to_float(batch_size)) try: return -(1 - nom / denom) except Exception: return -(1 - nom / (denom + eps)) def kappa_log_loss(predictions, labels, label_smoothing=0.0, y_pow=1, batch_size=32, log_scale=0.5, log_offset=0.50, name='kappa_log'): """Define a joint kappa and log loss, Kappa is a continuous differentiable approximation of discrete kappa loss. Args: predictions: 2D tensor or array, [batch_size, num_classes] predictions of the network . labels: 2D tensor or array,[batch_size, num_classes] ground truth labels or target labels. label_smoothing: a float, used to smooth the labels for better generalization if greater than 0 then smooth the labels. y_pow: int, to whcih the labels should be raised; useful if model diverge. e.g. y_pow=2 num_ratings: numbers of rater to used, typically num_classes of the model batch_size: batch_size of the training or validation ops log_scale: a float, used to multiply the clipped log loss, e.g: 0.5 log_offset:a float minimum log loss offset to substract from original log loss; e.g. 0.50 name: Optional scope/name for op_scope. Returns: A tensor with the kappa log loss. """ with tf.name_scope(name): num_classes = labels.get_shape()[-1].value labels = tf.cast(labels, predictions.dtype) if label_smoothing > 0: smooth_positives = 1.0 - label_smoothing smooth_negatives = label_smoothing / num_classes labels = labels * smooth_positives + smooth_negatives log_loss_res = log_loss(predictions, labels) kappa_loss_res = kappa_loss( predictions, labels, y_pow=y_pow, batch_size=batch_size) return kappa_loss_res + log_scale * (log_loss_res - log_offset) def kappa_log_loss_clipped(predictions, labels, label_smoothing=0.0, y_pow=1, batch_size=32, log_scale=0.5, log_cutoff=0.80, name='kappa_log_clipped'): """Define a joint kappa and log loss; log loss is clipped by a defined min value; Kappa is a continuous differentiable approximation of discrete kappa loss. Args: predictions: 2D tensor or array, [batch_size, num_classes] predictions of the network . labels: 2D tensor or array,[batch_size, num_classes] ground truth labels or target labels. label_smoothing: a float, used to smooth the labels for better generalization if greater than 0 then smooth the labels. y_pow: int, to whcih the labels should be raised; useful if model diverge. e.g. y_pow=2 num_ratings: numbers of rater to used, typically num_classes of the model batch_size: batch_size of the training or validation ops log_scale: a float, used to multiply the clipped log loss, e.g: 0.5 log_cutoff:a float, minimum log loss value; e.g. 0.50 name: Optional scope/name for op_scope. Returns: A tensor with the clipped kappa log loss. """ with tf.name_scope(name): num_classes = labels.get_shape()[-1].value labels = tf.cast(labels, predictions.dtype) if label_smoothing > 0: smooth_positives = 1.0 - label_smoothing smooth_negatives = label_smoothing / num_classes labels = labels * smooth_positives + smooth_negatives log_loss_res = log_loss(predictions, labels) kappa_loss_res = kappa_loss( predictions, labels, y_pow=y_pow, batch_size=batch_size) return kappa_loss_res + log_scale * tf.clip_by_value(log_loss_res, log_cutoff, 10 ** 3) def cross_entropy_loss(logits, labels, label_smoothing=0.0, weight=1.0, name='cross_entropy_loss'): """Define a cross entropy loss with label smoothing. Args: predictions: 2D tensor or array, [batch_size, num_classes] predictions of the network . labels: 2D tensor or array,[batch_size, num_classes] ground truth labels or target labels. label_smoothing: a float, used to smooth the labels for better generalization if greater than 0 then smooth the labels. weight: scale the loss by this factor. name: Optional scope/name for op_scope. Returns: A tensor with the cross entropy loss. """ logits.get_shape().assert_is_compatible_with(labels.get_shape()) with tf.name_scope(name): num_classes = labels.get_shape()[-1].value labels = tf.cast(labels, logits.dtype) if label_smoothing > 0: smooth_positives = 1.0 - label_smoothing smooth_negatives = label_smoothing / num_classes labels = labels * smooth_positives + smooth_negatives cross_entropy = tf.nn.softmax_cross_entropy_with_logits( logits, labels, name='xentropy') weight = tf.convert_to_tensor( weight, dtype=logits.dtype.base_dtype, name='loss_weight') loss = tf.mul(weight, tf.reduce_mean(cross_entropy), name='value') return loss def l1_l2_regularizer(var, weight_l1=1.0, weight_l2=1.0, name='l1_l2_regularizer'): """Define a L2Loss, useful for regularize, i.e. weight decay. Args: var: tensor to regularize. weight_l1: an optional weight to modulate the l1 loss. weight_l2: an optional weight to modulate the l2 loss. name: Optional scope/name for op_scope. Returns: the l1+L2 loss op. """ with tf.name_scope(name): weight_l1_t = tf.convert_to_tensor( weight_l1, dtype=var.dtype.base_dtype, name='weight_l1') weight_l2_t = tf.convert_to_tensor( weight_l2, dtype=var.dtype.base_dtype, name='weight_l2') reg_l1 = tf.mul(weight_l1_t, tf.reduce_sum( tf.abs(var)), name='value_l1') reg_l2 = tf.mul(weight_l2_t, tf.nn.l2_loss(var), name='value_l2') return tf.add(reg_l1, reg_l2, name='value') def discretized_mix_logistic_loss(inputs, predictions, sum_all=True, name='disretized_mix_logistic_loss'): """ log-likelihood for mixture of discretized logistics, assumes the data has been rescaled to [-1,1] interval Args: predictions: 4D tensor or array, [batch_size, width, height, out_channels] predictions of the network . inputs: 4D tensor or array, [batch_size, width, height, num_classes] ground truth labels or target labels. name: Optional scope/name for op_scope. Returns: A tensor with the discretized mix logistic loss. """ with tf.name_scope(name): inputs_shape = list(map(int, inputs.get_shape())) predictions_shape = list(map(int, predictions.get_shape())) nr_mix = int(predictions_shape[-1] / 10) logit_probs = predictions[:, :, :, :nr_mix] predictions = tf.reshape( predictions[:, :, :, nr_mix:], inputs_shape + [nr_mix * 3]) means = predictions[:, :, :, :, :nr_mix] log_scales = tf.maximum( predictions[:, :, :, :, nr_mix:2 * nr_mix], -7.) coeffs = tf.nn.tanh(predictions[:, :, :, :, 2 * nr_mix:3 * nr_mix]) inputs = tf.reshape(inputs, inputs_shape + [1]) + tf.zeros(inputs_shape + [nr_mix]) m2 = tf.reshape(means[:, :, :, 1, :] + coeffs[:, :, :, 0, :] * inputs[:, :, :, 0, :], [inputs_shape[0], inputs_shape[1], inputs_shape[2], 1, nr_mix]) m3 = tf.reshape(means[:, :, :, 2, :] + coeffs[:, :, :, 1, :] * inputs[:, :, :, 0, :] + coeffs[:, :, :, 2, :] * inputs[:, :, :, 1, :], [inputs_shape[0], inputs_shape[1], inputs_shape[2], 1, nr_mix]) means = tf.concat(3, [tf.reshape(means[:, :, :, 0, :], [ inputs_shape[0], inputs_shape[1], inputs_shape[2], 1, nr_mix]), m2, m3]) centered_inputs = inputs - means inv_stdv = tf.exp(-log_scales) plus_in = inv_stdv * (centered_inputs + 1. / 255.) cdf_plus = tf.nn.sigmoid(plus_in) min_in = inv_stdv * (centered_inputs - 1. / 255.) cdf_min = tf.nn.sigmoid(min_in) log_cdf_plus = plus_in - tf.nn.softplus(plus_in) log_one_minus_cdf_min = -tf.nn.softplus(min_in) cdf_delta = cdf_plus - cdf_min mid_in = inv_stdv * centered_inputs log_pdf_mid = mid_in - log_scales - 2. * tf.nn.softplus(mid_in) log_probs = tf.select(inputs < -0.999, log_cdf_plus, tf.select(inputs > 0.999, log_one_minus_cdf_min, tf.select( cdf_delta > 1e-5, tf.log(tf.maximum(cdf_delta, 1e-12)), log_pdf_mid - np.log(127.5)))) log_probs = tf.reduce_sum(log_probs, 3) + \ log_prob_from_logits(logit_probs) if sum_all: return -tf.reduce_sum(log_sum_exp(log_probs)) else: return -tf.reduce_sum(log_sum_exp(log_probs), [1, 2]) def mse_loss(pred, labels): try: batch_size = tf.cast(pred.shape[0], tf.float32) except Exception as e: print('Pred is a tf tensor %s' % str(e.message)) batch_size = tf.cast(tf.shape(pred)[0], tf.float32) loss_val = tf.sqrt(2 * tf.nn.l2_loss(pred - labels)) / batch_size return loss_val def pullaway_loss(embeddings, name='pullaway_loss'): """Pull Away loss calculation Args: embeddings: The embeddings to be orthogonalized for varied faces. Shape [batch_size, embeddings_dim] Return: pull away term loss """ with tf.name_scope(name): norm = tf.sqrt(tf.reduce_sum(tf.square(embeddings), 1, keep_dims=True)) normalized_embeddings = embeddings / norm similarity = tf.matmul(normalized_embeddings, normalized_embeddings, transpose_b=True) batch_size = tf.cast(tf.shape(embeddings)[0], tf.float32) pt_loss = (tf.reduce_sum(similarity) - batch_size) / \ (batch_size * (batch_size - 1)) return pt_loss def log_sum_exp(x): """ numerically stable log_sum_exp implementation that prevents overflow """ axis = len(x.get_shape()) - 1 m = tf.reduce_max(x, axis) m2 = tf.reduce_max(x, axis, keep_dims=True) return m + tf.log(tf.reduce_sum(tf.exp(x - m2), axis)) def log_prob_from_logits(x): """ numerically stable log_softmax implementation that prevents overflow """ axis = len(x.get_shape()) - 1 m = tf.reduce_max(x, axis, keep_dims=True) return x - m - tf.log(tf.reduce_sum(tf.exp(x - m), axis, keep_dims=True))
true
c6911b3ab0a8451f81b9c4ce9d92104da3aee688
Python
ymsk-sky/atcoder
/abc217/a.py
UTF-8
59
2.921875
3
[]
no_license
s,t=map(str,input().split()) print('Yes' if s<t else 'No')
true
9df23fbde85f293e598e5e644550e6f837b7c845
Python
mjdroz/StatisticsCalculator
/UnitTests/test_random_generator.py
UTF-8
3,966
3.59375
4
[ "MIT" ]
permissive
import unittest from pprint import pprint from RandomGenerator.random_generator import random class MyTestCase(unittest.TestCase): def setUp( self ) -> None: self.random = random() self.start = 1 self.end = 100 self.length = 6 self.seed = 8 self.num_val = 3 self.list = self.random.randomIntList(self.start, self.end, self.length, self.seed) def test_instantiate_calculator(self): self.assertIsInstance(self.random, random) def test_randomInt_method( self ): int_rand = str(self.random.randomInt(self.start, self.end)) pprint("Random Int: " + int_rand) self.assertEqual(isinstance(self.random.randomInt(self.start, self.end), int),True) def test_randomDec_method(self): dec_rand = str(self.random.randomDec(self.start, self.end)) pprint("Random Decimal: " + dec_rand) self.assertEqual(isinstance(self.random.randomDec(self.start, self.end), float), True) def test_randomIntSeed_method( self ): int_seed = str(self.random.randomIntSeed(self.start, self.end, self.seed)) pprint("Seeded Int: " + int_seed) self.assertEqual(int_seed, str(self.random.randomIntSeed(self.start, self.end, self.seed))) def test_randomDecSeed_method( self ): dec_seed = str(self.random.randomDecSeed(self.start, self.end, self.seed)) pprint("Seeded Decimal: " + dec_seed) self.assertEqual(dec_seed, str(self.random.randomDecSeed(self.start, self.end, self.seed))) def test_randomIntList_method(self): int_array = str(self.random.randomIntList(self.start, self.end, self.length, self.seed)) val_list = (self.random.randomIntList(self.start, self.end, self.length, self.seed)) pprint("Integer Array with a Seed: " + int_array) for val in val_list: test_val = int(val) self.assertEqual(isinstance(test_val, int), True) def test_randomDecList_method(self): dec_array = str(self.random.randomDecList(self.start, self.end, self.length, self.seed)) dec_list = (self.random.randomDecList(self.start, self.end, self.length, self.seed)) pprint("Decimal Array with a Seed: " + dec_array) for val in dec_list: test_val = float(val) self.assertEqual(isinstance(test_val, float), True) def test_randomListSelection_method(self): selection = str(self.random.randomListSelection(self.list)) non_str_selection = self.random.randomListSelection(self.list) pprint("Selection from the List: " + selection) if non_str_selection in self.list: in_list = True else: in_list = False self.assertEqual(in_list, True) def test_randomListSelectionSeed_method(self): selection = str(self.random.randomListSelectionSeed(self.list, self.seed)) pprint("Seeded Selection from the List: " + selection) self.assertEqual(selection, str(self.random.randomListSelectionSeed(self.list, self.seed))) def test_randomAmountSelection_method(self): selection = str(self.random.randomAmountSelection(self.list, self.num_val)) non_str_selection = self.random.randomAmountSelection(self.list, self.num_val) pprint("N Number of Values Selected from the List: " + selection) in_list = False for val in non_str_selection: if val in self.list: in_list = True else: in_list = False self.assertEqual(in_list, True) def test_randomAmountSelectionSeed_method(self): selection = str(self.random.randomAmountSelectionSeed(self.list, self.num_val, self.seed)) pprint("N Number of Values Selected from the List with a Seed: " + selection) self.assertEqual(selection, str(self.random.randomAmountSelectionSeed(self.list, self.num_val, self.seed))) if __name__ == '__main__': unittest.main()
true
95b55ca47783f34a639950f1941e312ddd4a8e24
Python
tobyhsu73/lidar
/draw.py
UTF-8
691
3.171875
3
[]
no_license
import numpy as np import matplotlib.pyplot as plt import math theta=np.arange(0,2*np.pi,0.02) #for i in range (315): #print(math.degrees(theta[i])) x=[math.radians(45),math.radians(46),math.radians(47),math.radians(48),math.radians(49)] print(x) y=[1.3,1.4,1.5,1.4,1.6] plt.subplot(polar=True) plt.plot(theta,2*np.ones_like(theta),lw=2) plt.plot(theta,theta/6,'--',lw=2) plt.plot(0.7853,1.3,lw=2) plt.plot(0.802,1.4,lw=2) plt.plot(0.820,1.5,lw=2) plt.scatter(x,y,s=10) plt.plot(0.837,1.4,lw=2) plt.plot(0.855,1.6,lw=2) plt.plot(theta,np.cos(5*theta),'--',lw=2) plt.plot(theta,2*np.cos(4*theta),lw=2) plt.rgrids(np.arange(0.5,2,0.5),angle=45) plt.thetagrids([0,45,90]) print() plt.show()
true
c74c3234a56b4c7ce4ae0c9930ecf8700d14bcf8
Python
dastronmighty/literate-guacamole
/Data/GenData.py
UTF-8
1,664
3.0625
3
[]
no_license
import numpy as np import os def add_xor_data(X): return X[:, 0] + X[:, 1] def gen_XOr_data(): x = np.array([[0, 0], [0, 1], [1, 0], [1, 1]]) y = np.array([[0], [1], [1], [0]]) return x, y def add_sub_sin_helper(x): return x[:, 0] - x[:, 1] + x[:, 2] - x[:, 3] def gen_sin_data(seed=42, size=500, train_size=400): np.random.seed(seed) x = np.random.uniform(-1.0, 1.0, size=(size, 4)) y = np.sin(add_sub_sin_helper(x)) y = y.reshape(-1, 1) tr_x, tr_y, te_x, te_y = x[0:train_size], y[0:train_size], x[train_size:], y[train_size:] return (tr_x, tr_y), (te_x, te_y) ALPHAB = "ABCDEFGHIJKLMNOPQRSTUVWXYZ" def array_to_letter(t): if len(t.shape) == 1: idx = [t.argmax()] else: idx = t.argmax(axis=1) return np.array([ALPHAB[i] for i in idx]) def one_hot_letter(letter): y = list(np.zeros(26)) y[ALPHAB.index(letter)] = 1.0 return y def process_line(line): y = one_hot_letter(line[0]) x = line[2:] x = [float(_) for _ in x.split(",")] return x, y def gen_letter_data(test_percent=0.2): full_path = os.path.dirname(os.path.realpath(__file__)) with open(f"{full_path}/letter-recognition.data") as data_file: lines = data_file.readlines() x_a, y_a = [], [] for l in lines: x, y = process_line(l) x_a.append(x), y_a.append(y) x, y = np.array(x_a), np.array(y_a) train_amt = int(len(x) - int(len(x) * test_percent)) tr_x, te_x = x[0:train_amt], x[train_amt:] tr_y, te_y = y[0:train_amt], y[train_amt:] return (tr_x, tr_y), (te_x, te_y)
true
146fe53beb4c0676119671a7204bb1385d03d5af
Python
Taxiozaurus/GeometricRunner
/scoreBoard.py
UTF-8
2,164
3.015625
3
[]
no_license
import MySQLdb # for this class to work you will need a MySQL database that presumably has 2 tables # t1: # users # id int primary auto_inc # nick # password # # t2 # hiscore # u_id int FK_users_id # level varchar # score class Score : def __init__(self) : self.db_con = MySQLdb.connect(host='', user='', passwd='', db='') self.c = self.db_con.cursor() def login(self, nick, password) : my_query = "SELECT * FROM users WHERE nick = '" + nick + "';" self.c.execute(my_query) ans = self.c.fetchone() if ans : if ans[2] == password : return ans[0] else : return "" else : return "" def register(self, nick, password): data = self.login(nick, password) if data > -1 : my_query = "INSERT INTO users (nick, password) VALUES ('" + nick + "','" + password + "')" self.c.execute(my_query) self.db_con.commit() return self.login(nick, password) def send_score(self, u_id, level, score) : my_query = "SELECT score FROM hiscore WHERE u_id = " + str(u_id) + " AND level = '" + level + "' ;" self.c.execute(my_query) ans = self.c.fetchone() if ans : if ans[0] < score : my_query = "UPDATE hiscore SET score = " + str(score) + " WHERE u_id = " + str(u_id) + " AND level = '" + level + "';" self.c.execute(my_query) else : my_query = "INSERT INTO hiscore VALUES (" + str(u_id) + ",'" + level + "'," + str(score) + ");" self.c.execute(my_query) self.db_con.commit() def get_scores(self, level) : my_query = "SELECT nick, score FROM users JOIN hiscore ON id = u_id WHERE level = '" + level + "' ORDER BY score LIMIT 0,10 ;" self.c.execute(my_query) ans = self.c.fetchall() self.db_con.commit() if len(ans) > 0 : return ans else : return [] def finish(self): self.db_con.commit() self.c.close() self.db_con.close()
true
060656cb9d176d2d95a7e477a3bc78c7f4fee4fd
Python
sreshthakashyap/OralScreen
/OralCellDataPreparation/predict_patch.py
UTF-8
2,033
2.796875
3
[ "MIT", "LicenseRef-scancode-other-permissive" ]
permissive
# -*- coding: utf-8 -*- import cv2 from tqdm import tqdm import csv from glob import glob import os #%% z_offsets = ['z0', 'z400', 'z-400', 'z800', 'z-800', 'z1200', 'z-1200', 'z1600', 'z-1600', 'z2000', 'z-2000'] #%% def generate_patch(w=80): """ Arguments: w -- window size for patches Returns: total_num -- total number of predicted nucleus patches """ total_num = 0 # generate patches only for the sub-images with nuclei detected for csv_path in tqdm(glob('./CSVResults/*.csv')): # extract image name without extension, and separate without z value img_name = os.path.basename(csv_path)[:-len('.csv')] img_name_l = img_name[:img_name.rindex('z0')] img_name_r = img_name[img_name.rindex('z0') + len('z0'):] for z_offset in z_offsets: img_z_name = img_name_l + z_offset + img_name_r + '.jpg' img = cv2.imread('./JPEGImages/' + img_z_name) with open(csv_path) as f: f_csv = csv.reader(f) headers = next(f_csv) i = 0 for row in f_csv: center = [round(float(row[-2])), round(float(row[-1]))] box = [center[0] - int(w/2), center[1] - int(w/2), center[0] + int(w/2), center[1] + int(w/2)] cropped = img[box[1]:box[1]+w, box[0]:box[0]+w] # [Ymin:Ymax , Xmin:Xmax] cv2.imwrite("./Patches/Z_expanded/{}_{}_{}.jpg" .format(img_name, '0'*(4 - len(str(i))) + str(i), z_offset), cropped, [int(cv2.IMWRITE_JPEG_QUALITY), 100]) i += 1 total_num += (f_csv.line_num - 1) return total_num #%% if __name__ == '__main__': print('#'*30) print('Generating predicted patches at all Z level.') print('#'*30) total_num = generate_patch()
true
6cf0fe329e96e57cded2e19b8c392fccb1484cc4
Python
sinhlt58/mc_functions
/aniblock/blocks.py
UTF-8
1,162
2.53125
3
[]
no_license
from aniblock.constants import * from aniblock.utils import * class Block: pass class CommandBlock(Block): def __init__(self, command, type="command_block"): self.command = command self.type = type def to_mc_commands(self, pos, facing, relative=POS_RELATIVE_W): pos_str = pos_to_str(pos, relative) return [ f"setblock {pos_str} minecraft:{self.type}[facing={facing}]", f"data modify block {pos_str} Command set value \"{self.command}\"" ] class CommandBlockDelay(CommandBlock): def __init__(self, delay_ticks): super().__init__("") self.delay_ticks = delay_ticks def to_mc_commands(self, pos, facing, relative=POS_RELATIVE_W): delay_pos = facing_to_vec(facing) pos_str = pos_to_str(pos, relative) delay_pos_str = pos_to_str(delay_pos, relative) return [ f"setblock {pos_str} minecraft:chain_command_block[facing={facing}]", f"data modify block {pos_str} Command set value \"summon minecraft:area_effect_cloud {delay_pos_str} {{Tags:[\\\"TickCounter\\\"],Age:{-self.delay_ticks}}}\"" ]
true
b40ea948373cf881045e59ea34ab94018e2d7a23
Python
dylanjorgensen/modules
/(custom)/single-script/mod.py
UTF-8
263
3.21875
3
[]
no_license
# Import print 'this line printed just because you imported me' # Function def func(): return 'you called a function inside a module script' # Class class Classy(object): def meth(self): return 'you called a function with a class in it'
true
a27f23f0419598bdcd5f952e605d22ba904fdf8d
Python
tommylees112/esowc_notes
/analysis_scripts/spatial_r2.py
UTF-8
1,327
2.515625
3
[]
no_license
# true_da_shape = (true_da.lat.shape[0], true_da.lon.shape[0]) pred_da_shape = (pred_da.lat.shape[0], pred_da.lon.shape[0]) assert true_da_shape == pred_da_shape vals = np.sqrt( np.nansum((true_da.values - pred_da.values) ** 2, axis=0) / pred_da.shape[0] ) da = xr.ones_like(pred_da).isel(time=0) da.values = vals # reapply the mask da = da.where(~get_ds_mask(pred_da)) # from sklearn.metrics import r2_score # fit values, and mean pred = p(x) # or [p(z) for z in x] true_mean = numpy.sum(y) / len(y) # or sum(y)/len(y) ssreg = numpy.sum( (pred - true_mean) ** 2 ) # or sum([ (yihat - true_mean)**2 for yihat in pred]) sstot = numpy.sum((y - true_mean) ** 2) # or sum([ (yi - true_mean)**2 for yi in y]) results["determination"] = ssreg / sstot def spatial_r2(true_da: xr.DataArray, pred_da: xr.DataArray) -> xr.DataArray: true_da_shape = (true_da.lat.shape[0], true_da.lon.shape[0]) pred_da_shape = (pred_da.lat.shape[0], pred_da.lon.shape[0]) assert true_da_shape == pred_da_shape r2_vals = 1 - (np.nansum((true_da.values - pred_da.values) ** 2, axis=0)) / ( np.nansum((true_da.values - np.nanmean(pred_da.values)) ** 2, axis=0) ) da = xr.ones_like(pred_da).isel(time=0) da.values = r2_vals # reapply the mask da = da.where(~get_ds_mask(pred_da)) return da
true
