parquet-converter commited on
Commit
b781b39
·
1 Parent(s): 3ef284c

Update parquet files

Browse files
README.md DELETED
@@ -1,312 +0,0 @@
1
- ---
2
- pretty_name: AirDialogue
3
- annotations_creators:
4
- - crowdsourced
5
- language_creators:
6
- - machine-generated
7
- language:
8
- - en
9
- license:
10
- - cc-by-nc-4.0
11
- multilinguality:
12
- - monolingual
13
- size_categories:
14
- - 100K<n<1M
15
- source_datasets:
16
- - original
17
- task_categories:
18
- - conversational
19
- - text-generation
20
- - fill-mask
21
- task_ids:
22
- - dialogue-generation
23
- - dialogue-modeling
24
- - language-modeling
25
- - masked-language-modeling
26
- paperswithcode_id: null
27
- dataset_info:
28
- - config_name: air_dialogue_data
29
- features:
30
- - name: action
31
- struct:
32
- - name: status
33
- dtype: string
34
- - name: name
35
- dtype: string
36
- - name: flight
37
- sequence: int32
38
- - name: intent
39
- struct:
40
- - name: return_month
41
- dtype: string
42
- - name: return_day
43
- dtype: string
44
- - name: max_price
45
- dtype: int32
46
- - name: departure_airport
47
- dtype: string
48
- - name: max_connections
49
- dtype: int32
50
- - name: departure_day
51
- dtype: string
52
- - name: goal
53
- dtype: string
54
- - name: departure_month
55
- dtype: string
56
- - name: name
57
- dtype: string
58
- - name: return_airport
59
- dtype: string
60
- - name: timestamps
61
- sequence: int64
62
- - name: dialogue
63
- sequence: string
64
- - name: expected_action
65
- struct:
66
- - name: status
67
- dtype: string
68
- - name: name
69
- dtype: string
70
- - name: flight
71
- sequence: int32
72
- - name: search_info
73
- list:
74
- - name: button_name
75
- dtype: string
76
- - name: field_name
77
- dtype: string
78
- - name: field_value
79
- dtype: string
80
- - name: timestmamp
81
- dtype: int64
82
- - name: correct_sample
83
- dtype: bool_
84
- splits:
85
- - name: train
86
- num_bytes: 353721137
87
- num_examples: 321459
88
- - name: validation
89
- num_bytes: 44442238
90
- num_examples: 40363
91
- download_size: 272898923
92
- dataset_size: 398163375
93
- - config_name: air_dialogue_kb
94
- features:
95
- - name: kb
96
- list:
97
- - name: airline
98
- dtype: string
99
- - name: class
100
- dtype: string
101
- - name: departure_airport
102
- dtype: string
103
- - name: departure_day
104
- dtype: string
105
- - name: departure_month
106
- dtype: string
107
- - name: departure_time_num
108
- dtype: int32
109
- - name: flight_number
110
- dtype: int32
111
- - name: num_connections
112
- dtype: int32
113
- - name: price
114
- dtype: int32
115
- - name: return_airport
116
- dtype: string
117
- - name: return_day
118
- dtype: string
119
- - name: return_month
120
- dtype: string
121
- - name: return_time_num
122
- dtype: int32
123
- - name: reservation
124
- dtype: int32
125
- splits:
126
- - name: train
127
- num_bytes: 782592158
128
- num_examples: 321459
129
- - name: validation
130
- num_bytes: 98269789
131
- num_examples: 40363
132
- download_size: 272898923
133
- dataset_size: 880861947
134
- ---
135
-
136
- # Dataset Card for air_dialogue
137
-
138
- ## Table of Contents
139
- - [Dataset Description](#dataset-description)
140
- - [Dataset Summary](#dataset-summary)
141
- - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
142
- - [Languages](#languages)
143
- - [Dataset Structure](#dataset-structure)
144
- - [Data Instances](#data-instances)
145
- - [Data Fields](#data-fields)
146
- - [Data Splits](#data-splits)
147
- - [Dataset Creation](#dataset-creation)
148
- - [Curation Rationale](#curation-rationale)
149
- - [Source Data](#source-data)
150
- - [Annotations](#annotations)
151
- - [Personal and Sensitive Information](#personal-and-sensitive-information)
152
- - [Considerations for Using the Data](#considerations-for-using-the-data)
153
- - [Social Impact of Dataset](#social-impact-of-dataset)
154
- - [Discussion of Biases](#discussion-of-biases)
155
- - [Other Known Limitations](#other-known-limitations)
156
- - [Additional Information](#additional-information)
157
- - [Dataset Curators](#dataset-curators)
158
- - [Licensing Information](#licensing-information)
159
- - [Citation Information](#citation-information)
160
- - [Contributions](#contributions)
161
-
162
- ## Dataset Description
163
-
164
- - **Homepage:** https://worksheets.codalab.org/worksheets/0xa79833f4b3c24f4188cee7131b120a59
165
- - **Repository:** https://github.com/google/airdialogue
166
- - **Paper:** https://www.aclweb.org/anthology/D18-1419/
167
- - **Leaderboard:** https://worksheets.codalab.org/worksheets/0xa79833f4b3c24f4188cee7131b120a59
168
- - **Point of Contact:** [AirDialogue-Google](mailto:airdialogue@gmail.com)
169
- [Aakash Gupta](mailto:aakashg80@gmail.com)
170
-
171
- ### Dataset Summary
172
-
173
- AirDialogue, is a large dataset that contains 402,038 goal-oriented conversations. To collect this dataset, we create a contextgenerator which provides travel and flight restrictions. Then the human annotators are asked to play the role of a customer or an agent and interact with the goal of successfully booking a trip given the restrictions.
