Datasets:
Tasks:
Tabular Regression
Modalities:
Tabular
Formats:
parquet
Languages:
English
Size:
10K - 100K
License:
metadata
dataset_info:
features:
- name: MedInc
dtype: float64
- name: HouseAge
dtype: float64
- name: AveRooms
dtype: float64
- name: AveBedrms
dtype: float64
- name: Population
dtype: float64
- name: AveOccup
dtype: float64
- name: Latitude
dtype: float64
- name: Longitude
dtype: float64
- name: MedHouseVal
dtype: float64
splits:
- name: train
num_bytes: 1198080
num_examples: 16640
- name: validation
num_bytes: 144000
num_examples: 2000
- name: test
num_bytes: 144000
num_examples: 2000
download_size: 1056079
dataset_size: 1486080
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
- split: validation
path: data/validation-*
- split: test
path: data/test-*
license: mit
task_categories:
- tabular-regression
language:
- en
size_categories:
- 10K<n<100K
pretty_name: California Housing
California Housing
About
🏠 The California Housing dataset, first appearing in "Sparse spatial autoregressions" (1997)
Description
This is an (unofficial) Hugging Face version of the California Housing dataset from the S&P Letters paper "Sparse spatial autoregressions" (1997). It can also be found in StatLib and Luis Torgo's page. A modified version of it, used in "Hands-On Machine learning with Scikit-Learn and TensorFlow", with 9 differenfeatures and missing values, also circulates online.
The California Housing dataset comes from the California 1990 Census. It contains 20640 samples, each of which corresponds to a geographical block and the people living therein. Specifically, it contains the following 8 features:
- MedInc: Median income of the people living in the block
- HouseAge: Median age of the houses in a block
- AveRooms: Average rooms of houses in a block
- AveBedrms: Average bedrooms of houses in a block
- Population: Number of people living in a block
- AveOccup: Average number of people under the same roof
- Latitude: Geographical latitude
- Longitude: Geographical longitude
The target variable is the median house value (MedHouseVal).
Usage
import datasets
dataset = datasets.load_dataset("gvlassis/california_housing")