f4ffd341dcb2c6989f5c0ed37752f895a2abab12
Python
constantine77/python
/basics/test.py
UTF-8
616
4.25
4
[]
no_license
#Data Structures in Python def simple_list_iteration(): ''' List iteration :return: ''' A = [1,2,3,4,5] for x in A: print(x,type(x)) x += 1 print(x) def list_index_iteration(): ''' List iteration with index :return: ''' A = [1,2,3,4,5] for k in range(5): #from o to 4, k is index print(A[k]) def create_list(): ''' create List A with 10 elements :return: ''' A =[ 0]*10 B = [1,2,3,4,5,6,7,8] C = list(B) #create copy of list B D = [] for k in range(len(C)): D[k].append create_list()
true
3e7741822e712c83e70c6bb8d2b3a602e2526e20
Python
Dunkash/GroupTask3
/helpers.py
UTF-8
2,800
3.015625
3
[]
no_license
import numpy as np def hex_to_rgb(hex_str): return int(hex_str[1:3], 16), int(hex_str[3:5], 16), int(hex_str[5:7], 16) class Point: def __init__(self, x=0, y=0): self.X = x self.Y = y def line(x1, y1, x2, y2, img, line_color): beg = Point(x1, y1) end = Point(x2, y2) line_color = np.array(line_color) deltX = end.X - beg.X deltY = end.Y - beg.Y sX = np.sign(deltX) sY = np.sign(deltY) deltX = abs(deltX) deltY = abs(deltY) if deltX > deltY: pDelX, pDelY = sX, 0 es, el = deltY, deltX else: pDelX, pDelY = 0, sY es, el = deltX, deltY err, t = round(el / 2), 0 img[beg.X][beg.Y] = line_color while (t < el): err -= es if err < 0: err += el beg.X += sX beg.Y += sY else: beg.X += pDelX beg.Y += pDelY t += 1 img[beg.X][beg.Y] = line_color def lineVu(x1, y1, x2, y2, img): beg = Point(x1, y1) end = Point(x2, y2) if (beg.X > end.X): beg.X, end.X = end.X, beg.X beg.Y, end.Y = end.Y, beg.Y delX = end.X - beg.X delY = end.Y - beg.Y grad = delY / delX yend = beg.Y + grad * (round(beg.X) - beg.X) xgagp = 1 - ((beg.X + 0.5) - int(beg.X + 0.5)) xpxl1 = round(beg.X) ypxl1 = int(yend) img.putpixel((xpxl1, ypxl1), (100, 100, 100, round(255 * (1 - (yend - int(yend))) * xgagp))) img.putpixel((xpxl1, ypxl1 + 1), (100, 100, 100, round(255 * (yend - int(yend)) * xgagp))) intery = yend + grad yend = end.Y + grad * (round(end.X) - end.X) xgap = (end.X + 0.5) - int(end.X + 0.5) xpxl2 = round(end.X) ypxl2 = int(yend) img.putpixel((xpxl2, ypxl2), (100, 100, 100, round(255 * (1 - (yend - int(yend))) * xgap))) img.putpixel((xpxl2, ypxl2 + 1), (100, 100, 100, round(255 * (yend - int(yend)) * xgap))) for i in range(xpxl1 + 1, xpxl2): img.putpixel((i, int(intery)), (100, 100, 100, round(255 * (1 - (intery - int(intery)))))) img.putpixel((i, int(intery) + 1), (100, 100, 100, round(255 * (intery - int(intery))))) intery = intery + grad def draw_line(line_cord, img_arr, line_color): if line_cord[0] == line_cord[2]: for x in range(min(line_cord[1], line_cord[3]), max(line_cord[1], line_cord[3]) + 1): img_arr[x, line_cord[0]] = np.array(line_color) else: for y in range(min(line_cord[0], line_cord[2]), max(line_cord[0], line_cord[2]) + 1): img_arr[line_cord[1], y] = np.array(line_color) assert hex_to_rgb("#ff0000"), (255, 0, 0) assert hex_to_rgb("#0a040b"), (10, 4, 11) assert hex_to_rgb("#fe1000"), (254, 16, 0)
true
f9f3f3bd4bfdb379b7c200c23701cd9501157c8d
Python
jhgdike/leetCode
/medium/different_ways_to_add_parenthese.py
UTF-8
1,809
3.3125
3
[]
no_license
# coding: utf-8 class Solution(object): def diffWaysToCompute(self, input): """ :type input: str :rtype: List[int] """ res = [] length = len(input) for i in range(0, length): if input[i] in '+-*': res1 = self.diffWaysToCompute(input[:i]) res2 = self.diffWaysToCompute(input[i+1:]) for m in res1: for n in res2: if input[i] == '+': res.append(m + n) elif input[i] == '-': res.append(m - n) else: res.append(m * n) if not res: res.append(int(input)) return res def diffWaysToCompute_recursion(self, input): map_res = {} return self._recursion(input, map_res) def _recursion(self, input, map_res): res = [] length = len(input) for i in range(0, length): if input[i] in '+-*': left, right = input[:i], input[i+1:] if not map_res.get(left): map_res[left] = self._recursion(left, map_res) res1 = map_res[left] if not map_res.get(right): map_res[right] = self._recursion(right, map_res) res2 = map_res[right] for m in res1: for n in res2: if input[i] == '+': res.append(m + n) elif input[i] == '-': res.append(m - n) else: res.append(m * n) if not res: res.append(int(input)) return res
true
5280f4bf7e2aafa4a478a2c15884fc6e93f2c68f
Python
SVwrite/Web_Scrapers
/Book_scraper/book_scrapper.py
UTF-8
2,844
2.96875
3
[]
no_license
import requests from bs4 import BeautifulSoup # import re import os import time class Book: def __init__(self, title= None, author = None, publisher = None, year =None, url = None, formats = None): self.title = title self.author = author self.publisher = publisher self.year = year self.url = url self.formats = formats def PrintDetails(self) -> None: print(f"\n\tTitle : {self.title}\n\tAuthor : {self.author}\n\tYear : {self.year}") print(f"\tPublisher : {self.publisher}\n\tAvailable format: {self.formats}") def geturl(self) -> str: return self.url def ProductName()-> str: product = input("\n\tWhat's the title of the book ? : ") z_lib_books = 'https://1lib.in/s/' url = z_lib_books + product return url def HtmlFetch(url :str) -> BeautifulSoup: r = requests.get(url) soup = BeautifulSoup(r.text, 'lxml') return soup def ZlibBookDetailsExtracter(soup : BeautifulSoup) -> Book: book ={} all_searches = soup.find('div', id='searchResultBox') all_searches = all_searches.find_all('table', class_='resItemTable') # print(all_searches) # searches = all_searches[0] for i in range(4): search = all_searches[i] title = search.h3.a.text url = 'https://1lib.in/' + search.h3.a['href'] author = search.find('div', class_='authors') if author: author = author.text publisher = search.find('div', title = "Publisher") if publisher: publisher = publisher.text year = search.tr.find('div', class_='bookProperty property_year') if year: year = year.find('div', class_='property_value') if year: year = year.text format = search.find('div', class_='bookProperty property__file') format = format.find('div', class_='property_value').text b = Book(title, author, publisher, year, url, format) yield b def ZlibDownloadExtractor(url :str) : #Returns avail book formats and download urls soup = HtmlFetch(url) formats = soup.find('div', class_='btn-group') formats = formats.find('button', id='btnCheckOtherFormats') print(formats.prettify()) def download(url): r = requests.get(url, allow_redirects=False) print(r.headers.get('content-type')) open('Book_name.pdf', 'wb').write(r.content) # print(r.text) def main(): soup = HtmlFetch(ProductName()) books = list(ZlibBookDetailsExtracter(soup)) books[0].PrintDetails() # for book in books: # book.PrintDetails() # url = books[0].geturl() # ZlibDownloadExtractor(url) # download('https://1lib.in/dl/3485511/701625') if __name__=="__main__": main()
true
3766aa7435651b8dbe2c3931d3e66e19c3c6fae1
Python
JustLonggg/NLP_notes
/分词、词性标注以及命名实体识别/词性标注及信息提取/extract_data.py
UTF-8
293
2.515625
3
[]
no_license
#encoding=utf8 import jieba import re from tokenizer import seg_sentences fp = open('text.txt','r',encoding='utf-8') fout = open('out.txt','w',encoding='utf-8') for line in fp: line = line.strip() if len(line) > 0: fout.write(' '.join(seg_sentences(line)) + '\n') fout.close()
true
99791b4c95d975c1d60413cce833a5930408a4ca
Python
flilyday/upgrade
/vervreqests/29._slots_ effect.py
UTF-8
3,011
3.90625
4
[]
no_license
# 29._slots_ effect.py # __dict__의 단점과 해결책 # 단점 : 객체의 값을 관리할 때 '키'를 이용해서 '값'을 얻게 하므로 리스트나 튜플보다 메모리 사용량이 많아진다. # 그러므로 많은 수의 객체를 생성하려고 할 때는 메모리에 부담이 된다. # 해결책 -> __slots__의 사용 # 0.일반적인 경우 : __dict__에 값이 할당 class Point3D : def __init__(self, x, y, z): self.x = x self.y = y self.z = z def __str__(self): return '{0}, {1}, {2}'.format(self.x, self.y, self.z) #좌표 정보 출력 def main(): p1 = Point3D(1, 1, 1) p2 = Point3D(24, 17, 31) print(p1) print(p2) main() print('-') # 1. __slots__를 쓰는 경우 class Point3D : __slots__ = ('x', 'y', 'z') #속성을 x, y, z로 제한한다. #이 클래스로 생성한 변수는 x, y, z로 제한한다. def __init__(self, x, y, z): self.x = x self.y = y self.z = z def __str__(self): return '{0}, {1}, {2}'.format(self.x, self.y, self.z) def main(): p1 = Point3D(1, 1, 1) # p1.w = 30 #w는 slots에 명시하지 않은 이름이므로 오류 발생 main() print('-') # 2. __slots__를 썼을 때의 성능 향상 테스트 # 2.1.__dict__만 있을 때 내부적으로 일어나는 과정 class Point3D : def __init__(self, x, y, z): self.x = x self.y = y self.z = z def __str__(self): return '{0}, {1}, {2}'.format(self.x, self.y, self.z) #좌표 정보 출력 def main(): p = Point3D(24, 17, 31) print(p.x, p.y, p.z) print(p.__dict__['x'], p.__dict__['y'], p.__dict__['z']) #내부적으로는 이렇게 __dict__의 값을 참조하여 출력하게 된다. main() print('-') # 2.2.속도 테스트 # 2.2.1.slots를 안 쓸 경우 : 3.78초 정도 import timeit class Point3D: def __init__(self, x, y, z): self.x = x self.y = y self.z = z def __str__(self): return '({0},{1},{2})'.format(self.x, self.y, self.z) def main(): start = timeit.default_timer() p = Point3D(1, 1, 1) for i in range(3000): for i in range(3000): p.x += 1 p.y += 1 p.z += 1 print(p) stop = timeit.default_timer() print(stop - start) main() # 2.2.2.slots를 안 쓸 경우 : 3.78초 정도 import timeit class Point3D: __slots__ = ('x', 'y', 'z') #이 부분을 추가 def __init__(self, x, y, z): self.x = x self.y = y self.z = z def __str__(self): return '({0},{1},{2})'.format(self.x, self.y, self.z) # 2.2.3.slots를 쓸 경우 : 2.98정도 def main(): start = timeit.default_timer() p = Point3D(1, 1, 1) for i in range(3000): for i in range(3000): p.x += 1 p.y += 1 p.z += 1 print(p) stop = timeit.default_timer() print(stop - start) main()
true
6eeb769f77025bfe2f71669630bfb8c68321b794
Python
bit-meddler/skunkWorks
/toys/viconFiles.py
UTF-8
7,817
2.796875
3
[]
no_license
""" collection of functions to read vicon data, staring simple with the XML stuff XCP VSK VSS Then on to the hard one, x2d X2D """ import numpy as np from xml.dom import minidom from quaternions import Quaternion # In case we run out of precision FLOAT_T = np.float32 INT_T = np.int32 class ViconCamera( object ): def __init__( self, input_dict=None ): # camera data self.hw_id = -1 # uniue id. data is in id order in the x2d self.type = "" self.vicon_name = "" self.px_aspect = -1 # self.sensor_type = "" self.sensor_wh = [0, 0] # px self.user_id = -1 # raw calibration data self._pp = [0., 0.] # px self._radial= [0., 0.] # k1, k2 self._pos = [0., 0., 0.] # tx, ty, tz self._rotQ = [0., 0., 0., 0.] # uartonions [x,y,z,w] self._err = 0. # rms reprojection error self._skew = 0. # ?? self._focal = 0. # f in sensor px? # computed matrixs self.K = np.eye( 3, dtype=FLOAT_T ) self.R = np.eye( 3, dtype=FLOAT_T ) self.Q = Quaternion() self.T = np.zeros( (3,), dtype=FLOAT_T ) self.RT = np.zeros( (3,4), dtype=FLOAT_T ) self.P = np.zeros( (3,4), dtype=FLOAT_T ) if( input_dict is not None ): self.setFromDict( input_dict ) def setFromDict( self, dict ): self.hw_id = dict["DEVICEID"] self.type = dict["TYPE"] self.vicon_name = dict["NAME"] self.px_aspect = dict["PIXEL_ASPECT_RATIO"] self.sensor_type = dict["SENSOR"] self.sensor_wh = dict["SENSOR_SIZE"] self.user_id = dict["USERID"] self._pp = dict["PRINCIPAL_POINT"] self._radial = dict["VICON_RADIAL"] self._skew = dict["SKEW"] self._focal = dict["FOCAL_LENGTH"] self._pos = dict["POSITION"] self._rotQ = dict["ORIENTATION"] self._err = dict["IMAGE_ERROR"] self.computeMatrix() def computeMatrix( self ): # see also: http://run.usc.edu/cs420-s15/lec05-viewing/05-viewing-6up.pdf # compose RT self.T = self._pos x, y, z, w = self._rotQ self.Q.setQ( x, y, z, w ) # These transposed RotMats are driving me mad! self.R = self.Q.toRotMat2().T self.R = self.Q.toRotMat() # from Vicon's "Cara Reference" pdf (/Fileformats/XCP) # Assuming (!) XCPs are the same between products # P = [ R | -RT ] self.RT[ :3, :3 ] = self.R self.RT[ :, 3 ] = -np.matmul( self.R, self.T ) # compose K # fiddle with PP, focal length, aspect ratio and skew (which in all encountered files is zero0 a = self.px_aspect x_pp, y_pp = self._pp f = self._focal k = self._skew self.K = np.array( [ [ f, k, x_pp ], [ 0., (f/a), y_pp ], [ 0., 0., 1. ] ] , dtype=FLOAT_T ) # compute P = K.RT self.P = np.matmul( self.K, self.RT ) def undistort( self, point ): # As Vicon doesn't use NDCs the undistort is computed per det - dumb! a = self.px_aspect w1, w2 = self._radial x_pp, y_pp = self._pp # Again from the CaraPost Refference pdf x_r, y_r = point dp = [ x_r - x_pp, a * ( y_r - y_pp ) ] print dp r = np.linalg.norm( dp ) print r s = 1 + w1 * r**1 + w2 * r**2 print s ud = [ s * dp[0] + x_pp, (s * dp[1] + y_pp)/a ] print ud def projectPoints( self, points3D ): ret = np.zeros( ( points3D.shape[0], 3 ), dtype=FLOAT_T ) # ret = self.P * points3D return ret class CalReader( object ): CASTS = { # Intrinsics "PRINCIPAL_POINT" : lambda x: map( float, x.split() ), "VICON_RADIAL" : lambda x: map( float, x.split() ), "SKEW" : float, "FOCAL_LENGTH" : float, # extrinsics "ORIENTATION" : lambda x: np.array( x.split(), dtype=FLOAT_T), "POSITION" : lambda x: np.array( x.split(), dtype=FLOAT_T), # Meta Data "SENSOR_SIZE" : lambda x: map( int, x.split() ), "PIXEL_ASPECT_RATIO" : float, "DEVICEID" : int, "USERID" : int, "NAME" : lambda x: x, # passthru "SENSOR" : lambda x: x, # passthru "TYPE" : lambda x: x, # passthru "IMAGE_ERROR" : float, } CAMERA_ID_KEY = "DEVICEID" CAMERA_ATTERS_HARDWARE = ( "DEVICEID", "NAME", "PIXEL_ASPECT_RATIO", "SENSOR", "SENSOR_SIZE", "SKEW", "TYPE", "USERID" ) CAMERA_ATTERS_CALIBRATION = ( "FOCAL_LENGTH", "IMAGE_ERROR", "ORIENTATION", "POSITION", "PRINCIPAL_POINT", "VICON_RADIAL" ) def __init__( self ): self.reset() def reset( self ) : self.data = {} self.cameras = {} self.camera_order = [] self.source_file = "" def read( self, file_path=None ): if( file_path is None ): print( "Error: no file supplied" ) return -1 mode = "XCP" self.source_file = file_path if( file_path.lower().endswith( ".xcp" ) ): mode = "XCP" elif( file_path.lower().endswith( ".cp" ) ): print( "Error: .cp not yet supported" ) return -1 if( mode == "XCP" ): XD = minidom.parse( file_path ) cameras = XD.getElementsByTagName( "Camera" ) for camera in cameras: # create dict cid = camera.attributes[ CalReader.CAMERA_ID_KEY ].value.encode( "ascii" ) self.data[ cid ] = {} # load camera data for entry in CalReader.CAMERA_ATTERS_HARDWARE: self.data[ cid ][ entry ] = camera.attributes[ entry ].value.encode( "ascii" ) # load calibration data kf_list = camera.getElementsByTagName( "KeyFrame" ) if( len( kf_list ) > 0 ): for entry in CalReader.CAMERA_ATTERS_CALIBRATION: self.data[ cid ][ entry ] = kf_list[0].attributes[ entry ].value.encode( "ascii" ) # cast for atter, cast in self.CASTS.iteritems(): self.data[ cid ][ atter ] = cast( self.data[ cid ][ atter ] ) for cam_id, cam_data in self.data.iteritems(): camera = ViconCamera( cam_data ) self.cameras[ int( cam_id ) ] = camera self.camera_order = sorted( self.cameras.keys() ) if( __name__ == "__main__" ): # testing reading an xml file_path = r"170202_WictorK_Body_ROM_01.xcp" cal_reader = CalReader() cal_reader.read( file_path ) for cid in cal_reader.camera_order: cam = cal_reader.cameras[ cid ] print( "Camera '{}' is at T:{} R:{}".format( cid, cam.T, np.degrees( cam.Q.toAngles2() ) ) ) # examining this in blade, the rot should be [166.497, -84.23, -119.151] cam = cal_reader.cameras[ 2107343 ] print np.degrees( cam.Q.toAngles() ) print np.degrees( cam.Q.toAngles2() ) print np.degrees( cam.Q.toAngles3() ) # 178, 408, 142 is about the center of 2107343 x, y, z = np.matmul( cam.P, np.array( [-178.20, -408.21, 142.86, 1.] ) ) print x/z, y/z # not bad :)
true
c01c5d78f3321bb3ee41216c7a8ba0ae70995123
Python
shiftsayan/python-2048
/play.py
UTF-8
5,691
3.15625
3
[ "MIT" ]
permissive
#################################### # Imports #################################### from tkinter import * from helper import * from ai import * #################################### # Draw Functions #################################### def draw_win(canvas, data): # Background canvas.create_rectangle(0, 0, data.width, data.height, fill=data.end_bg_color, width=0) # Text canvas.create_text(data.width/2, data.height/2, text="YOU WON :)", font=("Open Sans", "80", "bold"), fill=data.light_text_color) def draw_lost(canvas, data): # Background canvas.create_rectangle(0, 0, data.width, data.height, fill=data.end_bg_color, width=0) # Text canvas.create_text(data.width/2, data.height/2, text="YOU LOST :(", font=("Open Sans", "80", "bold"), fill=data.light_text_color) def draw_board(canvas, data): # Background canvas.create_rectangle(0, 0, data.width, data.height, fill=data.game_bg_color, width=0) # Tiles for i in range(data.grid): for j in range(data.grid): # Coordinates x1 = data.thick * (j+1) + data.size * j y1 = data.thick * (i+1) + data.size * i x2 = x1 + data.size y2 = y1 + data.size # Label tile_color = data.tile_color[data.board[i][j]] text_color = data.dark_text_color if data.board[i][j] < 3 else data.light_text_color text = "" if data.board[i][j] == 0 else str(2 ** data.board[i][j]) # Draw canvas.create_rectangle(x1, y1, x2, y2, fill=tile_color, width=0) canvas.create_text((x1+x2)/2, (y1+y2)/2, text=text, font=("Open Sans", "55", "bold"), fill=text_color) #################################### # Move Function #################################### def move(data, vector): if not (data.is_won or data.is_lost): if data.is_ai: data.board, result, _ = move_sim(data.board, data.grid, ai(data.board, data.grid, data.target), data.target) elif vector in [ "Left", "Right", "Up", "Down" ]: data.board, result, _ = move_sim(data.board, data.grid, vector, data.target) if result not in [ True, False ]: pass else: data.is_won, data.is_lost = (True, False) if result else (False, True) data.timerDelay = 1000 #################################### # Animation Functions #################################### def init(data): # Settings data.start_tiles = 2 data.target = 11 # 2 ** 11 = 2048 # Board data.grid = 4 data.board = [ [ 0 for i in range(data.grid) ] for i in range(data.grid) ] # Sizes data.size = data.width / 4.5 data.thick = data.size / 10 # Colors data.game_bg_color = rgb2hex(187, 173, 161) data.end_bg_color = rgb2hex(241, 196, 15) data.dark_text_color = rgb2hex(118, 110, 101) data.light_text_color = rgb2hex(249, 246, 242) data.tile_color = [ rgb2hex(205, 192, 181), # None rgb2hex(238, 228, 218), # 2 rgb2hex(237, 224, 200), # 4 rgb2hex(242, 177, 121), # 8 rgb2hex(245, 149, 99), # 16 rgb2hex(246, 124, 95), # 32 rgb2hex(246, 94, 59), # 64 rgb2hex(237, 207, 114), # 128 rgb2hex(237, 204, 97), # 256 rgb2hex(237, 200, 80), # 512 rgb2hex(237, 197, 63), # 1024 rgb2hex(237, 194, 46) # 2048 ] # Win States data.is_lost = False data.is_won = False # Randomly Insert Two 2-tiles for i in range(data.start_tiles): data.board = random_insert(data.board, data.grid) def mousePressed(event, data): pass def keyPressed(event, data): if not data.is_ai: move(data, event.keysym) def timerFired(data): if data.is_ai: move(data, "") def redrawAll(canvas, data): if data.is_won: draw_win(canvas, data) elif data.is_lost: draw_lost(canvas, data) else: draw_board(canvas, data) #################################### # Run Function # Source: www.cs.cmu.edu/~112 #################################### def run(mode, width=600, height=600): def redrawAllWrapper(canvas, data): canvas.delete(ALL) canvas.create_rectangle(0, 0, data.width, data.height, fill='white', width=0) redrawAll(canvas, data) canvas.update() def mousePressedWrapper(event, canvas, data): mousePressed(event, data) redrawAllWrapper(canvas, data) def keyPressedWrapper(event, canvas, data): keyPressed(event, data) redrawAllWrapper(canvas, data) def timerFiredWrapper(canvas, data): timerFired(data) redrawAllWrapper(canvas, data) canvas.after(data.timerDelay, timerFiredWrapper, canvas, data) class Struct(object): pass data = Struct() data.is_ai = True if mode[0].upper() == 'S' else False # Simulate data.width = width data.height = height data.timerDelay = 200 # milliseconds root = Tk() init(data) canvas = Canvas(root, width=data.width, height=data.height) canvas.pack() root.title("2048") root.bind("<Button-1>", lambda event: mousePressedWrapper(event, canvas, data)) root.bind("<Key>", lambda event: keyPressedWrapper(event, canvas, data)) timerFiredWrapper(canvas, data) root.mainloop() if __name__ == '__main__': mode = raw_input("Play or Simulate: ") run(mode)
true
dcc8303f2f2c9683080515a40ce2af10afa0c328
Python
Stihotvor/python3_magic_method_examples
/representation_and_validations.py
UTF-8
1,046
3.609375
4
[ "MIT" ]
permissive
class Vessel: def __init__(self, name: str): """ Initializing class instance with vessel name :param name: """ self.name = name self.fuel = 0.0 # list of dicts with passenger attributes self.passengers = [] def __lt__(self, other): """ Less than other :param other: :return: """ return len(self.passengers) < len(other) # __le__ - less or equal, __eq__ - equal, __ne__ - not equal, __gt__ - greater than, __ge__ - greater or equal # Vessel methods def pump_in_fuel(self, quantity: float): self.fuel += quantity def pump_out_fuel(self): self.fuel = 0.0 def discharge_passengers(self): self.passengers = [] if __name__ == '__main__': # Runtime tests will be here vsl = Vessel('Casandra') vsl.pump_in_fuel(10.5) vsl.passengers = [ { 'name': 'Peter' }, { 'name': 'Jessika' } ] print(vsl < [1, ])
true
1691fe8b8e5d967ed7b2c37820974ccac4cf4b35
Python
davendiy/forpythonanywhere
