|
--- |
|
annotations_creators: |
|
- expert-generated |
|
language_creators: |
|
- found |
|
language: |
|
- code |
|
license: |
|
- c-uda |
|
multilinguality: |
|
- other-programming-languages |
|
size_categories: |
|
- 10K<n<100K |
|
source_datasets: |
|
- original |
|
task_categories: |
|
- text2text-generation |
|
task_ids: [] |
|
pretty_name: CodeXGlueCcCodeRefinement |
|
tags: |
|
- debugging |
|
dataset_info: |
|
- config_name: medium |
|
features: |
|
- name: id |
|
dtype: int32 |
|
- name: buggy |
|
dtype: string |
|
- name: fixed |
|
dtype: string |
|
splits: |
|
- name: train |
|
num_bytes: 32614786 |
|
num_examples: 52364 |
|
- name: validation |
|
num_bytes: 4086733 |
|
num_examples: 6546 |
|
- name: test |
|
num_bytes: 4063665 |
|
num_examples: 6545 |
|
download_size: 14929559 |
|
dataset_size: 40765184 |
|
- config_name: small |
|
features: |
|
- name: id |
|
dtype: int32 |
|
- name: buggy |
|
dtype: string |
|
- name: fixed |
|
dtype: string |
|
splits: |
|
- name: train |
|
num_bytes: 13006679 |
|
num_examples: 46680 |
|
- name: validation |
|
num_bytes: 1629242 |
|
num_examples: 5835 |
|
- name: test |
|
num_bytes: 1619700 |
|
num_examples: 5835 |
|
download_size: 5894462 |
|
dataset_size: 16255621 |
|
configs: |
|
- config_name: medium |
|
data_files: |
|
- split: train |
|
path: medium/train-* |
|
- split: validation |
|
path: medium/validation-* |
|
- split: test |
|
path: medium/test-* |
|
- config_name: small |
|
data_files: |
|
- split: train |
|
path: small/train-* |
|
- split: validation |
|
path: small/validation-* |
|
- split: test |
|
path: small/test-* |
|
--- |
|
|
|
# Dataset Card for "code_x_glue_cc_code_refinement" |
|
|
|
## Table of Contents |
|
- [Dataset Description](#dataset-description) |
|
- [Dataset Summary](#dataset-summary) |
|
- [Supported Tasks and Leaderboards](#supported-tasks) |
|
- [Languages](#languages) |
|
- [Dataset Structure](#dataset-structure) |
|
- [Data Instances](#data-instances) |
|
- [Data Fields](#data-fields) |
|
- [Data Splits](#data-splits-sample-size) |
|
- [Dataset Creation](#dataset-creation) |
|
- [Curation Rationale](#curation-rationale) |
|
- [Source Data](#source-data) |
|
- [Annotations](#annotations) |
|
- [Personal and Sensitive Information](#personal-and-sensitive-information) |
|
- [Considerations for Using the Data](#considerations-for-using-the-data) |
|
- [Social Impact of Dataset](#social-impact-of-dataset) |
|
- [Discussion of Biases](#discussion-of-biases) |
|
- [Other Known Limitations](#other-known-limitations) |
|
- [Additional Information](#additional-information) |
|
- [Dataset Curators](#dataset-curators) |
|
- [Licensing Information](#licensing-information) |
|
- [Citation Information](#citation-information) |
|
- [Contributions](#contributions) |
|
|
|
## Dataset Description |
|
|
|
- **Homepage:** https://github.com/microsoft/CodeXGLUE/tree/main/Code-Code/code-refinement |
|
- **Paper:** https://arxiv.org/abs/2102.04664 |
|
|
|
### Dataset Summary |
|
|
|
CodeXGLUE code-refinement dataset, available at https://github.com/microsoft/CodeXGLUE/tree/main/Code-Code/code-refinement |
|
|
|
We use the dataset released by this paper(https://arxiv.org/pdf/1812.08693.pdf). The source side is a Java function with bugs and the target side is the refined one. All the function and variable names are normalized. Their dataset contains two subsets ( i.e.small and medium) based on the function length. |
|
|
|
### Supported Tasks and Leaderboards |
|
|
|
- `text2text-generation-other-debugging`: The dataset can be used to train a model for automatically fixing buggy code. |
|
|
|
### Languages |
|
|
|
- Java **programming** language |
|
|
|
## Dataset Structure |
|
|
|
### Data Instances |
|
|
|
#### medium |
|
|
|
An example of 'train' looks as follows. |
|
``` |
|
{ |
|
"buggy": "public static TYPE_1 init ( java.lang.String name , java.util.Date date ) { TYPE_1 VAR_1 = new TYPE_1 ( ) ; VAR_1 . METHOD_1 ( name ) ; java.util.Calendar VAR_2 = java.util.Calendar.getInstance ( ) ; VAR_2 . METHOD_2 ( date ) ; VAR_1 . METHOD_3 ( VAR_2 ) ; return VAR_1 ; }\n", |
|
