Datasets:
Tasks:
Text Generation
Modalities:
Text
Formats:
json
Sub-tasks:
language-modeling
Languages:
English
Size:
10K - 100K
ArXiv:
License:
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import json | |
import os | |
import datasets | |
import pandas as pd | |
from datasets import DatasetInfo, DownloadManager | |
_CITATION = """\ | |
""" | |
_DESCRIPTION = """\ | |
""" | |
_LICENSE = "" | |
_URL = r"https://huggingface.co/datasets/hkust-nlp/llm-compression/resolve/main/data.zip" | |
Task_list = [ | |
"python", | |
"cc", | |
"arxiv_math", | |
] | |
class LlmCompressionConfig(datasets.BuilderConfig): | |
def __init__(self, **kwargs): | |
super().__init__(version=datasets.Version("1.0.0"), **kwargs) | |
class LlmCompression(datasets.GeneratorBasedBuilder): | |
BUILDER_CONFIGS = [ | |
LlmCompressionConfig( | |
name=task_name, | |
) | |
for task_name in Task_list | |
] | |
def _info(self): | |
features = datasets.Features( | |
{ | |
"content": datasets.Value("string"), | |
"subset": datasets.Value("string"), | |
"meta": datasets.features.Value("string"), | |
} | |
) | |
return datasets.DatasetInfo( | |
description=_DESCRIPTION, | |
features=features, | |
license=_LICENSE, | |
) | |
def _split_generators(self, dl_manager: DownloadManager): | |
data_dir = dl_manager.download_and_extract(_URL) | |
task_name = self.config.name | |
return [ | |
datasets.SplitGenerator(name=datasets.Split.TEST, | |
gen_kwargs={"filepath": os.path.join(data_dir, f"{task_name}.jsonl")}) | |
] | |
def _generate_examples(self, filepath): | |
"""Yields examples.""" | |
with open(filepath,encoding="utf-8") as f: | |
for id_, row in enumerate(f): | |
cur_data = json.loads(row) | |
yield id_, { | |
"content": cur_data["content"], | |
"subset": cur_data["subset"], | |
"meta": str(cur_data["meta"]), | |
} | |