/hackatons/materials/algo/source/T7_Graphs/P2/__test_ways.py
UTF-8
1,222
3.578125
4
[]
no_license
from source.T7_Graphs.P1.GraphForAlgorithms import GraphForAlgorithms from source.T7_Graphs.P2.BFS import BFS from source.T7_Graphs.P2.DFS import DFS from source.T7_Graphs.P2.Ways import waySearch, waySearchByWave def show_way(vertices: list, weight, tag): if vertices is None: # шляху не існує print(tag, "Шляху не існує! ") return # виводимо шлях way на екран print(tag, "(%d): " % weight, end="") for i in range(len(vertices) - 1): print(vertices[i], end=" -> ") print(vertices[-1]) if __name__ == "__main__": g = GraphForAlgorithms(False) # Створюємо орієнтований граф g.add_edge(0, 1) g.add_edge(0, 5) g.add_edge(1, 2) g.add_edge(2, 3) g.add_edge(3, 4) g.add_edge(3, 5) g.add_edge(4, 0) g.add_edge(5, 4) g.add_edge(5, 2) g.add_edge(6, 7) BFS(g, 0) DFS(g, 0) # запускаємо DFS з вершини 0 way, way_weight = waySearch(g, 0, 7) show_way(way, way_weight, "Wave algorithm1 ") way, way_weight = waySearchByWave(g, 0, 3) show_way(way, way_weight, "Wave algorithm2 ")
true
97c779d7fc7cd527675e6a63fd70d8cef29d9d4e
Python
W-KE/Leetcode-Solutions
/challenge/30-day-leetcoding-challenge/week1/maximum-subarray.py
UTF-8
440
3.140625
3
[ "MIT" ]
permissive
from typing import List class Solution: def maxSubArray(self, nums: List[int]) -> int: maximum = nums[0] subarray = [] for num in nums: if num > maximum: maximum = num if num > 0: subarray.append(num) if subarray: return sum(subarray) return maximum s = Solution() print(s.maxSubArray(nums=[-2, 1, -3, 4, -1, 2, 1, -5, 4]))
true
9df4c6c22dd5f1a6617e7d9785b27930315c61e8
Python
gdcohan/deepmedic-preprocess
/qtim_tools/qtim_pipelines/deep_learning.py
UTF-8
13,014
2.53125
3
[]
no_license
import numpy as np import glob import os import yaml from shutil import copy, rmtree from ..qtim_preprocessing.motion_correction import motion_correction from ..qtim_preprocessing.threshold import crop_with_mask from ..qtim_preprocessing.resample import resample from ..qtim_preprocessing.normalization import zero_mean_unit_variance from ..qtim_preprocessing.bias_correction import bias_correction from ..qtim_preprocessing.skull_strip import skull_strip from ..qtim_utilities.file_util import nifti_splitext def deep_learning_preprocess(study_name, base_directory, skull_strip_label='T2SPACE', skip_modalities=[]): """ This script is meant for members of the QTIM lab at MGH. It takes in one of our study names, finds the COREGISTRATION folder, presumed to have been created in an earlier part of the pipeline, and applies the following pre-processing steps to our data to make it ready for input into deep-learning algorithms: 1) N4 Bias Correction 2) Isotropic Resampling 3) Skull-Stripping 4) Zero Mean Normalization This is a work in progress, and may not be appropriate for every deep-learning task. For example, data completion tasks may not benefit from zero-mean normalization. Parameters ---------- study_name: str A QTIM study name code, usually three letters. base_directory: str The full path to the directory from which to search for studies. The study directory should be contained in this directory. skull_strip_label: str An text identifier (e.g. "FLAIR") for which volume should be skull-stripped. All other volumes will be stripped according to this identifier. skip_modalities: str or list of str Any modalities that should not be processed. """ # NiPype is not very necessary here, but I want to get used to it. DataGrabber is a utility for # for recursively getting files that match a pattern. study_files = nio.DataGrabber() study_files.inputs.base_directory = base_directory study_files.inputs.template = os.path.join(study_name, 'ANALYSIS', 'COREGISTRATION', study_name + '*', 'VISIT_*', '*.nii.gz') study_files.inputs.sort_filelist = True results = study_files.run().outputs.outfiles bias_correct_vols = ['FLAIR', 'MPRAGE', 'T1', 'T2SPACE'] # Remove modality codes that will not be processed for deep-learning. dl_volumes = [] for output in results: if any(modality in output for modality in skip_modalities): continue dl_volumes += [output] # We prefer the same skull-stripping in each case. Thus, we first iterate through skull-strip volumes. skull_strip_volumes = [volume for volume in dl_volumes if skull_strip_label in volume] # Strip the chosen volume.. for skull_strip_volume in skull_strip_volumes: # Find the output folder # TODO: Do this with nipype DataSink instead. # Also TODO: Make this easier to change in case directory structure changes. split_path = os.path.normpath(skull_strip_volume).split(os.sep) output_folder = os.path.join(base_directory, study_name, 'ANALYSIS', 'DEEPLEARNING', split_path[-3], split_path[-2]) # Make the output directory if it does not exist. if not os.path.exists(output_folder): os.makedirs(output_folder) # If skull-stripping has not yet been performed, perform it. skull_strip_mask = os.path.join(output_folder, split_path[-3] + '-' + split_path[-2] + '-' + 'SKULL_STRIP_MASK.nii.gz') skull_strip_output = os.path.join(output_folder, nifti_splitext(os.path.basename(skull_strip_volume))[0] + '_ss' + nifti_splitext(skull_strip_volume)[-1]) if not os.path.exists(skull_strip_mask): skull_strip(skull_strip_volume, skull_strip_output, skull_strip_mask) # Skull-Strip, Resample, and Normalize the rest. for dl_volume in dl_volumes: try: split_path = os.path.normpath(dl_volume).split(os.sep) output_folder = os.path.join(base_directory, study_name, 'ANALYSIS', 'DEEPLEARNING', split_path[-3], split_path[-2]) deep_learning_output = os.path.join(output_folder, nifti_splitext(os.path.basename(dl_volume))[0] + '_DL' + nifti_splitext(dl_volume)[-1]) if os.path.exists(deep_learning_output): continue print(output_folder) # Make sure a mask was created in the previous step. skull_strip_mask = os.path.join(output_folder, split_path[-3] + '-' + split_path[-2] + '-' + 'SKULL_STRIP_MASK.nii.gz') if not os.path.exists(skull_strip_mask): print('No skull-stripping mask created, skipping volume ', dl_volume) continue # Use existing mask to skull-strip if necessary. n4_bias_output = os.path.join(output_folder, nifti_splitext(os.path.basename(dl_volume))[0] + '_n4' + nifti_splitext(dl_volume)[-1]) if any(bias_vol in n4_bias_output for bias_vol in bias_correct_vols): if not os.path.exists(n4_bias_output): bias_correction(dl_volume, output_filename=n4_bias_output, mask_filename=skull_strip_mask) else: copy(dl_volume, n4_bias_output) # Use existing mask to skull-strip if necessary. skull_strip_output = os.path.join(output_folder, nifti_splitext(n4_bias_output)[0] + '_ss' + nifti_splitext(n4_bias_output)[-1]) if not os.path.exists(skull_strip_output): crop_with_mask(n4_bias_output, skull_strip_mask, output_filename=skull_strip_output) os.remove(n4_bias_output) # Resample and remove previous file. # resample_output = os.path.join(output_folder, nifti_splitext(skull_strip_output)[0] + '_iso' + nifti_splitext(skull_strip_output)[-1]) # print resample_output # if not os.path.exists(resample_output): # resample(skull_strip_output, output_filename=resample_output) # os.remove(skull_strip_output) # Mean normalize and remove previous file. if not os.path.exists(deep_learning_output): zero_mean_unit_variance(skull_strip_output, input_mask=skull_strip_mask, output_filename=deep_learning_output) os.remove(skull_strip_output) except: print('Error encountered on', os.path.basename(dl_volume)) return def deep_learning_experiment(base_directory, output_directory, config_file): """ This script creates a deep learning "experiment" from our available studies. This means sorting patient visits into testing and training folders with certain pre-specified modalities. Parameters ---------- base_directory: str The full path to the directory from which to search for studies. The study directory should be contained in this directory. config_file: str A configuration file that dictates how studies should be split and which modalities. """ if config_file is None: config_file = os.path.abspath(os.path.join(os.path.realpath(__file__), '..', 'default_configs', 'deep_learning_experiment.yaml')) else: config_file = os.path.asbpath(config_file) with open(config_file, 'r') as stream: config = yaml.load(stream) if not os.path.exists(output_directory): os.mkdir(output_directory) for train_test in ['Train', 'Test', 'Validation']: output_folder = os.path.join(os.path.abspath(output_directory), train_test) # Make output folder rmtree(output_folder) # if not os.path.exists(output_folder): os.mkdir(output_folder) if train_test == 'Train': for study in ['FMS']: for patient in ['01']: for visit in ['01','02','03', '04', '05']: for modality in ['MPRAGE_POST', 'FLAIR_r_T2', 'T2SPACE_DL', 'T1Pre']: try: target_file = glob.glob(os.path.join(base_directory, study, 'ANALYSIS', 'DEEPLEARNING', '_'.join([study, patient]), '_'.join(['VISIT', visit]), '*' + modality + '*'))[0] target_folder = os.path.join(output_folder, '_'.join([study, patient, visit])) if not os.path.exists(target_folder): os.mkdir(target_folder) copy(target_file, os.path.join(target_folder, os.path.basename(target_file))) except: pass for modality in ['SUV']: try: target_file = glob.glob(os.path.join(base_directory, study, 'ANALYSIS', 'DEEPLEARNING', '_'.join([study, patient]), '_'.join(['VISIT', visit]), '*' + modality + '*'))[0] target_folder = os.path.join(output_folder, '_'.join([study, patient, visit])) if not os.path.exists(target_folder): os.mkdir(target_folder) copy(target_file, os.path.join(target_folder, os.path.basename(target_file))) except: pass if train_test == 'Validation': for study in ['FMS']: for patient in ['02']: for visit in ['01','02','03', '04', '05']: for modality in ['MPRAGE_POST', 'FLAIR_r_T2', 'T2SPACE_DL', 'T1Pre']: try: target_file = glob.glob(os.path.join(base_directory, study, 'ANALYSIS', 'DEEPLEARNING', '_'.join([study, patient]), '_'.join(['VISIT', visit]), '*' + modality + '*'))[0] target_folder = os.path.join(output_folder, '_'.join([study, patient, visit])) if not os.path.exists(target_folder): os.mkdir(target_folder) copy(target_file, os.path.join(target_folder, os.path.basename(target_file))) except: pass for modality in ['SUV']: try: target_file = glob.glob(os.path.join(base_directory, study, 'ANALYSIS', 'DEEPLEARNING', '_'.join([study, patient]), '_'.join(['VISIT', visit]), '*' + modality + '*'))[0] target_folder = os.path.join(output_folder, '_'.join([study, patient, visit])) if not os.path.exists(target_folder): os.mkdir(target_folder) copy(target_file, os.path.join(target_folder, os.path.basename(target_file))) except: pass if train_test == 'Test': for study in ['FMS']: for patient in ['05']: for visit in ['01','02','03','04','05']: for modality in ['MPRAGE_POST', 'FLAIR_r_T2', 'T2SPACE_DL', 'T1Pre']: try: target_file = glob.glob(os.path.join(base_directory, study, 'ANALYSIS', 'DEEPLEARNING', '_'.join([study, patient]), '_'.join(['VISIT', visit]), '*' + modality + '*'))[0] target_folder = os.path.join(output_folder, '_'.join([study, patient, visit])) if not os.path.exists(target_folder): os.mkdir(target_folder) copy(target_file, os.path.join(target_folder, os.path.basename(target_file))) except: pass for modality in ['SUV']: try: target_file = glob.glob(os.path.join(base_directory, study, 'ANALYSIS', 'DEEPLEARNING', '_'.join([study, patient]), '_'.join(['VISIT', visit]), '*' + modality + '*'))[0] target_folder = os.path.join(output_folder, '_'.join([study, patient, visit])) if not os.path.exists(target_folder): os.mkdir(target_folder) copy(target_file, os.path.join(target_folder, os.path.basename(target_file))) except: pass # print config[train_test] # for study in config[train_test]['Study']: # study_dir = study return def run_test(): pass if __name__ == '__main__': run_test()
true
d1ec62316dd6eeb0af2e2c6e7002d36de8f02ded
Python
akulikova64/cgm_3d_cnn
/src/rotations.py
UTF-8
2,205
3.796875
4
[ "MIT" ]
permissive
# this module contains rotation functions for a 9 x 9 x 9 cube. import math import random # axis is the axis across which the rotation occurs # rot_num is the number of 90 degree rotations needed (0, 1, 2 or 3) def rotate_box(pre_box, axis, rot_num = 0, box_size = 9): #box size is the number of bins """ rotates box along one axis rot_num times """ box_size -= 1 # with 9 bins, indices are 0-8 dict = {"x":[1, 2], "y":[0, 2], "z":[0, 1]} # lists the axes to be changed if rotated around key new_pre_box = [] for ind_set in pre_box: a_1, a_2 = dict[axis][0], dict[axis][1] ind_1, ind_2 = ind_set[a_1], ind_set[a_2] new_set = ind_set.copy() if rot_num == 1: new_set[a_1] = box_size - ind_2 new_set[a_2] = ind_1 if rot_num == 2: new_set[a_1] = box_size - ind_1 new_set[a_2] = box_size - ind_2 if rot_num == 3: new_set[a_1] = ind_2 new_set[a_2] = box_size - ind_1 new_pre_box.append(new_set) return new_pre_box def multiple_rotations(i, pre_box, box_size = 9): # i is a value from 0-23 (encodes the 24 possible rotations) """ rotates box into one of 24 possible cube orientations """ prebox_1 = rotate_box(pre_box, "z", i%4, box_size) # remainder conveniently assignes i to one of 4 z-axis rotations. # rotate along x or y rot_num = math.floor(i/4) # 0-5 (gives one of 6 remaining rotation possibilities) if rot_num < 4: prebox_2 = rotate_box(prebox_1, "y", rot_num, box_size) # 3 possible rotations around y elif rot_num == 4: prebox_2 = rotate_box(prebox_1, "x", 1, box_size) # get one of the remaining two conformations by rotating around x elif rot_num == 5: prebox_2 = rotate_box(prebox_1, "x", 3, box_size) return prebox_2 # chooses one of 24 conformations def rotation_combo(pre_box, rotations, box_size = 9): """ randomly selects one of the 24 orientations of a cube """ final_preboxes = [] rot_list = random.sample(range(0, 24), rotations) # get random cube conformations "rotations" number of times. for i in rot_list: rotated_prebox = multiple_rotations(i, pre_box, box_size) final_preboxes.append(rotated_prebox) return final_preboxes
true
4615786737b604251596ce66e01461ab48f5881f
Python
joseluisgarciad/Hacking
/hacking.py
UTF-8
3,169
3.59375
4
[]
no_license
# Versión 2 # Este es un juego basado en adivinar una password de una lista de potenciales paswords # generados por la computadora. # Se muestra la lista de passwords posibles # El jugador tiene permitido 1 intento para adivinar la password. # El juego indica que el jugador falla al adivinar la password correcta. # Independientemente de lo que el usuario introduzca; # Se borra la pantalla # Con mensajes centrados se muestra; la password introducida y tres mensajes de error. # Espera a que el usuario pulse enter # La ventana se cierra from uagame import Window from time import sleep import os # Creamos una ventana ventana = Window('Hacking', 600, 500) ventana.set_font_name('couriernew') ventana.set_font_size(18) ventana.set_font_color('green') ventana.set_bg_color('black') # Se inicializan variables tiempo_espera = 0.5 x_coord = 0 nlineafin = 7 y_coord = 0 altura_texto = ventana.get_font_height() def linea_inicio(linea): primera = linea * altura_texto return primera def centrar_texto(linea, texto): primera = linea_inicio(linea) c_x = (ventana.get_width() - ventana.get_string_width(texto)) // 2 c_y = (ventana.get_height() - primera) // 2 if texto == "": c_x = 0 # "" para que funcione la verificacion ventana.draw_string(texto, c_x, c_y) ventana.update() print(sleep(tiempo_espera)) linea -= 2 return linea def vt(texto: str, ycoord): if texto != 'DEBUG MODE': ycoord = ycoord + ventana.get_font_height() ventana.draw_string(texto, x_coord, ycoord) ventana.update() sleep(tiempo_espera) return ycoord # display header y_coord = vt('DEBUG MODE', 0) # display intentos y_coord = vt('1 ATTEMPT(S) LEFT', y_coord) # display password y_coord = vt("", y_coord) # "" para que funcione la verificacion y_coord = vt('PROVIDE', y_coord); y_coord = vt('SETTING', y_coord); y_coord = vt('CANTINA', y_coord); y_coord = vt('CUTTING', y_coord); y_coord = vt('HUNTERS', y_coord); y_coord = vt('SURVIVE', y_coord); y_coord = vt('HEARING', y_coord); y_coord = vt('HUNTING', y_coord); y_coord = vt('REALIZE', y_coord); y_coord = vt('NOTHING', y_coord); y_coord = vt('OVERLAP', y_coord); y_coord = vt('FINDING', y_coord); y_coord = vt('PUTTING', y_coord) # pedir contraseña y_coord = vt("", y_coord) # "" para que funcione la verificacion y_coord = y_coord + ventana.get_font_height() contrasena = ventana.input_string("ENTER PASSWORD >", 0, y_coord) # end game ventana.clear() nlineafin = centrar_texto(nlineafin, contrasena) nlineafin = centrar_texto(nlineafin, "") # "" para que funcione la verificacion nlineafin = centrar_texto(nlineafin, 'LOGIN FAILURE - TERMINAL LOCKED') nlineafin = centrar_texto(nlineafin, "") # "" para que funcione la verificacion nlineafin = centrar_texto(nlineafin, 'PLEASE CONTACT AN ADMINISTRATOR') nlineafin = centrar_texto(nlineafin, "") # "" para que funcione la verificacion centrar_x = (ventana.get_width() - ventana.get_string_width("PRESS ENTER TO EXIT")) // 2 centrar_y = (ventana.get_height() - linea_inicio(nlineafin)) // 2 ventana.input_string("PRESS ENTER TO EXIT", centrar_x, centrar_y) ventana.close() # prompt for end
true
c7ff2893e0220f4269525b06a4e71faeb2faeec7
Python
Sirisha111102/Python
/lowercaseinrange.py
UTF-8
191
3.8125
4
[]
no_license
#print lowercaseletters up to a range n """import string s=int(input()) print(string.ascii_lowercase[:s])""" s=int(input()) a=97 for i in range(s): print(chr(a),end="") a+=1
true
4d28ca24e2d70be3c51a46c93af62a7b8a650e88
Python
ToniCaimari/Codewars
/Python/kyu8/Is_he_gonna_survive.py
UTF-8
125
2.703125
3
[]
no_license
def hero(bullets, dragons): ammo = dragons*2 if bullets-ammo < 0: return False else: return True
true
ab77864ea6682256d5f28a7733db451bcb891617
Python
panosadamop/pythonCourses
/trionymo.py
UTF-8
501
3.875
4
[]
no_license
import math as m a = int(input("Enter the value of a: ")) b = int(input("Enter the value of b: ")) c = int(input("Enter the value of c: ")) d = b**2-4*a*c if d > 0: x1 = (-b + m.sqrt((b ** 2) - (4 * (a * c)))) / (2 * a) x2 = (-b - m.sqrt((b ** 2) - (4 * (a * c)))) / (2 * a) print("This equation has two solutions: ", x1, " or", x2) elif d == 0: x = (-b+m.sqrt(b**2-4*a*c))/2*a print ("This equation has one solutions: "), x else: print("This equation has no real solution")
true
a2d4b452f1d4b0d25d142e698d49893133a9f23b
Python
gselva28/100_days_of_code
/DAY 14/game_code.py
UTF-8
2,081
3.78125
4
[]
no_license
#Higher Lower Game Code import random import os clear = lambda: os.system('cls') from game_art import logo, vs from game_data import data def format_data(account): """ Format the account data into printable format """ account_name = account["name"] account_descr = account["description"] account_country = account["country"] return f"{account_name}, a {account_descr}, from {account_country}" def check_answer(guess, a_followers, b_followers): """Take the user guess and follower counts and returns if they got it right""" if a_followers > b_followers: return guess == "a" else: return guess == "b" # Display game_art clear() print(logo) score = 0 continue_game = True # Make the game repeatable [till lose] # Shift the position of B account to A account """In this the first choice of b will be created outside the while loop then the uncoming b will the value of a and b will create a new one.""" account_b = random.choice(data) while continue_game: # Generate a random account from the game data [dict values] account_a = account_b account_b = random.choice(data) if account_a == account_b: account_b = random.choice(data) print(f"Compare A: {format_data(account_a)}") print(vs) print(f"Compare B: {format_data(account_b)}") # Ask user for a guess [which one has more insta follower account] guess = input("Who has more followers? Type 'A' or 'B': ").lower() # Check if user is correct ## Get follwer count of each account a_follower_account = account_a["follower_count"] b_follower_account = account_b["follower_count"] is_correct = check_answer(guess, a_follower_account, b_follower_account) # Clear the screen between rounds. clear() print(logo) # Give user feedback on their game [win or loss each round] # Track the score if is_correct: score += 1 print(f"You're right! Current score: {score}.") else: continue_game = False print(f"Sorry, that's wrong. Final score: {score}")
true
e6d2fe7aa9805e56d388186ee972545859ea06d7
Python
zhanglongliu/Crawl
/movie/spiders/awesome_movie.py
UTF-8
1,093
2.734375
3
[]
no_license
# -*- coding: utf-8 -*- import scrapy from scrapy.spiders import Rule, CrawlSpider from scrapy.linkextractors import LinkExtractor from movie.items import MovieItem class AwesomeMovieSpider(CrawlSpider): name = 'awesome_movie' start_urls = ['https://movie.douban.com/subject/3011091/'] rules= ( Rule(LinkExtractor(allow='https://movie.douban.com/subject/\d+/\?from=subject-page'),callback='parse_movie_item',follow=True), ) def parse_movie_item(self,response): item=MovieItem() item['url']=response.url item['name']=response.xpath('//span[@property="v:itemreviewed"]/text()').extract_first() item['summary']=response.xpath('//span[@property="v:summary"]/text()').extract_first() item['score']=response.xpath('//strong[@property="v:average"]/text()').extract_first() print('------------------', item) yield item ''' def parse_start_url(self,response): yield self.parse_movie_item(response) def parse_page(self, response): yield self.parse_movie_item(response) '''
true
