Datasets:
Tasks:
Token Classification
Modalities:
Text
Sub-tasks:
named-entity-recognition
Languages:
English
Size:
1K - 10K
License:
Add loading script and README file
Browse files- README.md +162 -0
- naacl2022.py +136 -0
README.md
ADDED
@@ -0,0 +1,162 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
annotations_creators:
|
3 |
+
- expert-generated
|
4 |
+
language:
|
5 |
+
- en
|
6 |
+
language_creators:
|
7 |
+
- crowdsourced
|
8 |
+
license:
|
9 |
+
- afl-3.0
|
10 |
+
multilinguality:
|
11 |
+
- monolingual
|
12 |
+
pretty_name: sci_NER_naacl
|
13 |
+
size_categories:
|
14 |
+
- 1K<n<10K
|
15 |
+
source_datasets:
|
16 |
+
- original
|
17 |
+
tags:
|
18 |
+
- acl
|
19 |
+
- sciBERT
|
20 |
+
- sci
|
21 |
+
- acl
|
22 |
+
- '11711'
|
23 |
+
task_categories:
|
24 |
+
- token-classification
|
25 |
+
task_ids:
|
26 |
+
- named-entity-recognition
|
27 |
+
---
|
28 |
+
|
29 |
+
# Dataset Card for [Dataset Name]
|
30 |
+
|
31 |
+
## Table of Contents
|
32 |
+
- [Table of Contents](#table-of-contents)
|
33 |
+
- [Dataset Description](#dataset-description)
|
34 |
+
- [Dataset Summary](#dataset-summary)
|
35 |
+
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
|
36 |
+
- [Languages](#languages)
|
37 |
+
- [Dataset Structure](#dataset-structure)
|
38 |
+
- [Data Instances](#data-instances)
|
39 |
+
- [Data Fields](#data-fields)
|
40 |
+
- [Data Splits](#data-splits)
|
41 |
+
- [Dataset Creation](#dataset-creation)
|
42 |
+
- [Curation Rationale](#curation-rationale)
|
43 |
+
- [Source Data](#source-data)
|
44 |
+
- [Annotations](#annotations)
|
45 |
+
- [Personal and Sensitive Information](#personal-and-sensitive-information)
|
46 |
+
- [Considerations for Using the Data](#considerations-for-using-the-data)
|
47 |
+
- [Social Impact of Dataset](#social-impact-of-dataset)
|
48 |
+
- [Discussion of Biases](#discussion-of-biases)
|
49 |
+
- [Other Known Limitations](#other-known-limitations)
|
50 |
+
- [Additional Information](#additional-information)
|
51 |
+
- [Dataset Curators](#dataset-curators)
|
52 |
+
- [Licensing Information](#licensing-information)
|
53 |
+
- [Citation Information](#citation-information)
|
54 |
+
- [Contributions](#contributions)
|
55 |
+
|
56 |
+
## Dataset Description
|
57 |
+
|
58 |
+
- **Homepage:**
|
59 |
+
- **Repository:**
|
60 |
+
- **Paper:**
|
61 |
+
- **Leaderboard:**
|
62 |
+
- **Point of Contact:**
|
63 |
+
|
64 |
+
### Dataset Summary
|
65 |
+
|
66 |
+
This is a named entity recognition dataset annotated for the science entity recognition task, a [project](https://github.com/neubig/nlp-from-scratch-assignment-2022) from the CMU 11-711 course.
|
67 |
+
|
68 |
+
### Supported Tasks and Leaderboards
|
69 |
+
|
70 |
+
NER task.
|
71 |
+
|
72 |
+
### Languages
|
73 |
+
|
74 |
+
English
|
75 |
+
|
76 |
+
## Dataset Structure
|
77 |
+
|
78 |
+
### Data Instances
|
79 |
+
|
80 |
+
A sample of the dataset
|
81 |
+
{'id': '0',
|
82 |
+
'tokens': ['We', 'sample', '50', 'negative', 'cases', 'from', 'T5LARGE', '+', 'GenMC', 'for', 'each', 'dataset'],
|
83 |
+
'ner_tags':['O', 'O', 'O', 'O', 'O', 'O', 'B-MethodName', 'O', 'B-MethodName', 'O', 'O', 'O']}
|
84 |
+
|
85 |
+
### Data Fields
|
86 |
+
|
87 |
+
id,tokens,ner_tags
|
88 |
+
|
89 |
+
- `id`: a `string` feature give the sample index.
|
90 |
+
- `tokens`: a `list` of `string` features give the sequence.
