Datasets:
metadata
dataset_info:
features:
- name: task_type
dtype: string
- name: instruction
dtype: string
- name: target
dtype: string
- name: source
dtype: string
splits:
- name: train
num_bytes: 89199350
num_examples: 53264
- name: validation
num_bytes: 11738463
num_examples: 6850
download_size: 44500608
dataset_size: 100937813
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
- split: validation
path: data/validation-*
Description
This is a dataset created for training Russian-language Seq2Seq and CLM models primarily for tasks related to Closed-Domain QA.
The dataset includes 3 main tasks:
- AAQG (Answer-Aware Question Answering) - generation of questions based on context, provided the answer is known
- QG - generating questions based on context, without a known answer
- QA - the standard task of answering a question based on context.
AAQG, QG, QA tasks are generated based on regular datasets for which the context, question and correct answer are known. They are generated in a ratio of 0.4, 0.3 and 0.3, respectively.
List of datasets used to compile this dataset:
- sberquad
- russian_super_glue/muserc
- russian_super_glue/danetqa
Prompts used for QA tasks:
AAQG_PROMPT = """AAQG | Текст: '{context}'. Ответ: '{answer}'"""
QG_PROMPT = """QG | Текст: '{context}'"""
QA_PROMPT = """QA | Текст: '{context}'. Вопрос: '{question}'"""
Authors
- Sergey Bratchikov/@hivaze (Tochka Bank)