174
-
175
- ### Supported Tasks and Leaderboards
176
-
177
- We use perplexity and BLEU score to evaluate the quality of the language generated by the model. We also compare the dialogue state generated by the model s and the ground truth state s0. Two categories of the metrics are used: exact match scores and scaled scores
178
-
179
- The inference competition & leaderboard can be found here:
180
- https://worksheets.codalab.org/worksheets/0xa79833f4b3c24f4188cee7131b120a59
181
-
182
-
183
-
184
- ### Languages
185
-
186
- The text in the dataset is in English. The BCP 47 code is `en`
187
-
188
- ## Dataset Structure
189
-
190
- ### Data Instances
191
-
192
- The data is provided in two set of files. The first one has the dialogues (`air_dialogue_data`) and the knowledge-base (`air_dialogue_kb`)
193
-
194
-
195
- BuilderConfig: `air_dialogue_data`
196
-
197
- ```
198
- {"action": {"status": "book", "name": "Emily Edwards", "flight": [1027]}, "intent": {"return_month": "June", "return_day": "14", "max_price": 200, "departure_airport": "DFW", "return_time": "afternoon", "max_connections": 1, "departure_day": "12", "goal": "book", "departure_month": "June", "name": "Emily Edwards", "return_airport": "IAD"}, "timestamps": [1519233239, 1519233244, 1519233249, 1519233252, 1519233333, 1519233374, 1519233392, 1519233416, 1519233443, 1519233448, 1519233464, 1519233513, 1519233525, 1519233540, 1519233626, 1519233628, 1519233638], "dialogue": ["customer: Hello.", "agent: Hello.", "customer: My name is Emily Edwards.", "agent: How may I help you out?", "customer: I need some help in my flight ticket reservation to attend a convocation meeting, can you please help me?", "agent: Sure, I will help you out. May I know your travelling dates please?", "customer: Thank you and my dates are 06/12 and back on 06/14.", "agent: Can I know your airport codes?", "customer: The airport codes are from DFW to IAD.", "agent: Ok, please wait a moment.", "customer: Sure.", "agent: There is a flight with connection 1 and price 200, can I proceed with this flight?", "customer: Yes, do proceed with booking.", "agent: Ok, your ticket has been booked.", "customer: Thank you for your assistance in my flight ticket reservation.", "agent: Thank you for choosing us.", "customer: You are welcome."], "expected_action": {"status": "book", "name": "Emily Edwards", "flight": [1027]}, "correct_sample": true}
199
- ```
200
-
201
- BuilderConfig: `air_dialogue_kb`
202
-
203
- ```
204
- {"kb": [{"return_airport": "DTW", "airline": "Spirit", "departure_day": "12", "departure_airport": "IAD", "flight_number": 1000, "departure_month": "June", "departure_time_num": 17, "class": "economy", "return_time_num": 2, "return_month": "June", "return_day": "14", "num_connections": 1, "price": 200}, {"return_airport": "DTW", "airline": "Frontier", "departure_day": "12", "departure_airport": "IAD", "flight_number": 1001, "departure_month": "June", "departure_time_num": 0, "class": "business", "return_time_num": 15, "return_month": "June", "return_day": "13", "num_connections": 0, "price": 500}, {"return_airport": "DTW", "airline": "JetBlue", "departure_day": "12", "departure_airport": "IAD", "flight_number": 1002, "departure_month": "June", "departure_time_num": 0, "class": "business", "return_time_num": 13, "return_month": "June", "return_day": "13", "num_connections": 1, "price": 600}, {"return_airport": "IAD", "airline": "Hawaiian", "departure_day": "12", "departure_airport": "DTW", "flight_number": 1003, "departure_month": "June", "departure_time_num": 6, "class": "economy", "return_time_num": 5, "return_month": "June", "return_day": "14", "num_connections": 1, "price": 200}, {"return_airport": "DFW", "airline": "AA", "departure_day": "12", "departure_airport": "DTW", "flight_number": 1004, "departure_month": "June", "departure_time_num": 9, "class": "economy", "return_time_num": 11, "return_month": "June", "return_day": "14", "num_connections": 1, "price": 100}, {"return_airport": "IAD", "airline": "AA", "departure_day": "12", "departure_airport": "DFW", "flight_number": 