|
91 |
+
- `ner_tags`: a `list` of classification labels for each token in the sentence, with possible values including
|
92 |
+
`O` (0), `B-MethodName` (1), `I-MethodName` (2), `B-HyperparameterName` (3),`I-HyperparameterName` (4),`B-HyperparameterValue` (5),`I-HyperparameterValue` (6),`B-MetricName` (7),`I-MetricName` (8),`B-MetricValue` (9),`I-MetricValue` (10),`B-TaskName` (11),`I-TaskName` (12),`B-DatasetName` (13),`I-DatasetName` (14).
|
93 |
+
|
94 |
+
|
95 |
+
### Data Splits
|
96 |
+
|
97 |
+
Data split into
|
98 |
+
train.txt
|
99 |
+
dev.txt
|
100 |
+
test.txt
|
101 |
+
|
102 |
+
## Dataset Creation
|
103 |
+
|
104 |
+
### Curation Rationale
|
105 |
+
|
106 |
+
[More Information Needed]
|
107 |
+
|
108 |
+
### Source Data
|
109 |
+
|
110 |
+
#### Initial Data Collection and Normalization
|
111 |
+
|
112 |
+
[More Information Needed]
|
113 |
+
|
114 |
+
#### Who are the source language producers?
|
115 |
+
|
116 |
+
[More Information Needed]
|
117 |
+
|
118 |
+
### Annotations
|
119 |
+
|
120 |
+
#### Annotation process
|
121 |
+
|
122 |
+
The data is annotated by using labelstudio, the papers are collected from TACL and ACL 2022 conferences.
|
123 |
+
|
124 |
+
#### Who are the annotators?
|
125 |
+
|
126 |
+
Xiaoyue Cui and Haotian Teng annotated the datasets.
|
127 |
+
|
128 |
+
### Personal and Sensitive Information
|
129 |
+
|
130 |
+
[More Information Needed]
|
131 |
+
|
132 |
+
## Considerations for Using the Data
|
133 |
+
|
134 |
+
### Social Impact of Dataset
|
135 |
+
|
136 |
+
[More Information Needed]
|
137 |
+
|
138 |
+
### Discussion of Biases
|
139 |
+
|
140 |
+
[More Information Needed]
|
141 |
+
|
142 |
+
### Other Known Limitations
|
143 |
+
|
144 |
+
[More Information Needed]
|
145 |
+
|
146 |
+
## Additional Information
|
147 |
+
|
148 |
+
### Dataset Curators
|
149 |
+
|
150 |
+
[More Information Needed]
|
151 |
+
|
152 |
+
### Licensing Information
|
153 |
+
|
154 |
+
[More Information Needed]
|
155 |
+
|
156 |
+
### Citation Information
|
157 |
+
|
158 |
+
[More Information Needed]
|
159 |
+
|
160 |
+
### Contributions
|
161 |
+
|
162 |
+
Thanks to [@xcui297](https://github.com/xcui297); [@haotianteng](https://github.com/haotianteng) for adding this dataset.
|
naacl2022.py
ADDED
@@ -0,0 +1,136 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2022 Haotian Teng
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
|
16 |
+
# Lint as: python3
|
17 |
+
"""CrossWeigh: Training Named Entity Tagger from Imperfect Annotations"""
|
18 |
+
|
19 |
+
import logging
|
20 |
+
|
21 |
+
import datasets
|
22 |
+
|
23 |
+
|
24 |
+
_CITATION = """\
|
25 |
+
"""
|
26 |
+
|
27 |
+
_DESCRIPTION = """\
|
28 |
+
NACL22 is a dataset labelled for Science Entity Recognition task, which is a subtask of NER task.
|
29 |
+
The text is from 2022 conference papers collected from ACL anthology.
|
30 |
+
The dataset is collected by Haotian Teng and Xiaoyue Cui.
|
31 |
+
Annotation standard can be found here https://github.com/neubig/nlp-from-scratch-assignment-2022/blob/main/annotation_standard.md
|
32 |
+
"""
|
33 |
+
|
34 |
+
_URL = "https://raw.githubusercontent.com/haotianteng/nacl22/master/"
|
35 |
+
_TRAINING_FILE = "train.text"
|
36 |
+
_DEV_FILE = "dev.text"
|
37 |
+
_TEST_FILE = "test.text"#Test dataset need to be added.