721cff03035b65eab07ffbd2d33f1f21381cca67
Python
lvoegtlin/crnn.pytorch
/datasets/dataset.py
UTF-8
3,045
2.75
3
[ "MIT" ]
permissive
import os import torch import torch.utils.data as data from datasets.datahelpers import default_loader class DigitsDataset(data.Dataset): """Digits dataset.""" def __init__(self, mode, data_root, transform=None, loader=default_loader): if not (mode == 'train' or mode == 'dev'): raise(RuntimeError("MODE should be either train or dev, passed as string")) self.mode = mode self.transform = transform self.loader = loader self.img_root = os.path.join(data_root, 'images') self.img_names = [] self.targets = [] label_path = os.path.join(data_root, '{}.txt'.format(mode)) with open(label_path, 'r') as f: for line in f.readlines(): line = line.strip().split() self.img_names.append(line[0]) self.targets.append(line[1:]) def __len__(self): return len(self.img_names) def __getitem__(self, idx): img_name = os.path.join(self.img_root, self.img_names[idx]) image = self.loader(img_name) if self.transform is not None: image = self.transform(image) target = self.targets[idx] target = torch.IntTensor([int(i) for i in target]) return image, target class DigitsBatchTrain: """Collate function for train mode.""" def __init__(self, batch, keep_ratio=False): transposed_data = list(zip(*batch)) if keep_ratio: self.images = transposed_data[0] else: self.images = torch.stack(transposed_data[0], 0) self.targets = torch.cat(transposed_data[1], 0) # length of the each target string self.targets_single = transposed_data[1] self.target_lengths = torch.IntTensor([len(i) for i in transposed_data[1]]) def pin_memory(self): self.images = self.images.pin_memory() self.targets = self.targets.pin_memory() self.target_lengths = self.target_lengths.pin_memory() return self class DigitsBatchDev: """Collate function for dev mode.""" def __init__(self, batch, keep_ratio=False): transposed_data = list(zip(*batch)) if keep_ratio: self.images = transposed_data[0] else: self.images = torch.stack(transposed_data[0], 0) self.targets = [i.tolist() for i in transposed_data[1]] self.target_lengths = torch.IntTensor([len(i) for i in transposed_data[1]]) def pin_memory(self): self.images = self.images.pin_memory() return self class DigitsCollater: """Digits Collater.""" def __init__(self, mode, keep_ratio=False): self.mode = mode self.keep_ratio = keep_ratio def __call__(self, batch): if self.mode == 'train': return DigitsBatchTrain(batch, self.keep_ratio) elif self.mode == 'dev': return DigitsBatchDev(batch, self.keep_ratio) else: raise(RuntimeError("MODE should be either train or dev, passed as string"))
true
7511692c16fcd2d811f71b5e043953af34a5d1d7
Python
rodriguezmatirp/Lab-Main
/Sem 4/CN_Lab/PS_5/2/server.py
UTF-8
709
2.828125
3
[]
no_license
import socket import crc LOCALHOST = '127.0.0.1' PORT = 65432 if __name__ == '__main__': with socket.socket(socket.AF_INET, socket.SOCK_STREAM) as sock: sock.bind((LOCALHOST, PORT)) sock.listen() while True: conn, addr = sock.accept() print('Connection address : ', addr) received_data = conn.recv(100).decode('utf-8').split(' ') codeword = received_data[0] key = received_data[1] if codeword and key: remainder = crc.decode(codeword,key) if '1' in remainder: print('Error Detected') else: print('No error Detected')
true
acbaacc8032d1a5f420b2d5cf39435da1bc6b525
Python
DaiMaDaiMa/PythonStudy
/面向对象class/classdemo6.py
UTF-8
444
3.78125
4
[]
no_license
""" 通过对象和类分别访问私有方法 但类无法访问对象的属性,无论是公有还是私有 """ class Person(): def __init__(self, name): self.name = name self.__age = 18 def __secret(self): print("%s 的年龄是 %d" % (self.name, self.__age)) if __name__ == "__main__": p = Person("xiaofang") print(p._Person__age) p._Person__secret() Person._Person__secret(p)
true
18ee506b695076f8b61c9742295d47bb66da9b00
Python
nberrehouma/Developpement-systeme-sous-Linux
/chapitre-21/exemple-buffers.py
UTF-8
459
3.171875
3
[]
no_license
#! /usr/bin/python from __future__ import print_function import sys print("1 stdout : ligne + \\n") print("2 stdout : ligne seule", end='') print("\n3 stderr : avant flush()", file=sys.stderr) sys.stdout.flush() print("\n4 stderr : apres flush ()", file=sys.stderr) print("5 stdout : ligne seule ", end='') print("\n6 stderr : avant sys.stdin.read()", file=sys.stderr) sys.stdin.readline() print("\n7 stderr : apres sys.stdin.read(stdin)", file=sys.stderr)
true
c79e44a4b427c0d7f1235cf8fae5cf0dc1811541
Python
jonjanelle/ChaosGame
/ChaosGame.py
UTF-8
1,653
3.71875
4
[]
no_license
''' Chaos game 1) place three starting posts 2) stamp turtle at random position 3) choose starting post at random, move to midpoint of current position and post, and stamp 4) repeat step 3 a few thousand times Note: Stamp by moving forward 1 unit. ''' import turtle, random def main(): window = turtle.Screen() pen = turtle.Turtle() pen.tracer(-1,delay=None) pen.color("black") pen.hideturtle() pen.shape("circle") pen.pensize(1) pen.speed(0) pen.penup() p1 = (-150,0) pen.setpos(p1[0],p1[1]) pen.stamp() p2 = (150,0) pen.setpos(p2[0],p2[1]) pen.stamp() p3 = (0, 150) pen.setpos(p3[0],p3[1]) pen.stamp() newX = 0 newY = 0 for i in range(10000): pen.penup() #get current pen position px = pen.position()[0] py = pen.position()[1] #pick one of the three random points point = random.randint(1,3) #calculate new destination to place a point if point == 1: newX = (px + p1[0])/2 newY = (py + p1[1])/2 elif point == 2: newX = (px + p2[0])/2 newY = (py + p2[1])/2 elif point == 3: newX = (px + p3[0])/2 newY = (py + p3[1])/2 pen.setpos(newX,newY) pen.pendown() pen.forward(1) window.exitonclick() window.mainloop() if __name__ == "__main__": main()
true
4af0d61b4c756f0b190b22fdb36b1c96a1e5a4d9
Python
3ngthrust/Fast-Switching-Webradio
/webradio_parallel.py
UTF-8
5,608
2.96875
3
[ "MIT" ]
permissive
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ @author: 3ngthrust """ import os import gpiozero import functools import time from MCP3002 import MCP3002 def split_into_equal_sublists(a_list, number_of_parts): """ Splits a list into a list of sublists Arguments ---------- a_list : list object List wich will be split into Sublists number_of_parts : int Number of sublists which should be created Returns ------- seperated_lists : list of lists List of Sublists of the given list which are as equal sized as possible """ start = 0 seperated_lists = [] for i in range(number_of_parts): end = round((len(a_list) / number_of_parts) * (i + 1)) seperated_lists.append(list(range(start,end))) start = end return seperated_lists def update_station_faktory(num_of_stations, adc): """ Creates a function to update the station of the player Arguments ---------- num_of_stations : int Number of different stations selectable on the player adc : gpiozero MCO3xxx object Analog to Digital Converter wich reads the raw slider position Returns ------- update_station : function Function wich will take the current station number and update the station on the player if necessary """ # Create sublists of equal sized percentage ranges for each station percentage_sublists = split_into_equal_sublists(list(range(0,101)), num_of_stations) def update_station(current_station, current_volume): slider_value = int(adc.value * 100) for i, l in enumerate(percentage_sublists): if slider_value in l: new_station_number = percentage_sublists.index(l) break if i == (len(percentage_sublists) - 1): raise Exception("slider_value {} is not between 0 and 100".format(slider_value)) # First element in mpc is 1 not 0 new_station_number += 1 if current_station == new_station_number: return current_station else: os.system('mpc --host=/home/pi/.config/mpd/socket_' + str(current_station) + ' volume 0') os.system('mpc --host=/home/pi/.config/mpd/socket_' + str(new_station_number) + ' volume ' + str(current_volume)) return new_station_number return update_station def update_volume(adc, current_station, current_volume): """ Updates the volume of the player Arguments ---------- adc : gpiozero MCO3xxx object Analog to Digital Converter wich reads the raw volume knob position """ new_volume = 100 - int(adc.value * 100) if current_volume == new_volume: return current_volume else: os.system('mpc --host=/home/pi/.config/mpd/socket_' + str(current_station) + ' volume ' + str(new_volume)) return new_volume def toggle_mute_factory(led_0): mute_list = [] # Small Hack: Empty List = False def toggle_mute(): if not mute_list: mute_list.append(1) led_0.toggle() else: mute_list.pop() led_0.toggle() def mute(): return bool(mute_list) return toggle_mute, mute def reload_factory(led_1, num_of_stations): def reload(): led_1.toggle() for i in range(1, num_of_stations + 1): os.system('mpc --host=/home/pi/.config/mpd/socket_' + str(i) + ' play ' + str(i)) led_1.toggle() return reload if __name__ == "__main__": #time.sleep(25) # Wait for wifi connction to be established on startup num_of_stations = 10 # Start mpd server for i in range(1, num_of_stations + 1): os.system('mpd /home/pi/.config/mpd/mpd_' + str(i) + '.conf') os.system('mpc --host=/home/pi/.config/mpd/socket_' + str(i) + ' clear') os.system('mpc --host=/home/pi/.config/mpd/socket_' + str(i) + ' load webradio_stations') os.system('mpc --host=/home/pi/.config/mpd/socket_' + str(i) + ' volume 0') os.system('mpc --host=/home/pi/.config/mpd/socket_' + str(i) + ' play ' + str(i)) print('All mpd servers started') # Setup frontend adc_0 = MCP3002(channel=0) adc_1 = MCP3002(channel=1) led_0 = gpiozero.LED(23) led_1 = gpiozero.LED(22) button_0 = gpiozero.Button(17) button_1 = gpiozero.Button(18) # Init current_station = 0 current_volume = 0 # Create Functions update_station = update_station_faktory(num_of_stations, adc_0) update_volume = functools.partial(update_volume, adc_1) toggle_mute, mute = toggle_mute_factory(led_0) reload = reload_factory(led_1, num_of_stations) # Assign functions button_0.when_pressed = toggle_mute button_1.when_pressed = reload try: while True: if mute(): os.system('mpc --host=/home/pi/.config/mpd/socket_' + str(current_station) + ' volume 0') current_volume = 0 while mute(): time.sleep(0.05) current_station = update_station(current_station, current_volume) current_volume = update_volume(current_station, current_volume) time.sleep(0.05) except KeyboardInterrupt: os.system('mpc --host=/home/pi/.config/mpd/socket_' + str(current_station) + ' volume 0')
true
ae6111c9cfe3e44bb9f9272c47bc94a1e8d9a636
Python
adithya-tp/leet_code
/0112_path_sum/solution.py
UTF-8
668
3.1875
3
[]
no_license
class Solution: def __init__(self): self.fs = 0 def hasPathSum(self, r: TreeNode, s: int) -> bool: if r is None: return False if (r.left is not None): self.fs += r.val if(self.hasPathSum(r.left, s)): return True self.fs -= r.val if (r.right is not None): self.fs += r.val if(self.hasPathSum(r.right, s)): return True self.fs -= r.val if (r.left is None) and (r.right is None): self.fs += r.val if(self.fs == s): return True self.fs -= r.val
true
b42ed761d108c1995beeb653da3ffe848e8a3b74
Python
DaveIndeed/Pumpvakt
/core/InternetKommunikation.py
UTF-8
733
3.65625
4
[]
no_license
import socket class InternetKommunikation: """ Hanterar kommunikation med internet """ def isAnslutenTillInternet(self, host="8.8.8.8", port=53, timeout=3): """Undersök om man är ansluten till internet""" try: socket.setdefaulttimeout(timeout) socket.socket(socket.AF_INET, socket.SOCK_STREAM).connect((host, port)) return True except Exception as ex: #errno, strerror = ex.args print(ex.args) return False if __name__ == '__main__': i = InternetKommunikation(); if i.isAnslutenTillInternet(): print("Ansluten till internet") else: print("Inte ansluten till internet")
true
a33b871c85b25019049f392fa5ed4db1cffbca3f
Python
x-coode/WIFI_H
/Wifi_H.py
UTF-8
2,487
2.515625
3
[]
no_license
# by x-c0de # instagram x.c0de import os import os.path import time,sys try: import pywifi from pywifi import PyWiFi from pywifi import const from pywifi import Profile except: print("\033[1;34mInstalling pywifi\n\n") time.sleep(0.5) os.system("pip install pywifi") print("run script agan") sys.exit() RED = "\033[1;31m" BLUE = "\033[1;34m" CYAN = "\033[1;36m" GREEN = "\033[0;32m" RESET = "\033[0;0m" BOLD = "\033[;1m" try: # wlan wifi = PyWiFi() ifaces = wifi.interfaces()[0] ifaces.scan() #check the card results = ifaces.scan_results() wifi = pywifi.PyWiFi() iface = wifi.interfaces()[0] except: print("[-] Error system") def get_location(): print(__file__) l = len(__file__) f = __file__.split("\\") l = len(f) output ="" for i in range(l): if i != l-1: output += f[i] +"\\" return output def main(ssid, password, number): profile = Profile() profile.ssid = ssid profile.auth = const.AUTH_ALG_OPEN profile.akm.append(const.AKM_TYPE_WPA2PSK) profile.cipher = const.CIPHER_TYPE_CCMP profile.key = password iface.remove_all_network_profiles() tmp_profile = iface.add_network_profile(profile) time.sleep(0.2) # if script not working change time to 1 !!!!!! iface.connect(tmp_profile) # trying to Connect time.sleep(0.35) # 1s if ifaces.status() == const.IFACE_CONNECTED: # checker time.sleep(1) print(BOLD, GREEN,'[*] Crack success!',RESET) print(BOLD, GREEN,'[*] password is ' + password, RESET) p=open("passwords.txt","a+") p.writelines(ssid+" : "+password + "\n") time.sleep(1) exit() else: print(RED, '[{}] Crack Failed using {}'.format(number, password)) def pwd(ssid, file): number = 0 with open(file, 'r') as words: for line in words: number += 1 line = line.split("\n") pwd = line[0] main(ssid, pwd, number) def menu(): print(BLUE) ssid = input("[*] SSID: ") filee = get_location()+input("[*] password list : ") if os.path.exists(filee): print(BLUE,"[~] Cracking...") pwd(ssid, filee) else: print(RED,"[-] No Such File.",BLUE) if __name__ == "__main__": menu()
true
386d8254a0d8de0dfcd959dd55971f031b4211fc
Python
daviddwlee84/LeetCode
/Contest/LeetCodeWeeklyContest/WeeklyContest243/3_fail4.py
UTF-8
1,187
2.59375
3
[]
no_license
from typing import List import heapq from collections import defaultdict, deque class Solution: def assignTasks(self, servers: List[int], tasks: List[int]) -> List[int]: server_heap = [(weight, i) for i, weight in enumerate(servers)] heapq.heapify(server_heap) server_free = defaultdict(list) pending = deque() ans = [None] * len(tasks) time = 0 while time < len(tasks) or pending: duration = None if time < len(tasks): # release new tasks task_i = time duration = tasks[time] pending.append((duration, task_i)) if server_free[time]: for i in server_free[time]: weight = servers[i] heapq.heappush(server_heap, (weight, i)) del server_free[time] while server_heap and pending: duration, task_i = pending.popleft() _, server_i = heapq.heappop(server_heap) ans[task_i] = server_i server_free[time + duration].append(server_i) time += 1 return ans # TLE
true
08aa4a5dd9710886715f420caecf840fc0466267
Python
curtiskoo/miscellaneous_scripts
/data_parsing_poc/xlstuff.py
UTF-8
1,429
3.015625
3
[]
no_license
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Sun May 13 21:22:54 2018 @author: curtiskoo """ import openpyxl from openpyxl import load_workbook wb = load_workbook('testcolor.xlsx',data_only=True) sh = wb['Sheet1'] cell = 'B3' rgb = sh[cell].fill.start_color.rgb #print(rgb) for x in range(1,5): for l in "ABCDEFG": cell = "{}{}".format(l,x) rgb = sh[cell].fill.start_color.index print(rgb,l,x) if rgb == 2: print(l,x) def white_cell(c,l=None,x=None): if l == None or x == None: cell = c else: cell = "{}{}".format(l,x) rgb = sh[cell].fill.start_color.rgb if rgb == '00000000': return True else: return False white_cell('B1','C',1) ws = wb.worksheets[0] ws['A1'] = 'hellosir123' wb.save('testcolor.xlsx') ws['A1'].value rows = ws.max_row columns = ws.max_column print(rows,columns) def get_alpha(n): key = "ABCDEFGHIJKLMNOPQRSTUVWXYZ" lst = [] if n == 0: return tn = n while n > 26: tn = n // 26 tr = n % 26 if tr == 0 and tn == 27: #print(tn,tr) tn = 26 tr = 26 elif tr == 0 and tn != 27: #print(tn,tr) tn = tn - 1 tr = 26 lst = [tr] + lst n = tn lst = [tn] + lst s = "" for x in lst: s = s + key[x-1] return s, lst get_alpha(53)
true
9907ee276f378748947bfc7c5cd7eeca669589c3
Python
Hangyuge/scrapy
/coser/coser/spiders/douban.py
UTF-8
559
2.65625
3
[]
no_license
import scrapy from coser.items import DoubanspiderItem class DOubanSpider(scrapy.Spider): name = 'douban' allowed_domains = ['movie.douban.com'] start = 0 url = 'https://movie.douban.com/top250?start=' ends = '&filter=' start_urls = [url + str(start) + ends] def parse(self,response): item = DoubanspiderItem() movies = response.xpath('//*[@id="content"]/div/div[1]/ol').extract_first() print(movies) for movie in movies: print(movie) # item['title'] = movie.xpath('./li')
true
f98d5291d0f11dfae13b5213e62b0332dae0174b
Python
monir06/Algorithms-1
/Machine Learning/Regression/data.py
UTF-8
573
2.984375
3
[]
no_license
# Setup data into two arrays import scipy as sp import matplotlib.pyplot as plt from error import error data = sp.genfromtxt("web_traffic.tsv", delimiter="\t") x = data[:, 0] y = data[:, 1] x = x[~sp.isnan(y)] y = y[~sp.isnan(y)] # Setup graph for plotting plt.scatter(x, y, s=2) plt.title("Web traffic over last month") plt.xlabel("Time") plt.ylabel("Hits/hour") plt.xticks([w * 7 * 24 for w in range(10)], ['week %i'%w for w in range(10)]) plt.autoscale(tight=True) x1,x2,y1,y2 = plt.axis() plt.axis((x1, x2, 0, 10000)) if __name__ == "__main__": plt.grid() plt.show()
true
6d5975ff52b258c5e4304dc41e37a973b9177332
Python
diegoamorin/APIDropbox_v2
/download_files_apidropbox.py
UTF-8
393
2.921875
3
[]
no_license
""" EJEMPLOS: TOKEN = Token de la aplicación ARCHIVO_LOCAL = Poner la ruta y nombredel archivo en el que se va almacenar. RUTA_REMOTA = LA ruta donde se encuentra tu archivo en Dropbox + nombre del archivo. """ import dropbox dbx = dropbox.Dropbox("TOKEN") with open("<ARCHIVO_LOCAL>", "wb") as f: md, res = dbx.files_download(path="/<RUTA_REMOTA>") f.write(res.content)
true
e97559d11ba69abc082b46c85e2220954c79de53
Python
HisarCS/HisarCS-PiWarsUK
/HisarCS_PiWarsUK/MotorControl.py
UTF-8
2,835
3.125
3
[ "MIT" ]
permissive
import Adafruit_PCA9685 import RPi.GPIO as GPIO import board import pygame import math class MotorControl: def __init__(self, rightChannel, rightDIR, leftChannel, leftDIR, GPIONumbering=GPIO.BCM): self.rightChannel = rightChannel self.leftChannel = leftChannel self.GPIONumbering = GPIONumbering self.rightDIR = rightDIR self.leftDIR = leftDIR GPIO.setmode(GPIONumbering) self.pwm = Adafruit_PCA9685.PCA9685() self.pwm.set_pwm_freq(1000) GPIO.setup(rightDIR, GPIO.OUT) GPIO.setup(leftDIR, GPIO.OUT) self.isArmed = False #self.kit.servo[self.rightChannel].angle = 0 #self.kit.servo[self.leftChannel].angle = 0 def armMotors(self): #pygame.init() #HeyLightningYouReady = pygame.mixer.Sound("sounds/HeyLightningYouReady.wav") #HeyLightningYouReady.play() self.isArmed = True def disArm(self): self.isArmed = False def controllerToMotor(self, x, y): r = math.hypot(x, y) t = math.atan2(y, x) t += math.pi / 4 left = r * math.cos(t) * math.sqrt(2) right = r * math.sin(t) * math.sqrt(2) left = max(-1, min(left, 1)) right = max(-1, min(right, 1)) return int(left * 50), -int(right * 50) def setMotorSpeeds(self, rightMotorSpeed, leftMotorSpeed, turbo=False): self.turbo = turbo if self.isArmed is True: self.rightMotorSpeed = rightMotorSpeed self.leftMotorSpeed = leftMotorSpeed if int(self.leftMotorSpeed) > 0: GPIO.output(self.leftDIR, GPIO.HIGH) print("right motors forward") else: GPIO.output(self.leftDIR, GPIO.LOW) print("right motors backwards") if int(self.rightMotorSpeed) > 0: GPIO.output(self.rightDIR, GPIO.HIGH) print("left motors forward") else: GPIO.output(self.rightDIR, GPIO.LOW) print("left motors backwards") if self.turbo: self.pwm.set_pwm(self.rightChannel, 0, abs(int(self.rightMotorSpeed*40.95))) self.pwm.set_pwm(self.leftChannel, 0, abs(int(self.leftMotorSpeed*40.95))) if not self.turbo: self.pwm.set_pwm(self.rightChannel, 0, abs(int(self.rightMotorSpeed*40.95*0.8))) self.pwm.set_pwm(self.leftChannel, 0, abs(int(self.leftMotorSpeed*40.95*0.8))) print("set the pwm values:{} {}".format(self.rightMotorSpeed, self.leftMotorSpeed)) else: self.pwm.set_pwm(self.rightChannel, 0, 0) self.pwm.set_pwm(self.leftChannel, 0, 0) print(" You need to arm the motors first!!! ")
true
ecccba6d02d21f2708f7a9b497dcc364c27afc9f
Python
sohannaik7/python-fun-logic-programs-
/guess_the_number_game_usingpython.py
UTF-8
1,429
3.8125
4
[]
no_license
import random def check(val,ran): if ran == val: print("you have guessed correct number that is ", ran) return False elif ran > val: print("it woant that far, was't ", val) return True elif ran < val: print("you have gonne too far, it was", val) return True if __name__ == '__main__': won = False while not won: ran = random.randint(1000, 1020) u1 = int(input("enter your choice person 1...")) won = check(u1,ran) if won == False: print("you have won this round") break u2 = int(input("enter your choice person 2...")) won = check(u2, ran) if won == False: print("you have won this round") break u3 = int(input("enter your choice person 3...")) won = check(u3, ran) if won == False: print("you have won this round") break u4 = int(input("enter your choice person 4...")) won = check(u4, ran) if won == False: print("you have won this round") break u5 = int(input("enter your choice person 5...")) won = check(u5, ran) if won == False: print("you have won this round") break won = False print("next round.............................")
