Datasets:
Multilinguality:
multilingual
Language Creators:
crowdsourced
Annotations Creators:
no-annotation
Source Datasets:
original
License:
# coding=utf-8 | |
# Copyright 2020 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
# Lint as: python3 | |
"""Wikipedia dataset containing cleaned articles of all languages.""" | |
import json | |
import datasets | |
import pyarrow.parquet as pq | |
from .lang_def import WIKIPEDIA_LANGUAGES | |
logger = datasets.logging.get_logger(__name__) | |
_CITATION = """\ | |
@ONLINE {wikidump, | |
author = {Wikimedia Foundation}, | |
title = {Wikimedia Downloads}, | |
url = {https://dumps.wikimedia.org} | |
} | |
""" | |
_DESCRIPTION = """\ | |
Wikipedia dataset containing cleaned articles of all languages. | |
The datasets are built from the Wikipedia dump | |
(https://dumps.wikimedia.org/) with one split per language. Each example | |
contains the content of one full Wikipedia article with cleaning to strip | |
markdown and unwanted sections (references, etc.). | |
""" | |
_LICENSE = ( | |
"This work is licensed under the Creative Commons Attribution-ShareAlike " | |
"3.0 Unported License. To view a copy of this license, visit " | |
"http://creativecommons.org/licenses/by-sa/3.0/ or send a letter to " | |
"Creative Commons, PO Box 1866, Mountain View, CA 94042, USA." | |
) | |
_BASE_URL_TMPL = "data/{date}/{lang}" | |
_VERSION = datasets.Version("1.2.0", "") | |
class WikipediaConfig(datasets.BuilderConfig): | |
"""BuilderConfig for Wikipedia.""" | |
def __init__(self, language=None, date=None, version=_VERSION, **kwargs): | |
"""BuilderConfig for Wikipedia. | |
Args: | |
language: string, the language code for the Wikipedia dump to use. | |
date: string, date of the Wikipedia dump in YYYYMMDD format. A list of | |
available dates can be found at https://dumps.wikimedia.org/enwiki/. | |
**kwargs: keyword arguments forwarded to super. | |
""" | |
super().__init__( | |
name=f"{date}.{language}", | |
description=f"Wikipedia dataset for {language}, parsed from {date} dump.", | |
version=version, | |
**kwargs, | |
) | |
self.date = date | |
self.language = language | |
class Wikipedia(datasets.ArrowBasedBuilder): | |
"""Wikipedia dataset.""" | |
# Use mirror (your.org) to avoid download caps. | |
BUILDER_CONFIG_CLASS = WikipediaConfig | |
BUILDER_CONFIGS = [ | |
WikipediaConfig( | |
language=lang, | |
date=date, | |
) # pylint:disable=g-complex-comprehension | |
for date in WIKIPEDIA_LANGUAGES.keys() | |
for lang in WIKIPEDIA_LANGUAGES[date] | |
] | |
def _info(self): | |
return datasets.DatasetInfo( | |
description=_DESCRIPTION, | |
features=datasets.Features( | |
{ | |
"id": datasets.Value("string"), | |
"url": datasets.Value("string"), | |
"title": datasets.Value("string"), | |
"text": datasets.Value("string"), | |
} | |
), | |
# No default supervised_keys. | |
supervised_keys=None, | |
homepage="https://dumps.wikimedia.org", | |
citation=_CITATION, | |
) | |
def _split_generators(self, dl_manager): | |
def _base_url(lang): | |
return _BASE_URL_TMPL.format(lang=lang, date=self.config.date) | |
lang = self.config.language | |
info_file_url = _base_url(lang) + "/info.json" | |
downloaded_info_file = dl_manager.download_and_extract({"info": info_file_url}) | |
with open(downloaded_info_file["info"], "r") as f: | |
info = json.load(f) | |
shard_urls = [ | |
_base_url(lang) + "/" + shard_name for shard_name in info["shards"] | |
] | |
downloaded_files = dl_manager.download({"train": shard_urls}) | |
logger.info("downloaded_files = %s", downloaded_files) | |
return [ | |
datasets.SplitGenerator( | |
name=datasets.Split.TRAIN, | |
gen_kwargs={"filepaths": downloaded_files["train"]}, | |
), | |
] | |
def _generate_tables(self, filepaths): | |
"""This function returns the examples in the raw (text) form.""" | |
for filepath in filepaths: | |
with open(filepath, "rb") as f: | |
pf = pq.ParquetFile(f) | |
for group_i in range(pf.num_row_groups): | |
tbl = pf.read_row_group(group_i) | |
yield group_i, tbl | |