|
38 |
+
|
39 |
+
|
40 |
+
class nacl22Config(datasets.BuilderConfig):
|
41 |
+
"""BuilderConfig for NACL2022"""
|
42 |
+
|
43 |
+
def __init__(self, **kwargs):
|
44 |
+
"""BuilderConfig for NACL2022.
|
45 |
+
Args:
|
46 |
+
**kwargs: keyword arguments forwarded to super.
|
47 |
+
"""
|
48 |
+
super(nacl22Config, self).__init__(**kwargs)
|
49 |
+
|
50 |
+
|
51 |
+
class nacl22(datasets.GeneratorBasedBuilder):
|
52 |
+
"""NACL2022 dataset."""
|
53 |
+
|
54 |
+
BUILDER_CONFIGS = [
|
55 |
+
nacl22Config(name="nacl22", version=datasets.Version("1.0.0"), description="nacl22 dataset"),
|
56 |
+
]
|
57 |
+
|
58 |
+
def _info(self):
|
59 |
+
return datasets.DatasetInfo(
|
60 |
+
description=_DESCRIPTION,
|
61 |
+
features=datasets.Features(
|
62 |
+
{
|
63 |
+
"id": datasets.Value("string"),
|
64 |
+
"tokens": datasets.Sequence(datasets.Value("string")),
|
65 |
+
"ner_tags": datasets.Sequence(
|
66 |
+
datasets.features.ClassLabel(
|
67 |
+
names=[
|
68 |
+
"O",
|
69 |
+
"B-MethodName",
|
70 |
+
"I-MethodName",
|
71 |
+
"B-HyperparameterName",
|
72 |
+
"I-HyperparameterName",
|
73 |
+
"B-HyperparameterValue",
|
74 |
+
"I-HyperparameterValue",
|
75 |
+
"B-MetricName",
|
76 |
+
"I-MetricName",
|
77 |
+
"B-MetricValue",
|
78 |
+
"I-MetricValue",
|
79 |
+
"B-TaskName",
|
80 |
+
"I-TaskName",
|
81 |
+
"B-DatasetName",
|
82 |
+
"I-DatasetName",
|
83 |
+
]
|
84 |
+
)
|
85 |
+
),
|
86 |
+
}
|
87 |
+
),
|
88 |
+
supervised_keys=None,
|
89 |
+
homepage="https://github.com/neubig/nlp-from-scratch-assignment-2022",
|
90 |
+
citation=_CITATION,
|
91 |
+
)
|
92 |
+
|
93 |
+
def _split_generators(self, dl_manager):
|
94 |
+
"""Returns SplitGenerators."""
|
95 |
+
urls_to_download = {
|
96 |
+
"train": f"{_URL}{_TRAINING_FILE}",
|
97 |
+
"dev": f"{_URL}{_DEV_FILE}",
|
98 |
+
"test": f"{_URL}{_TEST_FILE}",
|
99 |
+
}
|
100 |
+
downloaded_files = dl_manager.download_and_extract(urls_to_download)
|
101 |
+
|
102 |
+
return [
|
103 |
+
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloaded_files["train"]}),
|
104 |
+
datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"filepath": downloaded_files["dev"]}),
|
105 |
+
datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": downloaded_files["test"]}),
|
106 |
+
]
|
107 |
+
|
108 |
+
def _generate_examples(self, filepath):
|
109 |
+
logging.info("⏳ Generating examples from = %s", filepath)
|
110 |
+
with open(filepath, encoding="utf-8") as f:
|
111 |
+
guid = 0
|
112 |
+
tokens = []
|
113 |
+
ner_tags = []
|
114 |
+
for line in f:
|
115 |
+
if line.startswith("-DOCSTART-") or line == "" or line == "\n":
|
116 |
+
if tokens:
|
117 |
+
yield guid, {
|
118 |
+
"id": str(guid),
|
119 |
+
"tokens": tokens,
|
120 |
+
"ner_tags": ner_tags,
|
121 |
+
}
|
122 |
+
guid += 1
|
123 |
+
tokens = []
|
124 |
+
ner_tags = []
|
125 |
+
else:
|
126 |
+
# conll2003 tokens are space separated
|
127 |
+
splits = line.split(" ")
|
128 |
+
tokens.append(splits[0])
|
129 |
+
ner_tags.append(splits[-1].rstrip())
|
130 |
+
# last example
|
131 |
+
if tokens:
|
132 |
+
yield guid, {
|
133 |
+
"id": str(guid),
|
134 |
+
"tokens": tokens,
|
135 |
+
"ner_tags": ner_tags,
|
136 |
+
}
|