"fixed": "public static TYPE_1 init ( java.lang.String name , java.util.Date date ) { TYPE_1 VAR_1 = new TYPE_1 ( ) ; VAR_1 . METHOD_1 ( name ) ; java.util.Calendar VAR_2 = null ; if ( date != null ) { VAR_2 = java.util.Calendar.getInstance ( ) ; VAR_2 . METHOD_2 ( date ) ; } VAR_1 . METHOD_3 ( VAR_2 ) ; return VAR_1 ; }\n", |
|
"id": 0 |
|
} |
|
``` |
|
|
|
#### small |
|
|
|
An example of 'validation' looks as follows. |
|
``` |
|
{ |
|
"buggy": "public java.util.List < TYPE_1 > METHOD_1 ( ) { java.util.ArrayList < TYPE_1 > VAR_1 = new java.util.ArrayList < TYPE_1 > ( ) ; for ( TYPE_2 VAR_2 : VAR_3 ) { VAR_1 . METHOD_2 ( VAR_2 . METHOD_1 ( ) ) ; } return VAR_1 ; } \n", |
|
"fixed": "public java.util.List < TYPE_1 > METHOD_1 ( ) { return VAR_1 ; } \n", |
|
"id": 0 |
|
} |
|
``` |
|
|
|
### Data Fields |
|
|
|
In the following each data field in go is explained for each config. The data fields are the same among all splits. |
|
|
|
#### medium, small |
|
|
|
|field name| type | description | |
|
|----------|------|--------------------------------| |
|
|id |int32 | Index of the sample | |
|
|buggy |string| The buggy version of the code | |
|
|fixed |string| The correct version of the code| |
|
|
|
### Data Splits |
|
|
|
| name |train|validation|test| |
|
|------|----:|---------:|---:| |
|
|medium|52364| 6546|6545| |
|
|small |46680| 5835|5835| |
|
|
|
## Dataset Creation |
|
|
|
### Curation Rationale |
|
|
|
[More Information Needed] |
|
|
|
### Source Data |
|
|
|
#### Initial Data Collection and Normalization |
|
|
|
Downloaded from GitHub Archive every public GitHub event between March 2011 and October 2017 and used the Google BigQuery APIs. |
|
[More Information Needed] |
|
|
|
#### Who are the source language producers? |
|
|
|
Software Engineering developers. |
|
|
|
### Annotations |
|
|
|
#### Annotation process |
|
|
|
Automatically annotated by filtering commit messages containing the pattern: ("fix" or "solve") and ("bug" or "issue" or "problem" or "error"). A statistically significant amount of samples (95% confidence level with 5% confidence interval) were manually evaluated by two authors to check if the filtered bug/fix pairs were correct. After all disagreements were settled, authors conclude that 97.6% were true positives. |
|
|
|
#### Who are the annotators? |
|
|
|
Heuristics and the authors of the paper. |
|
|
|
### Personal and Sensitive Information |
|
|
|
[More Information Needed] |
|
|
|
## Considerations for Using the Data |
|
|
|
### Social Impact of Dataset |
|
|
|
[More Information Needed] |
|
|
|
### Discussion of Biases |
|
|
|
[More Information Needed] |
|
|
|
### Other Known Limitations |
|
|
|
[More Information Needed] |
|
|
|
## Additional Information |
|
|
|
### Dataset Curators |
|
|
|
https://github.com/microsoft, https://github.com/madlag |
|
|
|
### Licensing Information |
|
|
|
Computational Use of Data Agreement (C-UDA) License. |
|
|
|
### Citation Information |
|
|
|
``` |
|
@article{DBLP:journals/corr/abs-2102-04664, |
|
author = {Shuai Lu and |
|
Daya Guo and |
|
Shuo Ren and |
|
Junjie Huang and |
|
Alexey Svyatkovskiy and |
|
Ambrosio Blanco and |
|
Colin B. Clement and |
|
Dawn Drain and |
|
Daxin Jiang and |
|
Duyu Tang and |
|
Ge Li and |
|
Lidong Zhou and |
|
Linjun Shou and |
|
Long Zhou and |
|
Michele Tufano and |
|
Ming Gong and |
|
Ming Zhou and |
|
Nan Duan and |
|
Neel Sundaresan and |
|
Shao Kun Deng and |
|
Shengyu Fu and |
|
Shujie Liu}, |
|
title = {CodeXGLUE: {A} Machine Learning Benchmark Dataset for Code Understanding |
|
and Generation}, |
|
journal = {CoRR}, |
|
volume = {abs/2102.04664}, |
|
year = {2021} |
|
} |
|
@article{tufano2019empirical, |
|
title={An empirical study on learning bug-fixing patches in the wild via neural machine translation}, |
|
author={Tufano, Michele and Watson, Cody and Bavota, Gabriele and Penta, Massimiliano Di and White, Martin and Poshyvanyk, Denys}, |
|
journal={ACM Transactions on Software Engineering and Methodology (TOSEM)}, |
|
volume={28}, |
|
number={4}, |
|
pages={1--29}, |
|
year={2019}, |
|
publisher={ACM New York, NY, USA} |
|
} |
|
``` |
|
|
|
### Contributions |
|
|
|
Thanks to @madlag (and partly also @ncoop57) for adding this dataset. |