Datasets:

Formats:
parquet
ArXiv:
Libraries:
Datasets
pandas
License:
AQSOL / README.md
clefourrier's picture
clefourrier HF staff
Update README.md
212fdac
|
raw
history blame
3.05 kB
---
license: mit
task_categories:
- graph-ml
---
# Dataset Card for AQSOL
## Table of Contents
- [Table of Contents](#table-of-contents)
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
- [External Use](#external-use)
- [PyGeometric](#pygeometric)
- [Dataset Structure](#dataset-structure)
- [Data Properties](#data-properties)
- [Data Fields](#data-fields)
- [Data Splits](#data-splits)
- [Additional Information](#additional-information)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
- [Contributions](#contributions)
## Dataset Description
- **[Homepage](https://github.com/graphdeeplearning/benchmarking-gnns)**
- **Paper:**: (see citation)
### Dataset Summary
The AQSOL dataset comes "from the Benchmarking Graph Neural Networks paper based on AqSolDB, a standardized database of 9,982 molecular graphs with their aqueous solubility values, collected from 9 different data sources" (PyGeometric doc).
### Supported Tasks and Leaderboards
`AQSOL` should be used for graph regression, on aqueous solubility.
## External Use
### PyGeometric
To load in PyGeometric, do the following:
```python
from datasets import load_dataset
from torch_geometric.data import Data
from torch_geometric.loader import DataLoader
dataset_hf = load_dataset("graphs-datasets/<mydataset>")
# For the train set (replace by valid or test as needed)
dataset_pg_list = [Data(graph) for graph in dataset_hf["train"]]
dataset_pg = DataLoader(dataset_pg_list)
```
## Dataset Structure
### Data Properties
| property | value |
|---|---|
| #graphs | 9,833 |
| average #nodes | 17.6 |
| average #edges | 35.8 |
### Data Fields
Each row of a given file is a graph, with:
- `node_feat` (list: #nodes x #node-features): nodes
- `edge_index` (list: 2 x #edges): pairs of nodes constituting edges
- `edge_attr` (list: #edges x #edge-features): for the aforementioned edges, contains their features
- `y` (list: #labels): contains the number of labels available to predict
- `num_nodes` (int): number of nodes of the graph
### Data Splits
This data is split. It comes from the PyGeometric version of the dataset.
## Additional Information
### Licensing Information
The dataset has been released under MIT license.
### Citation Information
```
@article{DBLP:journals/corr/abs-2003-00982,
author = {Vijay Prakash Dwivedi and
Chaitanya K. Joshi and
Thomas Laurent and
Yoshua Bengio and
Xavier Bresson},
title = {Benchmarking Graph Neural Networks},
journal = {CoRR},
volume = {abs/2003.00982},
year = {2020},
url = {https://arxiv.org/abs/2003.00982},
eprinttype = {arXiv},
eprint = {2003.00982},
timestamp = {Sat, 23 Jan 2021 01:14:30 +0100},
biburl = {https://dblp.org/rec/journals/corr/abs-2003-00982.bib},
bibsource = {dblp computer science bibliography, https://dblp.org}
}
```