true
c07bb00cc90c28fbdd984aecd6186e305a74e683
Python
KimOanhuit/khoa-luan-document
/Tai lieu tham khao/Draft/Source_code/cook_files.py
UTF-8
1,582
3.015625
3
[]
no_license
# -*- coding: utf-8 -*- # @author: JapHien import os, re, time start_time = time.time() folder_path = 'DATA/MATERIAL/' save_path = 'DATA/COOKED/' def get_stopwords(): tmp_stop_words = [] stop_words = [] for file in os.listdir('./stopword/'): print ('Found stop word file', file) with open ('./stopword/' + file) as f: for line in f: line = line.strip().replace('_', ' ') if line not in tmp_stop_words: tmp_stop_words.append(line) for i in reversed(tmp_stop_words): stop_words.append(i) return stop_words def cooking(file, stop_words): ls = [] with open(file) as f: for string in f: if string != '': tmp = re.sub('[0-9;:,\.\?!%&\*\$\>\<\(\)\'\'\“\”\"\"/…\-\+]', '', string) tmp = re.sub('[\-\–\+\=\≥\\\]', '', tmp).strip().lower() tmp = re.sub('\s+', ' ', tmp) if tmp != '': ls.append(tmp.strip()) meal = ' '.join(ls) # meaningful_words = [w for w in meal.split() if not w in stop_words] # meal = ' '.join(meaningful_words) return (meal) def cook_files(material, table): stop_words = get_stopwords() for stuff in os.listdir(material): print ('Working on', stuff) disk = open(table + re.sub('\.done', '', stuff) + '.txt', 'w') for item in os.listdir(material + stuff): content = '' raw = material + stuff + os.sep + item meal = cooking(raw, stop_words) disk.write('\n'+meal) disk.close() if __name__ == '__main__': print ('Hello World!!!') cook_files(folder_path,save_path)
true
51f8738eb8f33469600f6c9bd5f6cd6e1857b3e3
Python
NeaHerforth/Completed-Kattis-Files
/quick estimate.py
UTF-8
167
2.90625
3
[]
no_license
#! /usr/bin/env python3 import sys #s=sys.stdin.read().splitlines() s='''3 0 10 100''' s=s.splitlines() n=int(s[0]) for i in range(1, len(s)): print(len(s[i]))
true
3e5ea900c670dd81f4293da9881f45a4c8a97091
Python
takoe-sebe/2019-fall-polytech-cs
/sketch_191204a_list61.pyde
UTF-8
412
2.75
3
[ "MIT" ]
permissive
k=random(5,15) xCoordinate = [k] def setup(): size(500,500) smooth() noStroke() for i in range(len(xCoordinate)): xCoordinate[i] = 35*i + 90 def draw(): background(50) for coordinate in xCoordinate: fill(200) ellipse(coordinate, 250, 30, 30) fill(0) ellipse(coordinate, 250, 3,3) def keyPressed(): if (key == 's'): saveFrame("Photo")
true
1bfde23c256733f3c9bc627ad9d642e8f34d8d1b
Python
NguyenBang98/PythonExercise
/Ex14.py
UTF-8
120
3.828125
4
[]
no_license
def sumOfSquare(x): sum = 0 for i in range(1, x + 1): sum += i ** 2 return sum print(sumOfSquare(5))
true
26cabcca3e88d01db887ef8775bf1449bea76080
Python
ihayhurst/StormyRoseSplice
/mandelbrot.py
UTF-8
12,777
2.5625
3
[]
no_license
#!/usr/bin/env python3 # coding: utf-8 import sys, math, copy, os import numpy as np from PIL import Image, ImageOps from numba import jit, int32, complex64 from functools import cmp_to_key import pyopencl as cl from matplotlib import colormaps @jit def mandelbrot(c, maxiter): z = c for n in range(maxiter): if abs(z) > 2.0**40: return n z = z * z + c return 0 def mandelbrot_gpu(q, maxiter): queue = cl.CommandQueue(settings.context) output = np.empty(q.shape, dtype=np.uint16) prg = cl.Program( settings.context, """ #pragma OPENCL EXTENSION cl_khr_byte_addressable_store : enable __kernel void mandelbrot(__global float2 *q, __global ushort *output, ushort const maxiter) { int gid = get_global_id(0); float real = q[gid].x; float imag = q[gid].y; output[gid] = 0; for(int curiter = 0; curiter < maxiter; curiter++) { float real2 = real*real, imag2 = imag*imag; if (real*real + imag*imag > 4.0f){ output[gid] = curiter; return; } imag = 2* real*imag + q[gid].y; real = real2 - imag2 + q[gid].x; } } """, ).build() mf = cl.mem_flags q_opencl = cl.Buffer(settings.context, mf.READ_ONLY | mf.COPY_HOST_PTR, hostbuf=q) output_opencl = cl.Buffer(settings.context, mf.WRITE_ONLY, output.nbytes) prg.mandelbrot( queue, output.shape, None, q_opencl, output_opencl, np.uint16(maxiter) ) cl.enqueue_copy(queue, output, output_opencl).wait() return output # Progress bar to get an idea of when the image will be finished def progressIndication(x, screenSize): if x % 32 == 0: prog = round(x / screenSize * 100) print(str(prog) + "% done", end="\r") # Used for processing on CPU def mandelbrot_iterate_bypixel(xmin, xmax, ymin, ymax, width, height, maxiter): r1 = np.arange(xmin, xmax, (xmax - xmin) / width) r2 = np.arange(ymin, ymax, (ymax - ymin) / height) data = np.zeros((height, width, 3), dtype=np.uint8) for x in range(0, height - 1): for y in range(0, width - 1): c = r1[y] + r2[x] * 1j delta = mandelbrot(c, maxiter) red = int(delta % 255) green = int(delta % 128) blue = int(delta % 64) data[x, y] = (red, green, blue) progressIndication(x, height) return data # Used for processing on GPU def mandelbrot_iterate_byarray(xmin, xmax, ymin, ymax, width, height, maxiter): r1 = np.arange(xmin, xmax, (xmax - xmin) / width) r2 = np.arange(ymin, ymax, (ymax - ymin) / height) * 1j c = r1 + r2[:, np.newaxis] c = np.ravel(c).astype(np.complex64) n3 = mandelbrot_gpu(c, maxiter) n3 = (n3.reshape((height, width)) / float(n3.max()) * 255.0).astype(np.uint8) return n3 def mandelbrot_iterate(xmin, xmax, ymin, ymax, width, height, maxiter): if settings.iterateMethod == "array": return mandelbrot_iterate_byarray( xmin, xmax, ymin, ymax, width, height, maxiter ) elif settings.iterateMethod == "pixel": return mandelbrot_iterate_bypixel( xmin, xmax, ymin, ymax, width, height, maxiter ) else: print(f'Unrecognised iteration method "{settings.iterateMethod}", exiting') exit(1) def mandelbrot_prepare(coords): sideLength = coords["x"]["max"] - coords["x"]["min"] if sideLength != (coords["y"]["max"] - coords["y"]["min"]): print("X and Y length must be the same") exit(1) class tile: def __init__(self, total): self.totalTiles = total self.tilesPerSide = int(math.sqrt(self.totalTiles)) self.length = int(imageSettings.length / self.tilesPerSide) self.maxIter = imageSettings.maxIter def setXInfo(self, xCount): self.x["min"] = coords["x"]["min"] + ( (sideLength / self.tilesPerSide) * xCount ) self.x["max"] = coords["x"]["min"] + ( (sideLength / self.tilesPerSide) * (xCount + 1) ) def setYInfo(self, yCount): self.y["min"] = coords["y"]["min"] + ( (sideLength / self.tilesPerSide) * yCount ) self.y["max"] = coords["y"]["min"] + ( (sideLength / self.tilesPerSide) * (yCount + 1) ) x = {} y = {} tileCount = imageSettings.tilesPerSide**2 tileInfo = tile(tileCount) tiles = [] for x in range(0, tileInfo.tilesPerSide): tempTile = tile(tileCount) tempTile.setXInfo(x) # Work out x min and max values for that tile for y in range(0, tileInfo.tilesPerSide): tempTile.id = (tileInfo.tilesPerSide - y) + ( x * tileInfo.tilesPerSide ) # Get the tile ID, using x and y tempTile.setYInfo(y) # Work out y min and max values for that tile tiles.append(copy.deepcopy(tempTile)) tiles[len(tiles) - 1].x = copy.deepcopy(tempTile.x) tiles[len(tiles) - 1].y = copy.deepcopy(tempTile.y) def orderById(a, b): if a.id > b.id: return 1 else: return -1 tiles.sort(key=cmp_to_key(orderById)) for tile in tiles: print( f'{tile.id}: {tile.x["min"]}, {tile.x["max"]}, {tile.y["min"]}, {tile.y["max"]}, {tile.length}, {tile.length}, {tile.maxIter}' ) data = mandelbrot_iterate( tile.x["min"], tile.x["max"], tile.y["min"], tile.y["max"], tile.length, tile.length, tile.maxIter, ) mandelbrot_image_pil( data, tile, f"plots/plot{tile.id}.{imageSettings.fileType}" ) # Merge all the images into 1 combine_images("output") def mandelbrot_image_pil(data, tile, outputPath): # Normalise data data = data / (data.max() / 1.0) # Apply a colourmap, remap to 0-255 colourMap = colormaps.get_cmap(imageSettings.colourMap) data = np.uint8(colourMap(data) * 255) # Create image and flip image = Image.fromarray(data) image = image.transpose(Image.Transpose.FLIP_TOP_BOTTOM) if not os.path.exists("plots"): os.mkdir("plots") image.save(outputPath) print(f"Rendered region {tile.id}/{tile.totalTiles}\n") def combine_images(outputImage): outputPath = f"{outputImage}.{imageSettings.fileType}" print(f"Exporting images to {outputPath}") images = [] for file in os.listdir("plots"): if file.endswith(imageSettings.fileType): images.append(f"plots/{file}") def plotSort(a, b): # Remove 'plots/plot' and file extension from files, then compare numerically a = a.split(".")[0].replace("plots/plot", "") b = b.split(".")[0].replace("plots/plot", "") if int(a) > int(b): return 1 else: return -1 images.sort(key=cmp_to_key(plotSort)) shape = (imageSettings.tilesPerSide, imageSettings.tilesPerSide) length = int(imageSettings.length / imageSettings.tilesPerSide) size = (length, length) shape = shape if shape else (1, len(images)) image_size = (length * shape[1], length * shape[0]) image = Image.new("RGB", image_size) # Paste images into final image for row in range(shape[0]): for col in range(shape[1]): offset = length * col, length * row imageCount = col * shape[1] + row images[imageCount] = Image.open(images[imageCount]) image.paste(images[imageCount], offset) images[imageCount] = None image.save(outputPath, imageSettings.fileType) """ #Top level #xmin, xmax, ymin, ymax = -2.0, 0.5,-1.25, 1.25 #Test Zoom 1 #xmin,xmax,ymin,ymax = -0.375,0.125, -1.125,-0.675 #Test Zoom 2 #min,xmax,ymin,ymax = -0.25,-0.125, -0.9,-0.775 #Test Zoom 3 #xmin,xmax,ymin,ymax = -0.1875,-0.1725, -0.845,-0.830 #Interesting region from JFP's page #xmin,xmax,ymin,ymax = -0.74877, -0.74872, 0.065053 , 0.065103 #dcutchen post marksmath,org xmin,xmax,ymin,ymax =-0.34853774148008254, -0.34831493420245574, -0.6065922085831237, -0.606486596104741 mandelbrot_image_mpl(xmin,xmax,ymin,ymax,width,height,maxiter) #mandelbrot_image_PIL(xmin,xmax,ymin,ymax,width,height,maxiter) """ def main(): # Set co-ordinate boundary below coords = { "default": { "x": {"min": -0.74877, "max": -0.74872}, "y": {"min": 0.065053, "max": 0.065103}, }, "alternative": { "x": {"min": -0.750222, "max": -0.749191}, "y": {"min": 0.030721, "max": 0.031752}, }, } # Cleanup old plots if os.path.isdir("plots"): oldPlots = os.listdir("plots") if oldPlots != []: for file in oldPlots: os.remove(f"plots/{file}") mandelbrot_prepare(coords["default"]) print("Image complete!") sys.exit(1) # Program operation settings class settings: iterateMethod = "pixel" # Handled by arguments, 'pixel' uses cpu context = "" # Handled by arguments coreCount = 1 # Settings to generate image from class imageSettings: def __init__(self): self.fileType = "png" self.tilesPerSide = 2 self.resolutionMultiplier = 1 self.length = 4096 * self.resolutionMultiplier self.maxIter = 2048 self.colourMultiplier = 1 self.colourMap = "twilight" imageSettings = imageSettings() class deviceSettings: defaultPlatform = 0 defaultDevice = 0 # Handled by arguments from here platform = None device = None useSettings = False def createContext(): # Don't change context if one is already selected if settings.context != "": return settings.context # Turn pre-selected device into a context if deviceSettings.useSettings: platform = cl.get_platforms()[ deviceSettings.platform ] # Select the chosen platform device = platform.get_devices()[ deviceSettings.device ] # Select the chosen device return cl.Context([device]) # Ask for a device and return it return cl.create_some_context(interactive=True) if __name__ == "__main__": for i, arg in enumerate(sys.argv): if arg == "--cpu": # Setup settings for CPU processing settings.iterateMethod = "pixel" elif arg == "--gpu": # Setup settings for GPU processing settings.iterateMethod = "array" elif ( arg == "--platform" ): # If a platform is specified, get the next argument and set it as the platform if len(sys.argv) >= i + 2: platform = sys.argv[i + 1] try: platform = int(platform) deviceSettings.platform = platform deviceSettings.useSettings = True except: print(f'--platform must be one of the following, not "{platform}":') for i, platform in enumerate(cl.get_platforms()): print(f"{i}: {platform}") exit(1) elif ( arg == "--device" ): # If a device is specified, get the next argument and set it as the device if len(sys.argv) >= i + 2: device = sys.argv[i + 1] try: device = int(device) deviceSettings.device = device deviceSettings.useSettings = True except: print(f'--device must be an integer, not "{device}"') exit(1) elif arg == "--help": print("Help page:") print(" --cpu : Run the program on CPU") print(" --gpu : Run the program on GPU") print(" --platform [PLATFORM] : Select which platform the device is on") print(" --device [DEVICE] : Select the device to run on") exit(0) # If creating a context is required, do it if settings.iterateMethod == "array": # If settings are to be used, fill in defaults where needed if deviceSettings.useSettings: if deviceSettings.platform == None: deviceSettings.platform = deviceSettings.defaultPlatform if deviceSettings.device == None: deviceSettings.device = deviceSettings.defaultDevice settings.context = createContext() main()
true
d309cd3f5bc3f0bb482d37499044bee6002bce77
Python
HyeonJun97/Python_study
/Chapter05/Chapter5_pb53.py
UTF-8
1,025
3.78125
4
[]
no_license
#Q5.53 import turtle import math turtle.penup() turtle.goto(-200,0) turtle.pendown() turtle.goto(200,0) turtle.setheading(150) turtle.forward(20) turtle.goto(200,0) turtle.setheading(210) turtle.forward(20) #축 화살표 그리기 turtle.penup() turtle.goto(0,-80) turtle.pendown() turtle.goto(0,80) turtle.setheading(240) turtle.forward(20) turtle.goto(0,80) turtle.setheading(300) turtle.forward(20) turtle.penup() turtle.goto(-100,-15) turtle.pendown() turtle.write("-2\u03c0") turtle.penup() turtle.goto(100,-15) turtle.pendown() turtle.write("2\u03c0") turtle.penup() turtle.color("red") turtle.goto(-175,50*math.sin((-175/100)*2*math.pi)) turtle.pendown() for x in range(-175, 176): turtle.goto(x,50*math.sin((x/100)*2*math.pi)) turtle.penup() turtle.color("blue") turtle.goto(-175,50*math.cos((-175/100)*2*math.pi)) turtle.pendown() for x in range(-175, 176): turtle.goto(x,50*math.cos((x/100)*2*math.pi)) turtle.hideturtle() turtle.done()
true
5e369d5441c722baa93843ff30750e7be4232d41
Python
dariosanfilippo/bitstream_DSP_ANN
/freq_est_plot.py
UTF-8
1,387
3.03125
3
[ "MIT" ]
permissive
# This program generates scatter plots from .csv files data. # Run this from within the folder containing the .csv files to # convert them all into .pdf plots. # # Make sure to change the title to reflect your data. # # Copyright (c) Dario Sanfilippo 2021 import sys import glob import numpy as np import scipy as sp import pandas as pd import matplotlib.pyplot as plt for filename in glob.glob('*.csv'): freq = [] error = [] tmp = [] name = [] name = filename name = name + ".pdf" data = pd.read_csv(filename) tmp = data.to_numpy() l = len(data) for i in range(l): freq = np.append(freq, tmp[i][0]) error = np.append(error, tmp[i][1]) print(freq) plt.xlabel('Frequency (Hz) target') plt.ylabel('Prediction error (target-ANN ratio complement)') plt.axhline(y = 0, linewidth = .25, color = 'r', label = "Best fit") plt.scatter(freq, error, marker = "o", s = .1, linewidth = 1, color = 'black', label = "Prediction error") #plt.plot(freq, error, marker = ".", linewidth = 0, color = 'black', label = "ANN output") plt.title("Frequency estimation") handles, labels = plt.gca().get_legend_handles_labels() by_label = dict(zip(labels, handles)) plt.legend(by_label.values(), by_label.keys()) plt.grid(True) plt.savefig(name) plt.clf()
true
db72f7b5a472f5d4d90879257bfce1485cb51d8f
Python
maxweldsouza/reps
/moderate/tic_tac_win.py
UTF-8
1,261
3.53125
4
[]
no_license
# ctci 16.4 import unittest def tictacwin(board): score = {'X': 0, 'Y': 0, ' ': 0} def match(a, b, c): if a == b == c: score[a] += 1 for i in range(3): match(*board[i]) transpose = zip(*board) for i in range(3): match(*transpose[i]) match(board[0][0], board[1][1], board[2][2]) match(board[0][2], board[1][1], board[2][0]) if score['X'] > 0 and score['Y'] > 0: raise ValueError('Invalid input') elif score['X'] > 0: return 'X' elif score['Y'] > 0: return 'Y' else: return None print tictacwin([('X', ' ', ' '),(' ', ' ', ' '),(' ', ' ', ' ')]) print tictacwin([('X', 'Y', ' '),(' ', ' ', ' '),(' ', ' ', ' ')]) print tictacwin([('X', 'X', 'X'),(' ', ' ', ' '),(' ', ' ', ' ')]) print tictacwin([('X', ' ', ' '),('X', ' ', ' '),('X', ' ', ' ')]) print tictacwin([('X', ' ', ' '),(' ', 'X', ' '),(' ', ' ', 'X')]) print tictacwin([(' ', ' ', 'X'),(' ', 'X', ' '),('X', ' ', ' ')]) print tictacwin([('Y', 'Y', 'Y'),(' ', ' ', ' '),(' ', ' ', ' ')]) print tictacwin([('Y', ' ', ' '),('Y', ' ', ' '),('Y', ' ', ' ')]) print tictacwin([('Y', ' ', ' '),(' ', 'Y', ' '),(' ', ' ', 'Y')]) print tictacwin([(' ', ' ', 'Y'),(' ', 'Y', ' '),('Y', ' ', ' ')])
true
4a6dad3e35e3fea5d71726c73cf4e31667fecbfb
Python
IvayloSavov/OOP
/Exercise_Attributes_and_Methods/gym/project/trainer.py
UTF-8
336
3.078125
3
[]
no_license
class Trainer: _count_trainers = 0 def __init__(self, name: str): Trainer._count_trainers += 1 self.name = name self.id = Trainer._count_trainers def __repr__(self): return f"Trainer <{self.id}> {self.name}" @classmethod def get_next_id(cls): return cls._count_trainers + 1
true
b3bfedbd3f2f2f90622819aee5e00340f99e88e2
Python
martat96/K-Means-Visualization
/Menu.py
UTF-8
6,519
2.890625
3
[]
no_license
# -*- coding: utf-8 -*- from tkinter import * import tkFileDialog from PIL import Image, ImageTk import numpy as np import cv2 import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D from matplotlib import colors import plotly.express as px import plotly.graph_objects as go import scipy.misc class Window(Frame): def __init__(self, master=None): Frame.__init__(self, master) self.master = master self.init_window() # initiating the application window and menu def init_window(self): self.master.title("Algorytm K-Średnich") self.pack(fill=BOTH, expand=1) menu = Menu(self.master) self.master.config(menu=menu) file = Menu(menu) file.add_command(label="Wgraj zdjęcie", command=self.foto) file.add_command(label="O algorytmie", command=self.info) file.add_command(label="Wyjście", command=self.client_exit) menu.add_cascade(label="Menu", menu=file) w = Label(self.master, text="Wizualizacja działania metody K-Średnich",font=("Helvetica", 16)) w.place(x=205, y=10) # window with information about algorithm def info(self): path = r'info.jpg' image = cv2.imread(path) window_name = "Informacje o algorytmie" cv2.imshow(window_name, image) # exiting application def client_exit(self): exit() # getting image from user folder and displaying it def foto(self): # getting path of an image path = tkFileDialog.askopenfilename() img = Image.open(path) # changing the size of an image size=img.size width = size[0] ratio=width/225 heigth=size[1]/ratio img=img.resize((225,heigth)) img_send = np.array(img) # displaying image on window render = ImageTk.PhotoImage(img) img = Label(self, image=render) img.grid(row=20, column=0, sticky=W, pady=2) img.image = render img.place(x=50, y=80) l1 = Label(self.master, text = "K = ") l1.place(x=80, y=40) # pixel graph of the input image def plotIn(img): # OpenCV split() - divides the image into component channels r, g, b = cv2.split(img) # spliting the image and configuration of the 3D graph fig = plt.figure() axis = fig.add_subplot(1, 1, 1, projection="3d") # setting the color of pixels pixel_colors = img.reshape((np.shape(img)[0] * np.shape(img)[1], 3)) norm = colors.Normalize(vmin=-1., vmax=1.) # Colors to flatten them into a list and normalize them so that they can be passed to the facecolors parameter of Matplotlib.scatter() norm.autoscale(pixel_colors) pixel_colors = norm(pixel_colors).tolist() axis.scatter(r.flatten(), g.flatten(), b.flatten(), facecolors=pixel_colors, marker=".") axis.set_xlabel("Red") axis.set_ylabel("Green") axis.set_zlabel("Blue") plt.show() # k-means algorithm def onClicked(): # getting the input value of K k = entry.get() Z = img_send.reshape((-1, 3)) Z = np.float32(Z) # determining the criteria of the algorithm and executing it criteria = (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 10, 1.0) K = int(k) ret, label, center = cv2.kmeans(Z, K, None, criteria, 10, cv2.KMEANS_RANDOM_CENTERS) center = np.uint8(center) res = center[label.flatten()] res2 = res.reshape((img_send.shape)) # output plot of clustered image def plotOut(Z, center): fig = plt.figure() axis = fig.add_subplot(1, 1, 1, projection="3d") axis.scatter(Z[:, 0], Z[:, 1], Z[:, 2], c=label[:, 0], cmap='viridis', alpha=0.05) axis.scatter(center[:, 0], center[:, 1], center[:, 2], s=500, c='black', alpha=1) axis.set_xlabel("Red") axis.set_ylabel("Green") axis.set_zlabel("Blue") plt.show() # output plot of clustered image - online using Plotly def plotOnline(Z, center): # pixel visualization figure1 = go.Scatter3d(x=Z[:, 0], y=Z[:, 1], z=Z[:, 2],name = 'pixels', mode='markers', marker=dict( color=label[:, 0], size=1.5, symbol='circle' ) ) # centroids visualization figure2 = go.Scatter3d(x=center[:, 0], y=center[:, 1], z=center[:, 2], name = 'centroids', mode='markers', marker=dict( size=50, color='rgb(127,127,127)', symbol='circle' ), opacity=0.7 ) data = [figure1, figure2] layout = go.Layout() figure = go.Figure(data, layout) figure.show() buttonPlotOut = Button(self.master, text="Wykres obrazu wyjściowego", command= lambda: plotOut(Z,center)) buttonPlotOut.place(x=300, y=170) buttonPlotOnline = Button(self.master, text="Wykres obrazu wyjściowego online", command= lambda: plotOnline(Z,center)) buttonPlotOnline.place(x=300, y=200) # displaying the output image res2=Image.fromarray(res2) render2 = ImageTk.PhotoImage(res2) res2 = Label(self, image=render2) res2.grid(row=20, column=0, sticky=W, pady=2) res2.image = render2 res2.place(x=500, y=80) entry = Entry(self.master) entry.place(x=110, y=45) entry.insert(0, "4") button = Button(self.master, text="OK", command=lambda: onClicked()) button.place(x=250, y=43) buttonPlotIn = Button(self.master, text="Wykres obrazu wejsciowego", command=lambda: plotIn(img_send)) buttonPlotIn.place(x=300, y=140) label = Label(root) label.pack() root = Tk() root.geometry("800x400") app = Window(root) root.mainloop()
true
ae0a243d2befdeb9a7835bd10e5e88f0fe888d5d
Python
LourdesOshiroIgarashi/coursera-ime-usp
/Python 1/Semana 8/Tarefa de programação/1-remove_repetidos.py
UTF-8
517
4.3125
4
[ "MIT" ]
permissive
# Escreva a função remove_repetidos que recebe como parâmetro uma lista com números inteiros, # verifica se tal lista possui elementos repetidos e os remove. # A função deve devolver uma lista correspondente à primeira lista, sem elementos repetidos. # A lista devolvida deve estar ordenada. # Dica: Você pode usar lista.sort() ou sorted(lista). # >>>lista = [2, 4, 2, 2, 3, 3, 1] # >>>remove_repetidos(lista) # [1, 2, 3, 4] def remove_repetidos(lista): lista = sorted(set(lista)) return lista
true
55f3f195b2a390e8dfef3babb0f2fbdd71426c9f
Python
s123600g/asr_edgetpu_demo
/plot_audio.py
