Datasets:
Tasks:
Token Classification
Modalities:
Text
Sub-tasks:
named-entity-recognition
Languages:
English
Size:
1K - 10K
License:
# coding=utf-8 | |
# Copyright 2022 Haotian Teng | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
# Lint as: python3 | |
"""CrossWeigh: Training Named Entity Tagger from Imperfect Annotations""" | |
import logging | |
import datasets | |
_CITATION = """\ | |
""" | |
_DESCRIPTION = """\ | |
NACL22 is a dataset labelled for Science Entity Recognition task, which is a subtask of NER task. | |
The text is from 2022 conference papers collected from ACL anthology. | |
The dataset is collected by Haotian Teng and Xiaoyue Cui. | |
Annotation standard can be found here https://github.com/neubig/nlp-from-scratch-assignment-2022/blob/main/annotation_standard.md | |
""" | |
_URL = "https://github.com/haotianteng/nacl22/raw/master/" | |
_TRAINING_FILE = "train.text" | |
_DEV_FILE = "dev.text" | |
_TEST_FILE = "test.text"#Test dataset need to be added. | |
class nacl22Config(datasets.BuilderConfig): | |
"""BuilderConfig for NACL2022""" | |
def __init__(self, **kwargs): | |
"""BuilderConfig for NACL2022. | |
Args: | |
**kwargs: keyword arguments forwarded to super. | |
""" | |
super(nacl22Config, self).__init__(**kwargs) | |
class nacl22(datasets.GeneratorBasedBuilder): | |
"""NACL2022 dataset.""" | |
BUILDER_CONFIGS = [ | |
nacl22Config(name="nacl22", version=datasets.Version("1.0.0"), description="nacl22 dataset"), | |
] | |
def _info(self): | |
return datasets.DatasetInfo( | |
description=_DESCRIPTION, | |
features=datasets.Features( | |
{ | |
"id": datasets.Value("string"), | |
"tokens": datasets.Sequence(datasets.Value("string")), | |
"ner_tags": datasets.Sequence( | |
datasets.features.ClassLabel( | |
names=[ | |
"O", | |
"B-MethodName", | |
"I-MethodName", | |
"B-HyperparameterName", | |
"I-HyperparameterName", | |
"B-HyperparameterValue", | |
"I-HyperparameterValue", | |
"B-MetricName", | |
"I-MetricName", | |
"B-MetricValue", | |
"I-MetricValue", | |
"B-TaskName", | |
"I-TaskName", | |
"B-DatasetName", | |
"I-DatasetName", | |
] | |
) | |
), | |
} | |
), | |
supervised_keys=None, | |
homepage="https://github.com/neubig/nlp-from-scratch-assignment-2022", | |
citation=_CITATION, | |
) | |
def _split_generators(self, dl_manager): | |
"""Returns SplitGenerators.""" | |
urls_to_download = { | |
"train": f"{_URL}{_TRAINING_FILE}", | |
"dev": f"{_URL}{_DEV_FILE}", | |
"test": f"{_URL}{_TEST_FILE}", | |
} | |
downloaded_files = dl_manager.download_and_extract(urls_to_download) | |
return [ | |
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloaded_files["train"]}), | |
datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"filepath": downloaded_files["dev"]}), | |
datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": downloaded_files["test"]}), | |
] | |
def _generate_examples(self, filepath): | |
logging.info("⏳ Generating examples from = %s", filepath) | |
with open(filepath, encoding="utf-8") as f: | |
guid = 0 | |
tokens = [] | |
ner_tags = [] | |
for line in f: | |
if line.startswith("-DOCSTART-") or line == "" or line == "\n": | |
if tokens: | |
yield guid, { | |
"id": str(guid), | |
"tokens": tokens, | |
"ner_tags": ner_tags, | |
} | |
guid += 1 | |
tokens = [] | |
ner_tags = [] | |
else: | |
# conll2003 tokens are space separated | |
splits = line.split(" ") | |
tokens.append(splits[0]) | |
ner_tags.append(splits[-1].rstrip()) | |
# last example | |
if tokens: | |
yield guid, { | |
"id": str(guid), | |
"tokens": tokens, | |
"ner_tags": ner_tags, | |
} |