metadata
language:
- tr
thumbnail: null
tags:
- dataset
- turkish
- ted-multi
- cleaned
license: apache-2.0
datasets:
- ted-multi
Turkish Ted talk translations
Created from ted-multi dataset
adding processing steps here if you want another language
#using Turkish as target
target_lang="tr" # change to your target lang
from datasets import load_dataset
#ted-multi is a multiple language translated dataset
#fits for our case , not to big and curated but need a simple processing
dataset = load_dataset("ted_multi")
dataset.cleanup_cache_files()
#original from patrick's
#chars_to_ignore_regex = '[,?.!\-\;\:\"“%‘”�—’…–]' # change to the ignored characters of your fine-tuned model
#will use cahya/wav2vec2-base-turkish-artificial-cv
#checking inside model repository to find which chars removed (no run.sh)
chars_to_ignore_regex = '[\,\?\.\!\-\;\:\"\“\‘\”\'\`…\’»«]'
import re
def extract_target_lang_entries(batch):
#specific mapping for ted_multi dataset
#need to find index of language in each translation as it can shift
try:
target_index_for_lang= batch["translations"]["language"].index(target_lang)
except ValueError:
#target not in list empty it for later processing
batch["text"] = None
return batch
#index_translation_pairs = zip(batch, target_index_for_batch)
text= batch["translations"]["translation"][target_index_for_lang]
batch["text"] = re.sub(chars_to_ignore_regex, "", text.lower())
return batch
#this dataset has additional columns need to say it
cols_to_remove = ['translations', 'talk_name']
dataset = dataset.map(extract_target_lang_entries, remove_columns=cols_to_remove)
#on preocessing we tagged None for empty ones
dataset_cleaned = dataset.filter(lambda x: x['text'] is not None)
dataset_cleaned
from huggingface_hub import notebook_login
notebook_login()
dataset_cleaned.push_to_hub(f"{target_lang}_ted_talk_translated")