UTF-8
4,463
2.546875
3
[ "MIT" ]
permissive
# -*- coding:utf-8 -*- import librosa import librosa.display import os import numpy as np import matplotlib.pyplot as plt sample_rate = 16000 channel = 1 # 單一通道(single channel) Audio_Data_DirectoryName = "prediction_data" Audio_Data_Path = os.path.join( os.getcwd(), Audio_Data_DirectoryName ) Save_Img_Root_DirectoryName = "plot_figure" Save_Img_DirectoryName = "audio_spectrum" Save_Img_Path = os.path.join( os.getcwd(), Save_Img_Root_DirectoryName, Save_Img_DirectoryName ) if __name__ == "__main__": # try: if not os.path.exists(Audio_Data_Path): # 判斷音檔存放位置是否存在 raise Exception( "The ['{}'] is not exists !!".format(Audio_Data_Path) ) elif not os.path.exists(Save_Img_Path): # 判斷輸出圖片存放位置是否存在 raise Exception( "The ['{}'] is not exists !!".format(Save_Img_Path) ) else: print("[plot_audio] Start load audio data....\n") ''' 判斷放置紀錄檔案目錄位置內是否存在有目錄 ''' if os.listdir(Save_Img_Path) != 0: ''' 讀取放置紀錄檔案目錄位置內容 ''' for read_dir in os.listdir(Save_Img_Path): ''' 判斷當前讀取放置紀錄檔案目錄位置內容項目是否為目錄 ''' if os.path.isdir(os.path.join(Save_Img_Path, read_dir)): ''' 讀取當前放置紀錄檔案目錄位置內容目錄內檔案 ''' for read_content in os.listdir(os.path.join(Save_Img_Path, read_dir)): ''' 刪除當前讀取到檔案 ''' os.remove( os.path.join( Save_Img_Path, read_dir, # 當前讀取放置紀錄檔案目錄位置內容目錄內檔案 read_content ) ) ''' 刪除當前目錄 ''' os.rmdir( os.path.join( Save_Img_Path, read_dir, ) ) ''' 讀取當前指定位置內容 ''' for read_dir in os.listdir(Audio_Data_Path): ''' 判斷當前的路徑是否為一個目錄 ''' if os.path.isdir(os.path.join(Audio_Data_Path, read_dir)): print( "[plot_audio] Current Load Directory Name ['{}']".format( read_dir) ) ''' 建立當前類別目錄 ''' os.mkdir( os.path.join( Save_Img_Path, read_dir ) ) ''' 掃描檔案 ''' for read_file in os.listdir(os.path.join(Audio_Data_Path, read_dir)): print( "[plot_audio] Current Load Directory Name ['{}'] --> File ['{}']".format( read_dir, read_file ) ) ''' 讀取音頻檔案 ''' wave, sr = librosa.load(os.path.join( Audio_Data_Path, read_dir, read_file ), duration=5.0, mono=True, sr=sample_rate ) ''' 設置圖片大小 ''' plt.figure(figsize=(12, 8)) # plt.subplot(4, 2, 7) data = librosa.amplitude_to_db( np.abs(librosa.stft(wave)), ref=np.max) ''' 產生音頻頻譜圖 ''' librosa.display.specshow( data=data, sr=sample_rate, x_axis='time', y_axis='log') plt.colorbar(format='%+2.0f dB') plt.title('Log power spectrogram') ''' 音頻頻譜圖存檔 ''' plt.savefig(os.path.join(Save_Img_Path, read_dir, str(read_file+'.png'))) print() # except Exception as err: # print("\n>>> {} <<<".format(err))
true
72a306ac2a15db909b1cc4fd2d019f046fcea8d5
Python
PigSupreme/clayton-rpi-tactical
/castle01.py
UTF-8
2,928
2.6875
3
[]
no_license
#!/usr/bin/env python """ Student-designed FSM """ # for python3 compat from __future__ import unicode_literals from __future__ import absolute_import from __future__ import print_function from random import randint as roll_int # Game world constants from fsm_student01.gamedata import WALL_MAX, LADDER_HEIGHT, WINNING_SCORES, MAX_TURNS, GameOver # Messaging #from fsm_student.gamedata import LADDER_PLACED, LADDER_DOWN, LOOK_FOR_SPACE from fsm_ex.base_entity import DELAY, SEND_ID, RECV_ID, MSG_TYPE, EXTRA # Game Entities #from fsm_ex.base_entity import BaseEntity from fsm_student01.gamedata import CASTLE_WALL, ATTACKER, DEFENDER # State Machines #from fsm_ex.state_machine import State, STATE_NONE, StateMachine ############################################################################## class GameClock(object): """Class for managing game world clocks/timers.""" def __init__(self, start=0, tick=1): self.gametime = start # Tick interval must be positive; default to 1 if not if tick > 0: self.tick = tick else: self.tick = 1 def now(self): """Returns the current time on this clock.""" return self.gametime def update(self): """Advances the clock by one tick.""" self.gametime += self.tick def since(self, time): """Returns the time elasped on this clock since the given time. If negative, time is in the future.""" return self.gametime - time ############################################################################## from fsm_ex.base_entity import EntityManager, MessageDispatcher from fsm_student01.ent_attacker import Attacker from fsm_student01.ent_sentry import Sentry from fsm_student01.ent_wall import Wall ############################################################################## if __name__ == "__main__": # Initialize Manager-type objects: MASTER_CLOCK = GameClock() ENTITY_MGR = EntityManager() MSG_DISPATCHER = MessageDispatcher(MASTER_CLOCK.now, ENTITY_MGR) # Create and register entities # Wall must be initialized first WALLS = Wall(CASTLE_WALL, MSG_DISPATCHER) ENTITY_MGR.register(WALLS) # Sentries and attackers must be assigned to a wall ent_list = [(ATTACKER, Attacker), (DEFENDER, Sentry)] for (ename, etype) in ent_list: new_entity = etype(ename, MSG_DISPATCHER, WALLS) ENTITY_MGR.register(new_entity) # Start FSM logic: Must be done AFTER all entities are registered. ENTITY_MGR.start_all_fsms() # Main Loop while MASTER_CLOCK.since(0) < MAX_TURNS: try: MASTER_CLOCK.update() print("\n *** Game Turn %d ***" % MASTER_CLOCK.since(0)) ENTITY_MGR.update() MSG_DISPATCHER.dispatch_delayed() except GameOver: break print("Elapsed time: %d clock ticks." % MASTER_CLOCK.since(0))
true
bbbbe12fc88b8db073cdfd8856a0b3fdfa7a08c6
Python
chandramouli369/courseplan
/fileupload/uploads/individual_timetable/1_Hash Code.py
UTF-8
913
2.65625
3
[]
no_license
for k in range(1,2): file = open("input"+str(k)+".txt", "r") tot_books,tot_lib,tot_days=map(int, file.readline().split()) scores = list(map(int, file.readline().split())) sort_index = [] sl=len(scores) for i in range(sl): m=max(scores[i:]) t=scores[i] scores[i] = m scores[scores.index(m)] print() # for j in range (i+1,sl): # if (scores[i]<scores[j]): library = [] for i in range(tot_lib): tmp = [] lib = list(map(int, file.readline().split())) lib_book_index = list(map(int, file.readline().split())) tmp.append(lib) tmp.append(lib_book_index) library.append(tmp) # print (tot_books,tot_lib,tot_days) file = open("output"+str(k)+".txt", "w") file.write(str(tot_lib)+"\n") for i in range (0,tot_lib): file.write(str(i)+" "+str(len(library[i][1]))+"\n") str1= "" for j in range(len(library[i][1])): str1 += str(library[i][1][j])+" " file.write(str1+"\n")
true
d38c067e932ec012e07216f16317c3ec409f9e75
Python
asolisn/-ejercicios-de-python
/ejercicios de python/ejercicio 7.py
UTF-8
346
3
3
[]
no_license
#string nombres='Arianna Solis' dirDomiciaria= "Chile y Guayaquil" Tipo_sexo='M' #Boolean #Colecciones usuario=('dchiki','1234','chiki@gmail.com') materias=['Programacion Web','PHP','POO'] docente={'nombre','Arianna','edad':20,'fac':'faci'} #Imprimir print("""Mi nombre es {},tengo {} años"""format(nombres,edad)) print(usuario,materias,docente)
true
def9eb0023e1409c1abbdc202add0f94f4b7b0b8
Python
yezigege/offer
/定时任务/官方文档/test002.py
UTF-8
661
3.078125
3
[]
no_license
from datetime import date from apscheduler.schedulers.blocking import BlockingScheduler sched = BlockingScheduler() def my_job(text): print(text) """ date 在指定时间点触发任务 """ # 在2019年12月5日执行 # sched.add_job(my_job, 'date', run_date=date(2009, 12, 5), args=['text']) # datetime类型(用于精确时间) 在2019年11月6日 16:30:05执行 # sched.add_job(my_job, 'date', run_date=datetime(2019, 11, 6, 16, 30, 5), args=['text']) # 文本类型 # sched.add_job(my_job, 'date', run_date='2019-12-05 16:15:00', args=['text']) # 未显式指定,那么则立即执行 sched.add_job(my_job, args=['text']) sched.start()
true
7e50b031583e22a1b41e7173968acdd4e90fb42d
Python
yubanUpreti/IWAcademy_PythonAssignment
/Python Assignment III/Question-A/tower_of_hanoi.py
UTF-8
488
3.96875
4
[]
no_license
print("#"*50) print("") print("*"*20+" Tower of Hanoi problem for ‘n’ number of disks. "+"*"*20) def tower_of_hanoi(number_of_disks,src,dst,temp): if number_of_disks == 1: print(f" Move disk {number_of_disks} from {src} to {dst} ") return tower_of_hanoi(number_of_disks-1,src,dst,temp) print(f" Move disk {number_of_disks} from {src} to {dst} ") tower_of_hanoi(number_of_disks-1,temp,dst,src) tower_of_hanoi(3,'A','B','C') print("") print("#"*50)
true
67c321616dde3afafef263e98c35d74fd4bfe09c
Python
ogandolfo/Mid-Earth-Python
/Python - Curso em vídeo/Mundo 1/desafios/desafio023 - Separando dígitos de um número.py
UTF-8
379
4.5
4
[]
no_license
# Faça um programa que leia um númer de 0 a 9999 e mostre na tela cada um dos digitos separados num = int(input("Digite um número entre '1' e '9999': ")) m = num // 1000 % 10 c = num // 100 % 10 d = num // 10 % 10 u = num // 1 % 10 print(f'Analisando o número {num}') print(f'Milhar: {m}') print(f'Centena: {c}') print(f'Dezena: {d}') print(f'Unidade: {u}')
true
e2d1376b8bc60516d10bfed7007416fce5c4156c
Python
bfernando1/pynet
/week3/exercise2.py
UTF-8
1,645
3.703125
4
[]
no_license
#! /usr/bin/env python3 """ Author: Bradley Fernando Purpose: Reads in a file from a `show arp` output. Uses a loop to find the ip/ mac addresses and prints them to standard output if it meets a condition. Once conditons are met, the loop terminates. Usage: python exercise2.py Output: -------------------------------------------------------------------------------- Default Gateway IP: 10.220.88.1 MAC Address: 0062.ec29.70fe -------------------------------------------------------------------------------- Arista3 IP/Mac: 10.220.88.30 MAC Address: 5254.ab71.e119 -------------------------------------------------------------------------------- """ # Read in the file 'show arp' with open('show_arp.txt') as f: arp_lines = f.readlines() arista3_ip, default_gw = '', '' line_break = '-' * 80 # Parse through the 'show arp' output and store the ip/mac address for line in arp_lines: if line.startswith('Protocol'): continue ip_addr = line.split()[1] mac_addr = line.split()[3] # Look for the Default Gateway and Arista3 IP/MAC if ip_addr == '10.220.88.1': print(line_break) print(f"Default Gateway IP: {ip_addr}") print(f"MAC Address: {mac_addr}") print(line_break) default_gw = ip_addr elif ip_addr == '10.220.88.30': print(f"Arista3 IP/Mac: {ip_addr}") print(f"MAC Address: {mac_addr}") print(line_break) arista3_ip = ip_addr # Break out of loop once both IPs are found if arista3_ip and default_gw: print("Found both IPs, exiting...") break
true
3f3b19fd1a4abe0fe43d2eeaf1c0c8534838358d
Python
msabbir007/Introduction-to-Python
/Assignment (Round5)/isthe_listin_order.py
UTF-8
195
3.09375
3
[]
no_license
def is_the_list_in_order(l): if len(l) == 0: return True else: sort_l=sorted(l) if sort_l == l: return True else: return False
true
a59cedd2b868e5207111fbe56a5d9cdeae18c67c
Python
Allenhe123/PythonAlgorithm
/Other/scipyTest.py
UTF-8
925
2.546875
3
[]
no_license
import numpy as np import scipy as sp ''' based on the effective data structures of numpy, scipy provides the senior algorithm applications. 数值分析算法库: 矩阵运算,线性代数,最优化方法,聚类,空间运算,FFT cluster - 层次聚类(cluster.hierarchy) 矢量量化/K均值(cluster.vq) constants - 物理和数学常量 转换方法 fftpack - 离散傅里叶变换 integrate - 积分例程 interpolate - 插值(线性,三次方。。等等) io - 数据输入输出 linalg - 采用优化BLAS和APACK库的线性代数函数 maxentropy - 最大熵模型函数 ndimage - n维图像工具包 odr - 正交距离回归 optimize - 最优化(寻找极小值和方程的根) signal - 信号处理 sparse - 稀疏矩阵 spatial - 空间数据结构和算法 special - 特殊数学函数如贝塞尔函数,雅可比函数 stats - 统计学工具包 ''' # print(scipy.dot is np.dot)
true
41c293535fa9355195d86b7396d0e62e6f774f8f
Python
salasgar/Ecosystems
/Biotope.py
UTF-8
14,640
3.15625
3
[]
no_license
from basic_tools import Matrix, is_number from random import shuffle, choice from math import sqrt from basic_tools import is_function from basic_tools import print_methods_names class Feature(object): # A float variable def __init__(self, feature_name, feature_settings, parent_ecosystem): self.feature_name = feature_name self.parent_ecosystem = parent_ecosystem functions_dict = parent_ecosystem.function_maker\ .turn_settings_into_functions( feature_settings, caller='#ecosystem' ) self.current_value = functions_dict['initial value']( self.parent_ecosystem) try: self.calculate_value_after_update = functions_dict[ # we take the function without calling it 'value after updating'] try: self.update_once_every = functions_dict[ 'update once every'](self.parent_ecosystem) except Exception: self.update_once_every = 1 self.time_of_next_update = \ self.parent_ecosystem.time + self.update_once_every except Exception: pass def update(self): # or def evolve(self): # print 'Updating', self.feature_name # *** if ( hasattr(self, 'time_of_next_update') and self.parent_ecosystem.time > self.time_of_next_update ): self.current_value = self.calculate_value_after_update( self.parent_ecosystem) self.time_of_next_update += self.update_once_every def get_value(self): return self.current_value def set_value(self, new_value): self.current_value = new_value return new_value def modify_proportionally(self, proportion): value = self.get_value() increment = proportion * value self.set_value(value + increment) return increment def modify(self, increment): value = self.get_value() + increment self.set_value(value) return increment class FeatureMap(object): # A function f(x, y) def __init__(self, feature_name, feature_settings, parent_ecosystem): self.feature_name = feature_name self.parent_ecosystem = parent_ecosystem functions_dict = parent_ecosystem.function_maker.\ turn_settings_into_functions( feature_settings, caller='#ecosystem' ) (self.size_x, self.size_y) = feature_settings['matrix size'] (size_x, size_y) = (self.size_x, self.size_y) self.current_value = Matrix(size_x, size_y) for i in range(size_x): for j in range(size_y): self.current_value[i, j] = \ functions_dict['initial value']( self.parent_ecosystem, float(i) / size_x, float(j) / size_y) try: self.calculate_value_after_update = functions_dict[ 'value after updating' ] # we take the function without calling it try: self.update_once_every = functions_dict['update once every']( self.parent_ecosystem) except Exception: self.update_once_every = 1 self.time_of_next_update = ( self.parent_ecosystem.time + self.update_once_every) except Exception: pass def update(self): # or def evolve(self): # print 'Updating', self.feature_name # *** if ( hasattr(self, 'time_of_next_update') and self.parent_ecosystem.time > self.time_of_next_update ): new_value = Matrix(self.size_x, self.size_y) for i in range(self.size_x): for j in range(self.size_y): new_value[i, j] = \ self.calculate_value_after_update( self.parent_ecosystem, float(i) / self.size_x, float(j) / self.size_y) self.current_value = new_value self.time_of_next_update += self.update_once_every def get_value(self, x, y): # PRECONDITION: 0 <= x <= 1, 0 <= y <= 1 for n in (x, y, self.size_x, self.size_y): if not is_number(n): print n, 'is not a FLOAT!!!' # *** exit() return self.current_value[ int(round(x * self.size_x)), int(round(y * self.size_y)) ] def set_value(self, x, y, new_value): # PRECONDITION: 0 <= x <= 1, 0 <= y <= 1 self.current_value[ int(round(x * self.size_x)), int(round(y * self.size_y)) ] = new_value return new_value def modify_proportionally(self, x, y, proportion): # PRECONDITION: 0 <= x <= 1, 0 <= y <= 1 value = self.get_value(x, y) increment = proportion * value self.set_value(x, y, value + increment) return increment def modify(self, x, y, increment): # PRECONDITION: 0 <= x <= 1, 0 <= y <= 1 value = self.get_value(x, y) + increment self.set_value(x, y, value) return increment class Biotope(object): class random_free_locations_list(object): # warning: this is not the __init__ method of Biotope class! def __init__(self, parent_biotope): self.parent_biotope = parent_biotope self.reset() def reset(self): size = self.parent_biotope['size'] self.list = [(x, y) for x in range(size[0]) for y in range(size[1])] shuffle(self.list) self.last_location_index = len(self.list) - 1 def get_new_free_location(self): if len(self.list) == 0: return None i = (self.last_location_index + 1) % len(self.list) while ( self.parent_biotope.organisms_matrix[self.list[i]] is not None and i != self.last_location_index ): i = (i + 1) % len(self.list) if self.parent_biotope.organisms_matrix[self.list[i]] is None: self.last_location_index = i return self.list[i] else: # Error: Full biotope. There're no more free locations return None def __init__(self, settings, parent_ecosystem): self.settings = settings self.parent_ecosystem = parent_ecosystem self.organisms_matrix = Matrix(*self.settings['size']) self.initialize_biotope_features() self.random_free_locations = self.random_free_locations_list(self) # The 'distance' between two points A and B is subjective. Depends on # the topology of the biotope (currently it's a flat torus) and the # metric we use (euclidean, chess, taxicab,...). So, we define: try: self.set_distance(self.settings['distance']) except Exception: self.set_distance('euclidean distance') def __getitem__(self, keys): return self.settings[keys] def __setitem__(self, keys, value): self.settings[keys] = value def __str__(self): return str(self.organisms_matrix) def size_x(self): return self.settings['size'][0] def size_y(self): return self.settings['size'][1] def print_matrix(self): for y in range(self.size_y()): print [ 0 if self.organisms_matrix[x, y] is None else 1 for x in range(self.size_x()) ] def add_feature(self, feature_name, feature_settings): # print 'add_feature:', feature_name # *** self.biotope_features[feature_name] = Feature( feature_name, feature_settings, self.parent_ecosystem) def add_feature_map(self, feature_name, feature_settings): # print 'add_feature_map:', feature_name # *** self.biotope_features[feature_name] = FeatureMap( feature_name, feature_settings, self.parent_ecosystem) def initialize_biotope_features(self): """ We don't need to initialize features in a particular order. That's why we don't initialize them the same way as genes or new operators. Features can refer to each other and can even refer to themselves, because we built feature operators (such as '#biotope seasons speed' or 'extract #biotope nutrient A') before initializing features themselves. We built them out of features' names. """ if print_methods_names: print 'Biotope.py: initialize_biotope_features' # *** self.biotope_features = {} if 'biotope features' in self.settings: for feature_name in self.settings['biotope features']: if 'matrix size' in self.settings[ 'biotope features'][ feature_name ]: self.add_feature_map( feature_name, self.settings['biotope features'][feature_name] ) else: self.add_feature( feature_name, self.settings['biotope features'][feature_name]) if print_methods_names: print 'initialize_biotope_features done!!' # *** def get_organism(self, location): return self.organisms_matrix[location] def add_organism(self, organism, location='find location'): if location == 'find location': try: location = organism['location'] except Exception: location = self.seek_free_location() if location is not None and self.organisms_matrix[location] is None: # this way we assure that everything is in its place organism['location'] = location self.organisms_matrix[location] = organism # print "in", location, "there is", organism # *** return 'success' else: return 'fail' def move_organism(self, old_location, new_location): if old_location != new_location: self.organisms_matrix[ new_location] = self.organisms_matrix[old_location] self.organisms_matrix[old_location] = None def delete_organism(self, location): if location: self.organisms_matrix[location] = None def seek_free_location(self): """ This method return a random free position (None if not possible) """ return self.random_free_locations.get_new_free_location() def list_of_locations_close_to( self, center, radius, condition=lambda x: (x is None) ): (xc, yc) = center # borders of a square around center (xc, yc): left = int(round(xc - radius)) # we write + 1 because range(a, b+1) = [a, a+1, a+1, ..., b] = [a, ..., # b] right = int(round(xc + radius)) + 1 up = int(round(yc - radius)) # we write + 1 because range(a, b+1) = [a, a+1, a+1, ..., b] = [a, ..., # b] down = int(round(yc + radius)) + 1 return [ (x, y) for x in range(left, right) for y in range(up, down) if ( condition(self.organisms_matrix[x, y]) and self.distance(center, (x, y)) <= radius ) ] def seek_free_location_close_to(self, center, radius): """ This method return a random free position close to a center within a radius (None if not possible) """ list_of_free_locations = self.list_of_locations_close_to( center, radius, lambda x: (x is None) ) if list_of_free_locations == []: return None else: (x, y) = choice(list_of_free_locations) return (x % self['size'][0], y % self['size'][1]) def seek_organism_close_to(self, center, radius, condition=None): def default_condition(organism): return (organism is not None) and (organism['location'] != center) if condition is None: condition = default_condition list_of_locations = self.list_of_locations_close_to( center, radius, condition) if list_of_locations == []: return None else: (x, y) = choice(list_of_locations) return (x % self['size'][0], y % self['size'][1]) def calculate_distance(self, A, B, distance='euclidean distance'): """ Gives the distance from the location A to the location B, taking into account that coordinates are taken (x % size_x, y % size_y) and, thus, the location (size_x, size_y) is equivalent to (0, 0), so the distance between the locations (0, 0) and (size_x - 1, size_y - 1) is really small """ if ( hasattr(A, '__iter__') and hasattr(B, '__iter__') and len(A) == 2 and len(B) == 2 ): size_x, size_y = self['size'] Ax, Ay, Bx, By = A[0] % size_x, A[ 1] % size_y, B[0] % size_x, B[1] % size_y dif_x = min(abs(Bx - Ax), size_x - abs(Bx - Ax)) dif_y = min(abs(By - Ay), size_y - abs(By - Ay)) if distance in {'square', 'chess', 'chess distance'}: return max(dif_x, dif_y) elif distance in {'circle', 'euclidean', 'euclidean distance'}: return sqrt(dif_x**2 + dif_y**2) elif distance in { 'tilted square', 'taxicab', 'taxist', 'taxist distance', 'taxicab distance' }: return dif_x + dif_y else: return None def set_distance(self, distance): if is_function(distance): self.distance = distance elif isinstance(distance, str): self.distance = lambda A, B: self.calculate_distance( A, B, distance) def evolve(self): for feature in self.biotope_features: self.biotope_features[feature].update()
true
fc6d2cb7b184110bf0a77eff30f005bc022f9268
Python
rahuljain1310/BillReader
/filter.py
UTF-8
1,041
2.890625
3
[]
no_license
from utilities import saveImage, GetColoredSegmentationMask, isText, getArea def applyAreaFilter(segPositions, area, threshold = 0.3): """ Requires a list of pos_coord tuples """ """ Output THose segmentations With Less Area """ segPositions = segPositions[[getArea(pos_coord) < threshold *area for pos_coord in segPositions]] print("Segments After Eliminating Big Segments: ", len(segPositions)) return segPositions def applyCoverFilter(segPositions): length = len(segPositions) res = list() for i in range(length): minX, maxX, minY, maxY = segPositions[i] for f in segPositions: minX1, maxX1, minY1, maxY1 = f if (minX1>=minX and maxX1<=maxX and minY1>=minY and maxY1<=maxY): res.append(segPositions[i]) break return res def filterHlist(H_List): length = len(H_List) sumArea = 0 for i in range(length): sumArea = sumArea + H_List[i]['details']['area'] res = list() for c in H_List: area = c['details']['area'] if (area < sumArea/2): res.append(c) return res
true
657f687d15e346ce970ecb3562fd178c901e2a9e
Python
Aasthaengg/IBMdataset
/Python_codes/p02762/s060694594.py
UTF-8
2,092
3.546875
4
[]
no_license
import sys from collections import defaultdict # https://ikatakos.com/pot/programming_algorithm/data_structure/union_find_tree class UnionFind: def __init__(self, n): # 負 : 根であることを示す。絶対値はランクを示す # 非負: 根でないことを示す。値は親を示す self.table = [-1] * n def _root(self, x): stack = [] tbl = self.table while tbl[x] >= 0: stack.append(x) x = tbl[x] for y in stack: tbl[y] = x return x def find(self, x, y): return self._root(x) == self._root(y) def union(self, x, y): r1 = self._root(x) r2 = self._root(y) if r1 == r2: return # ランクの取得 d1 = self.table[r1] d2 = self.table[r2] if d1 <= d2: self.table[r2] = r1 if d1 == d2: self.table[r1] -= 1 else: self.table[r1] = r2 def friend_candidate(self): tbl = self.table n = len(tbl) candidates = [0] * n root = [-1] * n for i, parent in enumerate(tbl): if parent >= 0: root[i] = self._root(parent) candidates[root[i]] += 1 for i in range(n): if tbl[i] >= 0: candidates[i] = candidates[root[i]] return candidates def main(): input = sys.stdin.buffer.readline n, m, k = map(int, input().split()) uf = UnionFind(n) num_friends = [0] * n for _ in range(m): a, b = map(lambda x: int(x) - 1, input().split()) uf.union(a, b) num_friends[a] += 1 num_friends[b] += 1 num_block = [0] * n for _ in range(k): c, d = map(lambda x: int(x) - 1, input().split()) if uf.find(c, d): num_block[c] += 1 num_block[d] += 1 fc = uf.friend_candidate() ans = [0] * n for i in range(n): ans[i] = fc[i] - num_friends[i] - num_block[i] print(*ans) if __name__ == "__main__": main()
true
cfd64fb723f75043d6ecd3c903fd32e02575d44f
Python
rohanJa/LCM-LeetCodeMaychallenge-
/arrayManipulation.py
UTF-8
792
2.875
3
[]
no_license
#!/bin/python3 import math import os import random import re import sys # Complete the arrayManipulation function below. def arrayManipulation(n, queries): list_=[0 for i in range(0,n+2)] itre=len(queries) m=-1 for query in queries: i=query[0] while(i<=query[1]): list_[i]=list_[i]+query[2] if(m<list_[i]): m=list_[i] i=i+1 itre=itre-1 return m if __name__ == '__main__': fptr = open(os.environ['OUTPUT_PATH'], 'w') nm = input().split() n = int(nm[0]) m = int(nm[1]) queries = [] for _ in range(m): queries.append(list(map(int, input().rstrip().split()))) result = arrayManipulation(n, queries) fptr.write(str(result) + '\n') fptr.close()
true
330fef4d70318b6cb027cac0c6c6b602aa3d5474
Python
OmranKaddah/Disentangled-Representation-Learning
/source_code/models/layers.py
UTF-8
562
2.796875
3
[ "MIT" ]
permissive
import torch from torch import nn class Lambda(nn.Module): def __init__(self, lambda_function): super(Lambda, self).__init__() self.lambda_function = lambda_function def forward(self, *args): if len(args) == 1: return self.lambda_function(args[0]) else: return self.lambda_function(args) class Reshape(nn.Module): def __init__(self, shape): super(Reshape, self).__init__() self.shape = shape def forward(self, inp: torch.Tensor): return inp.view(self.shape)
true
559b10b739a63006f6eac211e5142961273a217c
Python
iamabdil/python_competition
/Q10.py
UTF-8
1,726
4.46875
4
[]
no_license
''' Q10: Create a function called summary that gets a list of filenames as a parameter. The input files should contain a floating point number on each line of the file. Make your function read these numbers and then return a triple containing the sum, average, and standard deviation of these numbers for the file. https://en.wikipedia.org/wiki/Standard_deviation#Sample_standard_deviation_of_metabolic_rate_of_northern_fulmars 
The main function should call the function summary for each filename in the list sys.argv[1:] of command line parameters. (Skip sys.argv[0] since it contains the name of the current program.) Summary Function: Args: filename: files containing floating point numbers Returns: total_sum, average, stddev ''' import sys import numpy as np def summary(filename): # read the file f = open(filename, "r") # splitting the file content by lines str_numbers = f.read().splitlines() numbers = [] # looping through numbers and appending them to numbers list for num in str_numbers: try: numbers.append(float(num)) except: pass # calculations total_sum = sum(numbers) average = total_sum/len(numbers) stddev = np.std(numbers) return total_sum, average, stddev def main(): filenames = sys.argv[1:] print(filenames) for name in filenames: total_sum, average, stddev = summary(name) print(f"File {name} Sum: {total_sum} Average: {average} Stddev: {stddev}") if __name__ == "__main__": main() ''' Joke of the Question: Two random variables were talking in a bar. They thought they were being discrete, but I heard their chatter continuously. '''
true
991a1d998a429a1ca676a997035931375409e5c0
Python
isaiahh812/Lab7
/ED.py
UTF-8
920
3.390625
3
[]
no_license
#Isaiah Hernandez #80591211 #date modified 12/14/18 #cs2302 S1 = "fool" S2 = "fuel" s1List = list(S1)#seperates both strings into list s2List = list(S2)#seperates both strings into list Table = [[0 for i in range(len(s1List)+1)] for j in range(len(s2List)+1)] for i in range(len(s1List)+1):#set the first row Table[0][i] = i for i in range(len(s2List)+1):#sets the first coloumn Table[i][0] = i for i in range(len(s2List)):# for j in range(len(s1List)):#checks if the characters are the same if s1List[j] == s2List[i]:#if so uses the diagonal vaule Table[i+1][j+1] = Table[i][j] else(): Table[i+1][j+1] = min(Table[i][j], Table[i][j], Table[i+1][j])+1#checks for the lowest number changes = Table[len(s1List)][len(s2List)] print(changes) file = open("results_for_lab_7.txt","w") file.write("The number of changes for the the two words is " + str(changes))
true
6e0026018f816f4b1c29f0bdb7e145f919ce4e6c
Python
Insanityandme/python-the-hard-way
/pthway/recap_ex22.py
UTF-8
1,747
3.40625
3
[]
no_license
from sys import argv import datetime script, in_file, out_file = argv print "calling on: %s, in_file: %s, out_file: %s)" % (script, in_file, out_file) f = open(in_file, 'w+') f2 = open(out_file, 'w+') write_to_file = f.write(raw_input("Write something in here please: ")) f.seek(0) read_file = f.read() print "%s: %s" % (in_file, read_file) f2.write(read_file) f2.seek(0) read_file_2 = f2.read() print "%s: %s" % (out_file, read_file) d = datetime.date.today() print str(d) print repr(d) print 5 > 2 print 5 < -2 print 5 >= 5 print 5 <= -2 string = "This is a string" addition = 2+2 subtraction = 2-2 divison = 2/2 multiply = 2*2 modulus = 16 % 4 # print "addition: 2+2 = %d\n subtraction: 2/2 = %d\n divison: 2/2 = %d\n multiplication: 2*2 = %d\n modolus: 16 % 4 = %d" % (addition, subtraction, divison, multiply, modulus) print "addition: 2+2 = %d\nsubtraction: 2-2 = %d\ndivsion: 2/2 = %d\nmultiplication: 2*2 = %d\nmodulus: 16 %% 4 = %d" % (addition, subtraction, divison, multiply, modulus) print "16 % 4" # print "\n, \t, \f, \a, \ooo, \v, \uxxxx, \Uxxxxxxxx, \xhh, \r, \\, \', \", \b" def add(arg1, arg2): print "ADDING: %d + %d" % (arg1, arg2) return arg1 + arg2 def subtract(arg1, arg2): print "SUBTRACTING: %d - %d" % (arg1, arg2) return arg1 - arg2 def multiply(arg1, arg2): print "MULTIPLYING: %d * %d" % (arg1, arg2) return arg1 * arg2 def division(arg1, arg2): print "DIVIDING: %d / %d" % (arg1, arg2) return arg1 / arg2 age = add(30, 5) weight = subtract(78, 4) height = multiply(90, 2) poop_size = division(100, 2) formatter = "%r\n%r\n%r\n%r" print formatter % (age, weight, height, poop_size) puzzle = add(multiply(age, weight), division(height, poop_size)) print puzzle
true
74a46f3a5c164302e802ff9206ed2a5ed47ac123
Python
Villafly/Principled-approach-to-the-selection-of-the-embedding-dimension-of-networks
/embedding_dist.py
UTF-8
3,586
2.6875
3
[ "MIT" ]
permissive
import numpy as np import networkx as nx import node2vec from gensim.models import Word2Vec from scipy.spatial.distance import cdist from scipy import optimize import math import matplotlib matplotlib.use('Agg') import matplotlib.pyplot as plt def read_graph(args): ''' Reads the input network in networkx. ''' if args.weighted: G = nx.read_edgelist(args.input, nodetype=int, data=(('weight',float),), create_using=nx.DiGraph()) else: G = nx.read_edgelist(args.input, nodetype=int, create_using=nx.DiGraph()) for edge in G.edges(): G[edge[0]][edge[1]]['weight'] = 1 #G = nx.read_edgelist(file_name, nodetype=int) if not args.directed: G = G.to_undirected() return G def fitting_func(dims,s,a,L): return s/np.power(dims,a) + L def identify_optimal_dim(embedding_dims, loss): ''' Identify the optimal dimension range and compute the curve fitting parameter for graph. ''' (s,a,l),cov = optimize.curve_fit(fitting_func, embedding_dims,loss) fit_values = (fitting_func(np.array(embedding_dims),s,a,l)) MSE = ((np.array(loss)-np.array(fit_values))**2).mean() opt = np.power((s/0.05),1/a) print 'the optimal dimension at 0.05 accuracy level is {}'.format(int(math.ceil(opt))) print 'the MSE of curve fitting is {}'.format(MSE) def cal_cosine_matrices(G,walks,args): ''' Compute the cosine distance between every node pair over different embedding dimensions. ''' norm_loss = [] walks = [map(str, walk) for walk in walks] node_num = len(G.nodes()) if node_num < args.end_dim: args.end_dim = node_num embedding_dims = range(args.start_dim,args.end_dim,args.step) if node_num < 500: embedding_dims.insert(0,node_num) print 'graph size smaller than the default end dimension, thus has been automatically set to {}'.format(node_num) else: embedding_dims.insert(0,500) #cosine_matrices = np.zeros((len(embedding_dims),node_num,node_num)) for _index, dim in enumerate(embedding_dims): #print (dim) model = Word2Vec(walks, size=dim,window=args.window_size, min_count=0, sg=1, workers=args.workers, iter=args.iter) emb_matrix = np.zeros((node_num,dim)) for _cnt,node in enumerate(G.nodes()): emb_matrix[_cnt,:] = model[str(node)] emb_matrix = emb_matrix - np.mean(emb_matrix,axis=0) cosine_matrix = 1 - cdist(emb_matrix,emb_matrix,'cosine') if _index == 0: benchmark_array = np.array(upper_tri_masking(cosine_matrix)) #np.savez_compressed('./pic/conect_data/npz/{}'.format(str.split(args.input,'/')[6]),benchmark_array) else: dim_array = np.array(upper_tri_masking(cosine_matrix)) loss = np.linalg.norm((dim_array-benchmark_array),ord=1) norm_loss.append(loss/len(dim_array)) return embedding_dims[1:],norm_loss def upper_tri_masking(A): ''' Masking the upper triangular matrix. ''' m = A.shape[0] r = np.arange(m) mask = r[:,None] < r return A[mask] def cal_embedding_distance(args): ''' The overall random walk, graph embedding and cosine distance calculation process. ''' nx_G = read_graph(args) G = node2vec.Graph(nx_G, args.directed, args.p, args.q) G.preprocess_transition_probs() walks = G.simulate_walks(args.num_walks, args.length) dims, loss = cal_cosine_matrices(nx_G,walks,args) plt.plot(dims,loss) plt.savefig('./a.png') identify_optimal_dim(dims, loss) #return cosine_matrices
true
0735654cd3c50a7ee212fd06b15cf87a8856ab0b
Python
351116682/Test
/21.py
UTF-8
737
4.1875
4
[]
no_license
coding=utf-8 ''' 使用lambda来创建匿名函数。关键在于lambda表达式紧跟参数,以分号分隔后的表达式只能为算术逻辑表达式,不能有判断等语句 ''' MAX = lambda x,y: (x > y) * x + (x < y) * y MIN = lambda x,y: (x < y) * x + (x > y) * y SUM = lambda x,y: x + y SUB = lambda x,y: (x > y) * (x) + (x < y) * (y - x) MUT = lambda x,y:(x != 0) * (x * y) or 0 DIV = lambda x,y: (x * y != 0) * (((float)(x) / (float)(y))) or "除数不能为0!" if __name__ == "__main__": x = 10 y = 100 print "MAX:",MAX(x,y) print "MIN:",MIN(x,y) print "SUM:",SUM(x,y) print "SUB:",SUB(x,y) print "SUB:",SUB(y,x) print "MUT:",MUT(x,y) print "DIV:",DIV(x,y) print "DIV:",DIV(y,x)
true
5fec9f285b19bc194a3928aea4608a4dd1f4cf0e
Python
Vipning/latest-chinese-ner-model
/bilstm-crf/dataset_loader.py
UTF-8
2,241
2.9375
3
[]
no_license
import math import random class BatchManager(object): def __init__(self,data,batch_size,vocab,label2id,shuffle=True): self.data = data self.shuffle = shuffle self.batch_size=batch_size self.vocab = vocab self.label2id = label2id self.reset() def reset(self): data=self.preprocess(self.data) self.batch_data = self.shuffle_and_pad(data,self.batch_size,self.shuffle) self.len_data = len(self.batch_data) def preprocess(self, data): """ Preprocess the data and convert to ids. """ processed = [] for d in data: text_a = d['context'] tokens = [self.vocab.to_index(w) for w in text_a.split(" ")] x_len = len(tokens) text_tag = d['tag'] tag_ids = [self.label2id[tag] for tag in text_tag.split(" ")] processed.append((tokens, tag_ids, x_len, text_a, text_tag)) return processed def shuffle_and_pad(self, data, batch_size,shuffle=True): num_batch = int(math.ceil(len(data) /batch_size)) shuffle_data=data if shuffle: random.shuffle(shuffle_data) batch_data = list() for i in range(num_batch): batch_data.append(self.pad_data(shuffle_data[i*batch_size:(i+1)*batch_size])) return batch_data @staticmethod def pad_data(data): #tokens, tag_ids, x_len, text_a, text_tag input_ids = [] labels_ids = [] input_mask = [] input_lens = [] max_length = max([sentence[2] for sentence in data]) for line in data: tokens,tag_ids,x_len,_,_ = line padding = [0] * (max_length - len(tokens)) input_ids.append(tokens + padding) labels_ids.append(tag_ids + padding) input_lens.append(x_len) mask_ = [0] * max_length mask_[:len(tokens)] = [1]*len(tokens) input_mask.append(mask_) return [input_ids,input_mask,labels_ids,input_lens] def iter_batch(self, shuffle=True): if shuffle: random.shuffle(self.batch_data)#batch间打乱 for idx in range(self.len_data): yield self.batch_data[idx]
true
3aa6866737f775030cf94d8ba9b135ad46e04fb7
Python
Man1exter/otherGames.py
/gam.py
UTF-8
2,465
3.21875
3
[]
no_license
import instaloader import sys import pygame import os from sgame import seek from sec import geckon import io import pyttsx3 import phonenumbers from phonenumbers import geocoder, carrier, timezone def panel(): print("[1] => Info About Application <= ") print("[2] => SnakeGame 1s game <= ") print("[3] => SecretGame 2s game <= ") print("[4] => Info About files/directories <= ") print("[5] => Download Image from INSTAGRAM <= ") print("[6] => Voice Channel (yours text) <= ") print("[7] => PASSSSSSSSSSSSSSSSSSSSSS <= ") print("[8] => info about phonenumbers... <= ") print(" ") def imge(): print("it is good if you write lowercase => username <=") iginit = instaloader.Instaloader() who = input("USERNAME FROM INSTAGRAM ===> ") iginit.download_profile(who, profile_pic_only = True) print(" ") print("everything is ready....") def infoapp(): pass def ss11(): print("My first game with pygame...") seek() def ss12(): print("SECRET GAME ABOUT RULONICKA BANDICKA..") geckon() def voiceBot(): print(" ") print("Bot say your text..") engine = pyttsx3.init() text = input("Enter Your Text..... =====> ") engine.say(text) engine.runAndWait() print(" ") def number_phone_function(): print(" ") print("ATTENTION DONT FORGET => +48... <= OR SOMETHING LIKE THAT...") y = input("write phonenumber => ") x = phonenumbers.parse(y, None) print(x) x2 = phonenumbers.is_possible_number(x) print("is possible number? =>",x2) x3 = phonenumbers.is_valid_number(x) print("is valid number? =>",x3) #country.. print("from where is use the number? =>",geocoder.description_for_number(x, 'pl')) #services.. print("services of phonenumber? =>",carrier.name_for_number(x, 'pl')) #timezone.. print("timezone =>",timezone.time_zones_for_number(x)) print(" ") def main(): print("WELCOME ON PANEL ABOUT GAME IN WINDOW + other useful function (programs)") print(" ") panel() way = int(input("Your choice from menu ==> ")) if way == 1: infoapp() elif way == 2: ss11() elif way == 3: ss12 elif way == 4: pass elif way == 5: imge() elif way == 6: voiceBot() elif way == 7: print(" ") pass print(" ") elif way == 8: number_phone_function() print(" ") main()
true
01c4ca868ef7095e7facf81b91d62d8d163d57c6
Python
jnibali/software-extra-credit
/unit_test.py
UTF-8
371
2.6875
3
[]
no_license
import unittest import sentence_reverse class testCaseAdd(unittest.TestCase): def test_volume(self): self.assertEqual(sentence_reverse.reverse("My name is V Tadimeti"),"Tadimeti V is name My") #tests for additon, then subtraction, then multiply, and then division #select right options in terminal when testing if __name__ == '__main__': unittest.main()
true
bf9a8a5ac094f6359ffa7ed700af263eeba56a78
Python
hmasha/MTF_Alabi
/MTF_predict.py
UTF-8
2,470
2.796875
3
[]
no_license
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Mon Jul 8 16:08:32 2019 https://stackoverflow.com/questions/18869550/python-pil-cut-off-my-16-bit-grayscale-image-at-8-bit https://stackoverflow.com/questions/8832714/how-to-use-multiple-wildcards-in-python-file-dialog https://www.datacamp.com/community/tutorials/convolutional-neural-networks-python @author: hillary.masha """ # Helper libraries from keras.models import load_model from keras.utils import to_categorical import numpy as np import matplotlib.pyplot as plt import os from keras.models import Model import cv2 import wx #fileselector for test image def get_path( ): app = wx.App(None) style = wx.FD_OPEN | wx.FD_FILE_MUST_EXIST dialog = wx.FileDialog(None, 'Select Test Image(.tif,.png,.jpg)', wildcard="pictures (*.jpeg,*.png,*.tif,*.jpg)|*.jpeg;*.png;*.tif;*.jpg", style=style) if dialog.ShowModal() == wx.ID_OK: path = dialog.GetPath() picfile = dialog.GetFilename() for item in wx.GetTopLevelWindows(): if isinstance(item, wx.Dialog): item.Destroy() item.Close() else: path = None dialog.Destroy() return path, picfile filename , imgname = get_path() y_test = [] test_data = [] IMG_Width = 30 IMG_Height = 270 #resize and store test data in array try: image = cv2.imread (filename, cv2.IMREAD_GRAYSCALE) image = cv2.resize(image, (IMG_Width, IMG_Height)) test_data.append (image) except Exception as e: print(str(e)) test_data = np.array(test_data) test_data = test_data.astype('float32') / 255 print(test_data) test_X = test_data.reshape(-1,IMG_Height,IMG_Width,1) # load model model = load_model("model.h5") print("Loaded model from disk") #model.compile(loss='binary_crossentropy', optimizer='rmsprop', metrics=['accuracy']) predicted_classes = model.predict(test_X) predicted_classes = np.argmax(np.round(predicted_classes),axis=1) print("\nPredicted Class") print(predicted_classes) #display Result if predicted_classes[0] == 1: print("PASS") arr = np.asarray(test_X.reshape(IMG_Height,IMG_Width)) plt.imshow(arr, cmap='gray') plt.title("Prediction for {} : PASS".format(imgname)) plt.show() elif predicted_classes[0] == 0: print("FAIL") arr = np.asarray(test_X.reshape(IMG_Height,IMG_Width)) plt.imshow(arr, cmap='gray') plt.title("Prediction for {} : FAIL".format(imgname)) plt.show()
true
2bbcd46bb9404811e8d121c33f63bf9419e873ab
Python
quoppy/sbscraper
/sbscraper/executable.py
UTF-8
2,694
2.65625
3
[ "Apache-2.0" ]
permissive
#!/usr/bin/env python2 # -*- coding: utf-8 -*- """Console script.""" import logging import os import sys import sbscraper import sbscraper.scraper # Environment variables. PREFIX = 'SBSCRAPER' EXTRACTOR_CATEGORIES = 'EXTRACTOR_CATEGORIES' EXTRACTOR_URL = 'EXTRACTOR_URL' LOADER_URI = 'LOADER_URI' SCRAPER_LABEL = 'SCRAPER_LABEL' LOG_FORMAT = '[%(levelname)1.1s %(asctime)s %(module)s:%(lineno)d] %(message)s' LOG_DATE_FORMAT = '%y%m%d %H:%M:%S' def get_setting(key, default=None): """Gets the value of a setting from the environment. Arguments: key (str): Name of setting. Returns: str: Value of setting. Raises: KeyError: Setting does not exist in the environment. """ key = "%s_%s" % (PREFIX, key) return os.environ[key] def configure_stream_logging(logger): """Configures logging to output to stderr. Arguments: logger (:class:`logging.Logger`): Logger to configure. """ handler = logging.StreamHandler(sys.stderr) formatter = logging.Formatter(LOG_FORMAT, LOG_DATE_FORMAT) handler.setFormatter(formatter) logger.addHandler(handler) logger.setLevel(logging.DEBUG) def main(): """Runs the Scraper based on the environment. Returns: int: Exit status. """ configure_stream_logging(logging.getLogger(sbscraper.__name__)) logger = logging.getLogger(__name__) try: label = get_setting(SCRAPER_LABEL) except KeyError: logger.error('no scraper label set') return 1 try: (scraper, extractor, transformer, loader) = sbscraper.scraper.LABELS[label] except KeyError: logger.error("invalid label: %s", label) return 1 try: extractor_url = get_setting(EXTRACTOR_URL) except KeyError: logger.error('no extractor URL set') return 1 try: extractor_categories = get_setting(EXTRACTOR_CATEGORIES) except KeyError: logger.error('no extractor categories set') return 1 categories = [category.strip() for category in extractor_categories.split(',')] if not categories: logger.error("no extractor categories found: %s", categories) return 1 try: loader_uri = get_setting(LOADER_URI) except KeyError: logger.error('no loader URI set') return 1 extractor = extractor(extractor_url, categories) transformer = transformer() loader = loader(loader_uri) scraper = scraper(extractor, transformer, loader) logger.info('Starting scraping process') scraper.run() logger.info('Done scraping') if __name__ == '__main__': sys.exit(main())
true
87825ca5593e1ca4370a38ae4825c31f528dc005
Python
stefansilverio/holbertonschool-higher_level_programming
/0x0F-python-object_relational_mapping/3-my_safe_filter_states.py
UTF-8
511
2.828125
3
[]
no_license
#!/usr/bin/python3 """display matching arguments""" import MySQLdb import sqlalchemy import sys if __name__ == '__main__': db = MySQLdb.connect(host="localhost", user=sys.argv[1], passwd=sys.argv[2], db=sys.argv[3], port=3306) c = db.cursor() c.execute("SELECT * FROM states WHERE `name` = %s ORDER BY states.id ASC", (sys.argv[4],)) states = c.fetchall() for state in states: print(state) c.close() db.close()
true
0ba416b037876b940093ceb0f49b5c096f2dd806
Python
kh7160/algorithm
/SWExpert/1940.py
UTF-8
542
3.296875
3
[]
no_license
# import sys # sys.stdin = open("input.txt", "r") t = int(input()) for case in range(t): n = int(input()) speed = 0 length = 0 for i in range(n): line = input().split(' ') if line[0] == '0': length += speed elif line[0] == '1': speed += int(line[1]) length += speed else: if speed - int(line[1]) < 0: speed = 0 else: speed -= int(line[1]) length += speed print(f"#{case+1} {length}")
true
cc1f95114d60e7cb4931b996a3c16da68fa164ce
Python
zoulala/exercise
/nlps/Alg_VSM.py
UTF-8
2,999
3.109375
3
[]
no_license
#!/user/bin/env python #-*- coding: utf-8 -*- ''' Created on 2017年3月23日 @author: zoulingwei vsm向量空间模型实现,计算两个文本的相似度(通过构建文档的字频向量,计算两个文档字频向量的相似度) ''' # first: cipintongji import math import ast from collections import Counter wordsCount=0#variable for wordsfrequency def CountKeyByWen(fileName1):#对文本进行所有词,词数统计(只对英文文章有效) global wordsCount f1=open(fileName1,'r') f1=open(fileName2,'r') table={} for lines in f1: for line in lines.split(' '): if line!=' ' and table.has_key(line): table[line]+=1 wordsCount+=1 elif line!=' ': wordsCount+=1 table[line]=1 dic = sorted(table.iteritems(),key= lambda asd:asd[1], reverse=True) # print len(dic) code for testing return dic # seconde:create vocabulary def CreateVocabulary(dic1=None, dic2=None):#创建字表 vocabulary=[] for dicEle in dic1: if dicEle[0] not in vocabulary: vocabulary.append(dicEle[0]) for dicEle in dic2: if dicEle[0] not in vocabulary: vocabulary.append(dicEle[0]) # print len(vocabulary) code for testing return vocabulary # third:compute TF-IDF output: a vector # In this code we just use TF for computing similarity def ComputeVector(dic1=None,vocabulary=None):#统计字频,生成字频向量 # 3.1compute cipin global wordscount wordsCount # 3.2create vector dicVector = {} for elem in vocabulary: dicVector[elem]=0 # dicVector = sorted(dicVector.iteritems(),key= lambda asd:asd[1], reverse=True) dicTemp1,dicTemp2=Counter(dicVector), Counter(dic1) dicTemp=dict(dicTemp1+dicTemp2) # dicTemp = sorted(dicTemp.iteritems(),key= lambda asd:asd[1], reverse=True) return dicTemp # fourth: compute TF-IDF def ComputeSimlirity(dic1Vector=None,dic2Vector=None):#通过字频向量,计算两个文本的相似度 x=0.0 #fenzi #fenmu y1=0.0 y2=0.0 for k in dic1Vector:# because of the element of dic1 and dic2 are the same temp1=(float)(float(dic1Vector[k])/float(wordsCount)) temp2=(float)(float(dic2Vector[k])/float(wordsCount)) x=x+ (temp1*temp2) y1+=pow(temp1,2) y2+=pow(temp2,2) return x/math.sqrt(y1*y2) if __name__=='__main__': fileName1='C:\\Users\\zoulingwei\\Desktop\\testr.txt'; fileName2='C:\\Users\\zoulingwei\\Desktop\\testw.txt'; dic1 = CountKeyByWen(fileName1) dic2 = CountKeyByWen(fileName2) vocabulary = CreateVocabulary(dic1, dic2) dic1Vector = ComputeVector(dic1, vocabulary) dic2Vector = ComputeVector(dic2, vocabulary) for elem in dic1Vector: print "<"+elem[0],',',str(elem[1])+">" sim=ComputeSimlirity(dic1Vector,dic2Vector) print sim
true
ed9a10ee0974e87b2256f08f1855acce19e5f7c7
Python
janhapis/Hangaroo
/Hangaroo_HAPIS.py
UTF-8
3,332
3.84375
4
[]
no_license
import random import string import time words = ['apple', 'orange', 'mango', 'cherry'] secretWord = random.choice(words) lettersGuessed = [] def isWordGuessed(secretWord, lettersGuessed): update = 0 for i, character in enumerate(secretWord): if character in lettersGuessed: update += 1 if update == len(secretWord): return True else: return False def getGuessedWord(secretWord, lettersGuessed): update = 0 underScore = ['_'] * len(secretWord) for i, character in enumerate(secretWord): if character in lettersGuessed: update += 1 underScore.insert(update-1,character) underScore.pop(update) if update == len(secretWord): return ''.join(str(w) for w in underScore) else: update += 1 underScore.insert(update-1,'_') underScore.pop(update) if update == len(secretWord): return ''.join(str(w) for w in underScore) def getAvailableLetters(lettersGuessed): availableLetters = list(string.ascii_lowercase) availableLetters2 = availableLetters[:] def removeLetters(L, l): LetterStart = L[:] for w in L: if w in LetterStart: l.remove(w) return ''.join(str(w) for w in l) return removeLetters(lettersGuessed, availableLetters2) def Hangaroo(secretWord): begin = (len(secretWord)) guess = str mistakesMade = 4 wordGuessed = False print ('Welcome to Hanagaroo!') while True: n = input("What is your Name? ").strip() if n == '': print("Invalid Input") else: break print("Hello, " + n, "let's play Hangaroo!!!") time.sleep(1) print ('There are ', begin, ' letters you will need to guess.') time.sleep(0.5) print("Start guessing...") while mistakesMade > 0 and mistakesMade <= 8 and wordGuessed is False: if secretWord == getGuessedWord(secretWord, lettersGuessed): wordGuessed = True break print (('You have ') + str(mistakesMade) + (' more guesses.')) print (('Letters left: ') + getAvailableLetters(lettersGuessed)) guess = input('Guess a letter: \n').lower() if guess in secretWord: if guess in lettersGuessed: print (("You've already guessed the letter!!! Mr. Kangaroo is mad ") + getGuessedWord(secretWord, lettersGuessed)) else: lettersGuessed.append(guess) print (("You've guessed a letter!!! That's a relief ") + getGuessedWord(secretWord, lettersGuessed)) else: if guess in lettersGuessed: print (("You've already guessed the letter!!! Mr. Kangaroo is mad ") + getGuessedWord(secretWord, lettersGuessed)) else: lettersGuessed.append(guess) mistakesMade -= 1 print (('Wrong letter!!! Poor Mr. Kangaroo ') + getGuessedWord(secretWord, lettersGuessed)) if wordGuessed == True: print('CONGRATULATIONS, you won!') elif mistakesMade == 0: print ('GAME OVER!!! The secret word was: ' + secretWord) Hangaroo(secretWord)
true
ecc204ba8bef8c519897bd8250df92ace30f3672
Python
ninjanoodles/python_scripts
/cust-packages/diff.py
UTF-8
498
2.65625
3
[]
no_license
def diff_func(set1, set2, lines2, lines1): file2_added = set2 - set1 file2_removed = set1 - set2 results = [] results.append('Lines added to') count = 1 for line in lines2: if line in file2_added: text = str(count) + ': ' + line results.append(text) count += 1 results.append('Lines removed from') count = 1 for line in lines1: if line in file2_removed: text = str(count) + ': ' + line results.append(text) count += 1 return results
true
1c1dd2649a5ca00680d8fde69e322886bb074a50
Python
chris09/Python-tut
/Master_Python/02-basic/loops.py
UTF-8
224
3.8125
4
[]
no_license
name = input("What's your name? ") for i in name: print(name, i) x = 0 while True: print(x) x += 1 if x == 15: break my_list = ['lions', 'tigers', 'bears', 'ohmy'] for i in my_list: print(i)
true
675816aae197d4a4b058ccbd18a827f956e1c4f1
Python
Ananda9470/programming_practise
/BST/findClosestValueInBst.py
UTF-8
1,438
3.890625
4
[]
no_license
from BST import BST # O(n) | O(1) # Θ(log(n)) | O(1) def findClosestValueInBst1(tree, target): closest = float("inf") while True: if abs(tree.value - target) < abs(closest - target): closest = tree.value if tree.value > target: if tree.left is not None: tree = tree.left else: return closest elif tree.value < target: if tree.right is not None: tree = tree.right else: return closest else: return tree.value # O(n) | O(n) # Θ(log(n)) | O(log(n) def findClosestValueInBst2(tree, target): def findClosestValueInBstRecussor(tree, target, smallest): if tree is None: return smallest if abs(tree.value - target) < abs(smallest - target): smallest = tree.value if tree.value > target: tree = tree.left elif tree.value < target: tree = tree.right else: return smallest return findClosestValueInBstRecussor( tree, target, smallest ) return findClosestValueInBstRecussor(tree, target, float("inf")) if __name__ == "__main__": bst = BST(100) bst.insert(5) bst.insert(6) bst.insert(105) bst.insert(103) bst.insert(1) ans = findClosestValueInBst2(bst, 101) print(ans)
true
39106a397121e9b3b6772a4945ee4cabf99b712a
Python
GeorgeZ1917/Python
/Algorithms.py
UTF-8
8,562
3.03125
3
[]
no_license
#Algorithms.py #Basic sorting algorithms from random import randint from copy import copy from math import inf length = 10 ** 1 bubbleSort = [ randint ( 0, length ) for data in range ( 0, length ) ] insertionSort = bubbleSort.copy() selectionSort = bubbleSort.copy() countingSort = bubbleSort.copy() heapSort = bubbleSort.copy() mergeSort = bubbleSort.copy() quickSort = bubbleSort.copy() countingSortNew = [ 0 ] * length countingSortAuxiliary = [ 0 ] * ( max ( countingSort ) + 1 ) def heapify ( i, n, A ) : 'Heapify algorithm' left = 2 * i + 1 right = 2 * i + 2 if left < n and A [ left ] > A [ i ] : max = left else : max = i if right < n and A [ right ] > A [ max ] : max = right if max != i : A [ max ], A [ i ] = A [ i ], A [ max ] heapify ( max, n, A ) def heapSortFun ( A ) : 'HeapSort algorithm' n = len ( A ) for i in range ( n // 2 - 1, - 1, - 1 ) : heapify ( i, n, A ) for i in range ( n - 1, - 1, - 1 ) : A [ 0 ], A [ i ] = A [ i ], A [ 0 ] heapify ( 0, i, A ) #print ( "\n\nHeapSort algorithm:" ) #print ( A ) def mergeSortAlg ( A ) : mergeSortFun ( 0, length - 1, A ) print ( "\n\nMergeSort algorithm:" ) #print ( A ) def mergeSortFun ( p, r, A ) : if p < r : q = ( p + r ) // 2 mergeSortFun ( p, q, A ) mergeSortFun ( q + 1, r, A ) merge ( p, q, r, A ) def merge ( p, q, r, A ) : n1 = q - p + 1 n2 = r - q L = [ 0 for i in range ( 0, n1 + 1 ) ] R = [ 0 for i in range ( 0, n2 + 1 ) ] for i in range ( 0, n1 ) : L [ i ] = A [ p + i ] for j in range ( 0, n2 ) : R [ j ] = A [ q + j + 1 ] L [ n1 ] = inf R [ n2 ] = inf i = 0 j = 0 for k in range ( p, r + 1 ) : if L [ i ] <= R [ j ] : A [ k ] = L [ i ] i += 1 else : A [ k ] = R [ j ] j += 1 def bubbleSortFun ( length, A ) : 'BubbleSort algorithm' for i in range ( length, - 1, - 1 ) : for j in range ( 0, i - 1 ) : if A [ j ] > A [ j + 1 ] : A [ j ], A [ j + 1 ] = A [ j + 1 ], A [ j ] print ( "BubbleSort algorithm:" ) print ( A ) def insertionSortFun ( length, A ) : 'InsertionSort algorithm' for i in range ( 1, length ) : j = i while j > 0 and ( A [ j ] < A [ j - 1 ] ) : A [ j ], A [ j - 1 ] = A [ j - 1 ], A [ j ] j -= 1 print ( "\n\nInsertionSort algorithm:" ) print ( A ) def selectionSortFun ( length, A ) : 'selectionSort algorithm' for i in range ( 0, length - 1 ) : min = i for j in range ( i + 1, length ) : if A [ j ] < A [ min ] : min = j A [ i ], A [ min ] = A [ min ], A [ i ] print ( "\n\nselectionSort algorithm:" ) print ( A ) def countingSortFun ( originalList = [], outputList = [], auxList = [] ) : 'countingSort algorithm' for j in range ( 0, length ) : auxList [ originalList [ j ] ] += 1 for i in range ( 1, ( max ( originalList ) + 1 ) ) : auxList [ i ] += auxList [ i - 1 ] for j in range ( length - 1 , - 1, - 1 ) : outputList [ auxList [ originalList [ j ] ] - 1 ] = originalList [ j ] auxList [ originalList [ j ] ] -= 1 del originalList del auxList print ( "\n\nCountingSort algorithm:" ) print ( outputList ) def quickSortAlg ( A ) : quickSortFun ( A, 0, len ( A ) - 1 ) print ( "\n\nquickSort algorithm:" ) #print ( A ) def quickSortFun ( A, l, h ) : if h > l : p = partition ( A, l, h ) quickSortFun ( A, l, p - 1 ) quickSortFun ( A, p + 1, h ) def partition ( A, l, h ) : p = h firstHigh = l for i in range ( l, h ) : if A [ i ] < A [ p ] : A [ i ], A [ firstHigh ] = A [ firstHigh ], A [ i ] firstHigh += 1 A [ p ], A [ firstHigh ] = A [ firstHigh ], A [ p ] return firstHigh def sum1 ( A, B, x ) : heapSortFun ( A ) heapSortFun ( B ) C = [ 0 ] * len ( A ) j = 0 k = 0 l = 0 for i in range ( len ( A ) - 1, - 1, - 1 ) : C [ j ] = x - A [ i ] j = j + 1 while k <= ( len ( A ) - 1 ) and l <= ( len ( A ) - 1 ) : while B [ l ] > C [ k ] : if k < len ( A ) - 1 : k = k + 1 else : break if ( B [ l ] == C [ k ] ) : return True l = l + 1 return False def sum2 ( A, x ) : heapSortFun ( A ) y = 0 temp = 0 for i in range ( 0, len ( A ) - 1 ) : y = x - A [ i ] temp = binarySearch ( A, y, 0, len ( A ) - 1 ) if temp != - 1 and temp != i : return True return False def binarySearch ( A, key, low, high ) : if low > high : return ( - 1 ) middle = ( low + high ) // 2 if A [ middle ] is key : return middle if A [ middle ] > key : return binarySearch ( A, key, low, middle - 1 ) else : return binarySearch ( A, key, middle + 1, high ) def sum3 ( A, x ): S = [ 0 ] * len ( A ) j = 0 k = 0 l = 0 for i in range ( len ( A ) - 1, - 1, - 1 ): if x != 2 * A [ i ] : S [ j ] = x - A [ i ] else : pass j = j + 1 while k < len ( A ) - 1 and l < len ( A ) - 1 : while A [ l ] > S [ k ] : if k < len ( A ) - 1 : k = k + 1 else : break if A [ l ] == S [ k ] and S [ k ] != x : return True l = l + 1 return False def Union ( A, B ): heapSortFun ( A ) heapSortFun ( B ) m = len ( A ) p = len ( B ) size = max ( m, p ) if size == m : for i in range ( 0, p ) : if BinarySearch ( A, B [ i ], 0, m - 1 ) == False : size = size + 1 else : for i in range ( 0, m ) : if BinarySearch ( B, A [ i ], 0, p - 1 ) == False : size = size + 1 Output = [ 0 ] * size if max ( m, p ) == m : for i in range ( 0, m ) : Output [ i ] = A [ i ] k = 0 for i in range ( 0, p ) : if BinarySearch ( A, B [ i ], 0, m - 1 ) == False : Output [ m + k ] = B [ i ] k = k + 1 heapSortFun ( Output ) return Output else : for i in range ( 0, p ) : Output [ i ] = B [ i ] k = 0 for i in range ( 0, m ) : if BinarySearch ( B, A [ i ], 0, p - 1 ) == False : Output [ p + k ] = A [ i ] k = k + 1 heapSortFun ( Output ) return Output def BinarySearch ( S, key, low, high ) : middle = 0 if low > high : return False middle = ( low + high ) // 2 if S [ middle ] == key : return True elif S [ middle ] > key : return BinarySearch ( S, key, low, middle - 1 ) else : return BinarySearch ( S, key, middle + 1, high ) def Smallest ( S, k ) : O = [ 0 ] * k n = len ( S ) l = 0 for i in range ( n // 2 - 1, - 1, - 1 ) : Heapify412 ( i, n, S ) for i in range ( n - 1, - 1, - 1 ) : S [ 0 ], S [ i ] = S [ i ], S [ 0 ] if l < k : if O [ l ] != S [ 0 ]: O [ l ] = S [ 0 ] l = l + 1 else : break Heapify412 ( 0, i, S ) return ( O ) def Heapify412 ( i, n, S ) : left = 2 * i + 1 right = 2 * i + 2 if left < n & S [ left ] < S [ i ] : min = left else : min = i if right < n & S [ right ] < S [ min ] : min = right if min != i : S [ min ], S [ i ] = S [ i ], S [ min ] Heapify412 ( min, n, S ) #bubbleSortFun ( length, bubbleSort ) #insertionSortFun ( length, insertionSort ) #selectionSortFun ( length, selectionSort ) #countingSortFun ( countingSort, countingSortNew, countingSortAuxiliary ) heapSortFun ( heapSort ) #mergeSortAlg ( mergeSort ) #quickSortAlg ( quickSort ) arr1 = [ 1, 2, 3, 4, 5, 6, 7, 8, 9 ] arr2 = [ 1, 2, 3, 4, 5, 6, 7, 8, 9 ] #for i in range ( 0, 20 ) : # print ( i, sum1 ( arr1, arr2, i ) ) #for i in range ( 0, 30 ) : # print ( i, sum2 ( arr1, i ) ) #heapSortFun ( arr1 ) #for i in range ( 0, 20 ) : # print ( i, sum3 ( arr1, i ) ) #print ( Union ( arr1, arr2 ) ) print ( Smallest ( heapSort, 4 ) ) wait = input ( "\n\nPress any key to exit..." )
true
6b3c9e957c6a982e7d90549c482b009a1586a8b0
Python
paulocheque/django-dynamic-fixture
/django_dynamic_fixture/tests/test_ddf_teaching_and_lessons.py
UTF-8
9,709
2.65625
3
[ "MIT", "Apache-2.0" ]
permissive
import re from django.test import TestCase import pytest from django_dynamic_fixture.models_test import * from django_dynamic_fixture.ddf import * from django_dynamic_fixture.fixture_algorithms.sequential_fixture import SequentialDataFixture data_fixture = SequentialDataFixture() class DDFTestCase(TestCase): def setUp(self): self.ddf = DynamicFixture(data_fixture) DDFLibrary.get_instance().clear() class TeachAndLessonsTest(DDFTestCase): def test_teach_a_default_lesson_for_a_model(self): self.ddf.teach(ModelForLibrary, integer=1000) instance = self.ddf.get(ModelForLibrary) assert instance.integer == 1000 def test_default_lesson_may_be_overrided_although_it_is_an_anti_pattern(self): self.ddf.teach(ModelForLibrary, integer=1000) instance = self.ddf.get(ModelForLibrary) assert instance.integer == 1000 self.ddf.teach(ModelForLibrary, integer=1001) instance = self.ddf.get(ModelForLibrary) assert instance.integer == 1001 def test_it_must_NOT_raise_an_error_if_user_try_to_use_a_not_saved_default_configuration(self): self.ddf.get(ModelForLibrary) def test_it_must_raise_an_error_if_try_to_set_a_static_value_to_a_field_with_unicity(self): with pytest.raises(InvalidConfigurationError): self.ddf.teach(ModelForLibrary, integer_unique=1000) def test_it_allows_to_use_masks_as_lessons_for_unique_integer_fields(self): self.ddf.teach(ModelForLibrary, integer_unique=Mask('1###')) instance = self.ddf.get(ModelForLibrary) assert 1000 <= int(instance.integer_unique) <= 1999 def test_it_allows_to_use_masks_as_lessons_for_unique_char_fields(self): self.ddf.teach(ModelWithUniqueCharField, text_unique=Mask('---- ### __')) instance = self.ddf.get(ModelWithUniqueCharField) assert re.match(r'[A-Z]{4} [0-9]{3} [a-z]{2}', instance.text_unique) def test_it_must_accept_dynamic_values_for_fields_with_unicity(self): self.ddf.teach(ModelForLibrary, integer_unique=lambda field: 1000) def test_it_must_NOT_propagate_lessons_for_internal_dependencies(self): self.ddf.teach(ModelForLibrary, foreignkey=DynamicFixture(data_fixture, integer=1000)) instance = self.ddf.get(ModelForLibrary) assert instance.integer != 1000 assert instance.foreignkey.integer == 1000 def test_it_must_use_lessons_for_internal_dependencies(self): # ModelForLibrary.foreignkey is a `ModelForLibrary2` self.ddf.teach(ModelForLibrary, integer=1000) self.ddf.teach(ModelForLibrary2, integer=1001) instance = self.ddf.get(ModelForLibrary, foreignkey=DynamicFixture(data_fixture)) assert instance.integer == 1000 assert instance.foreignkey.integer == 1001 # Not implemented yet # def test_teaching_must_store_ddf_configs_too(self): # self.ddf.teach(ModelForLibrary, fill_nullable_fields=False) # instance = self.ddf.get(ModelForLibrary) # assert instance.integer is None # DDFLibrary.get_instance().clear() # self.ddf.teach(ModelForLibrary, fill_nullable_fields=True) # instance = self.ddf.get(ModelForLibrary) # assert instance.integer is not None # Not implemented yet # def test_teaching_ddf_configs_must_NOT_be_propagated_to_another_models(self): # self.ddf.teach(ModelForLibrary, fill_nullable_fields=False) # instance = self.ddf.get(ModelForLibrary) # assert instance.integer is None # assert instance.foreignkey.integer is None # DDFLibrary.get_instance().clear() # self.ddf.teach(ModelForLibrary, fill_nullable_fields=True) # instance = self.ddf.get(ModelForLibrary) # assert instance.integer is not None # assert instance.foreignkey.integer is None # not populated class TeachingAndCustomLessonsTest(DDFTestCase): def test_a_model_can_have_custom_lessons(self): self.ddf.teach(ModelForLibrary, integer=1000, ddf_lesson=None) self.ddf.teach(ModelForLibrary, integer=1001, ddf_lesson='a name') instance = self.ddf.get(ModelForLibrary) assert instance.integer == 1000 instance = self.ddf.get(ModelForLibrary, ddf_lesson='a name') assert instance.integer == 1001 def test_custom_lessons_must_not_be_used_if_not_explicity_specified(self): self.ddf.teach(ModelForLibrary, integer=1000, ddf_lesson='a name') instance = self.ddf.get(ModelForLibrary) assert instance.integer != 1000 def test_a_model_can_have_many_custom_lessons(self): self.ddf.teach(ModelForLibrary, integer=1000, ddf_lesson='a name') self.ddf.teach(ModelForLibrary, integer=1001, ddf_lesson='a name 2') instance = self.ddf.get(ModelForLibrary, ddf_lesson='a name') assert instance.integer == 1000 instance = self.ddf.get(ModelForLibrary, ddf_lesson='a name 2') assert instance.integer == 1001 def test_it_must_raise_an_error_if_user_try_to_use_a_not_saved_configuration(self): with pytest.raises(InvalidConfigurationError): self.ddf.get(ModelForLibrary, ddf_lesson='a not teached lesson') def test_default_lesson_and_custom_lesson_must_work_together(self): # regression test self.ddf.teach(ModelForLibrary, integer=1000, ddf_lesson='a name') self.ddf.teach(ModelForLibrary, integer=1001, ddf_lesson=True) self.ddf.teach(ModelForLibrary, integer=1002, ddf_lesson='a name2') instance = self.ddf.get(ModelForLibrary, ddf_lesson='a name') assert instance.integer == 1000 instance = self.ddf.get(ModelForLibrary) assert instance.integer == 1001 instance = self.ddf.get(ModelForLibrary, ddf_lesson='a name2') assert instance.integer == 1002 def test_default_lesson_and_custom_lesson_must_work_together_for_different_models(self): # regression test self.ddf.teach(ModelForLibrary, integer=1000, ddf_lesson='a name') self.ddf.teach(ModelForLibrary, integer=1001, ddf_lesson=True) self.ddf.teach(ModelForLibrary, integer=1002, ddf_lesson='a name2') self.ddf.teach(ModelForLibrary2, integer=2000, ddf_lesson='a name') self.ddf.teach(ModelForLibrary2, integer=2001, ddf_lesson=True) self.ddf.teach(ModelForLibrary2, integer=2002, ddf_lesson='a name2') instance = self.ddf.get(ModelForLibrary, ddf_lesson='a name') assert instance.integer == 1000 instance = self.ddf.get(ModelForLibrary) assert instance.integer == 1001 instance = self.ddf.get(ModelForLibrary, ddf_lesson='a name2') assert instance.integer == 1002 instance = self.ddf.get(ModelForLibrary2, ddf_lesson='a name') assert instance.integer == 2000 instance = self.ddf.get(ModelForLibrary2) assert instance.integer == 2001 instance = self.ddf.get(ModelForLibrary2, ddf_lesson='a name2') assert instance.integer == 2002 class DDFLibraryTest(TestCase): def setUp(self): self.lib = DDFLibrary() def test_add_and_get_configuration_without_string_name(self): self.lib.add_configuration(ModelForLibrary, {'a': 1}) assert self.lib.get_configuration(ModelForLibrary) == {'a': 1} assert self.lib.get_configuration(ModelForLibrary, name=DDFLibrary.DEFAULT_KEY) == {'a': 1} assert self.lib.get_configuration(ModelForLibrary, name=None) == {'a': 1} self.lib.clear() self.lib.add_configuration(ModelForLibrary, {'a': 2}, name=None) assert self.lib.get_configuration(ModelForLibrary) == {'a': 2} assert self.lib.get_configuration(ModelForLibrary, name=DDFLibrary.DEFAULT_KEY) == {'a': 2} assert self.lib.get_configuration(ModelForLibrary, name=None) == {'a': 2} self.lib.clear() self.lib.add_configuration(ModelForLibrary, {'a': 3}, name=True) assert self.lib.get_configuration(ModelForLibrary) == {'a': 3} assert self.lib.get_configuration(ModelForLibrary, name=DDFLibrary.DEFAULT_KEY) == {'a': 3} assert self.lib.get_configuration(ModelForLibrary, name=None) == {'a': 3} def test_add_and_get_configuration_with_name(self): self.lib.add_configuration(ModelForLibrary, {'a': 1}, name='x') assert self.lib.get_configuration(ModelForLibrary, name='x') == {'a': 1} def test_clear_config(self): self.lib.clear_configuration(ModelForLibrary) # run ok if empty self.lib.add_configuration(ModelForLibrary, {'a': 1}) self.lib.add_configuration(ModelForLibrary, {'a': 2}, name='x') self.lib.add_configuration(ModelForLibrary2, {'a': 3}) self.lib.clear_configuration(ModelForLibrary) assert self.lib.get_configuration(ModelForLibrary) == {} with pytest.raises(Exception): self.lib.get_configuration(ModelForLibrary, name='x') assert self.lib.get_configuration(ModelForLibrary2) == {'a': 3} def test_clear(self): self.lib.add_configuration(ModelForLibrary, {'a': 1}) self.lib.add_configuration(ModelForLibrary, {'a': 2}, name='x') self.lib.add_configuration(ModelForLibrary2, {'a': 3}) self.lib.add_configuration(ModelForLibrary2, {'a': 4}, name='x') self.lib.clear() assert self.lib.get_configuration(ModelForLibrary) == {} with pytest.raises(Exception): self.lib.get_configuration(ModelForLibrary, name='x') assert self.lib.get_configuration(ModelForLibrary2) == {} with pytest.raises(Exception): self.lib.get_configuration(ModelForLibrary2, name='x')
true