1005, "departure_month": "June", "departure_time_num": 3, "class": "economy", "return_time_num": 17, "return_month": "June", "return_day": "13", "num_connections": 1, "price": 100}, {"return_airport": "DTW", "airline": "Frontier", "departure_day": "12", "departure_airport": "IAD", "flight_number": 1006, "departure_month": "June", "departure_time_num": 10, "class": "economy", "return_time_num": 10, "return_month": "June", "return_day": "14", "num_connections": 1, "price": 100}, {"return_airport": "IAD", "airline": "UA", "departure_day": "12", "departure_airport": "DFW", "flight_number": 1007, "departure_month": "June", "departure_time_num": 14, "class": "economy", "return_time_num": 20, "return_month": "June", "return_day": "13", "num_connections": 1, "price": 100}, {"return_airport": "DFW", "airline": "AA", "departure_day": "13", "departure_airport": "DTW", "flight_number": 1008, "departure_month": "June", "departure_time_num": 6, "class": "economy", "return_time_num": 8, "return_month": "June", "return_day": "14", "num_connections": 2, "price": 400}, {"return_airport": "DFW", "airline": "Delta", "departure_day": "12", "departure_airport": "IAD", "flight_number": 1009, "departure_month": "June", "departure_time_num": 18, "class": "economy", "return_time_num": 6, "return_month": "June", "return_day": "14", "num_connections": 1, "price": 200}, {"return_airport": "DFW", "airline": "Frontier", "departure_day": "13", "departure_airport": "DTW", "flight_number": 1010, "departure_month": "June", "departure_time_num": 4, "class": "economy", "return_time_num": 2, "return_month": "June", "return_day": "14", "num_connections": 1, "price": 100}, {"return_airport": "DFW", "airline": "Southwest", "departure_day": "12", "departure_airport": "DTW", "flight_number": 1011, "departure_month": "June", "departure_time_num": 17, "class": "economy", "return_time_num": 22, "return_month": "June", "return_day": "13", "num_connections": 0, "price": 100}, {"return_airport": "DTW", "airline": "JetBlue", "departure_day": "11", "departure_airport": "DFW", "flight_number": 1012, "departure_month": "June", "departure_time_num": 13, "class": "economy", "return_time_num": 22, "return_month": "June", "return_day": "13", "num_connections": 1, "price": 100}, {"return_airport": "DTW", "airline": "Southwest", "departure_day": "12", "departure_airport": "IAD", "flight_number": 1013, "departure_month": "June", "departure_time_num": 16, "class": "economy", "return_time_num": 13, "return_month": "June", "return_day": "14", "num_connections": 1, "price": 200}, {"return_airport": "DTW", "airline": "Delta", "departure_day": "12", "departure_airport": "IAD", "flight_number": 1014, "departure_month": "June", "departure_time_num": 0, "class": "economy", "return_time_num": 8, "return_month": "June", "return_day": "15", "num_connections": 1, "price": 100}, {"return_airport": "DTW", "airline": "Southwest", "departure_day": "12", "departure_airport": "DFW", "flight_number": 1015, "departure_month": "June", "departure_time_num": 17, "class": "economy", "return_time_num": 1, "return_month": "June", "return_day": "15", "num_connections": 1, "price": 300}, {"return_airport": "DTW", "airline": "UA", "departure_day": "11", "departure_airport": "DFW", "flight_number": 1016, "departure_month": "June", "departure_time_num": 10, "class": "economy", "return_time_num": 4, "return_month": "June", "return_day": "14", "num_connections": 0, "price": 200}, {"return_airport": "DFW", "airline": "AA", "departure_day": "12", "departure_airport": "DTW", "flight_number": 1017, "departure_month": "June", "departure_time_num": 14, "class": "economy", "return_time_num": 23, "return_month": "June", "return_day": "14", "num_connections": 2, "price": 400}, {"return_airport": "DTW", "airline": "JetBlue", "departure_day": "12", "departure_airport": "DFW", "flight_number": 1018, "departure_month": "June", "departure_time_num": 3, "class": "economy", "return_time_num": 1, "return_month": "June", "return_day": "14", "num_connections": 1, "price": 100}, {"return_airport": "DFW", "airline": "Hawaiian", "departure_day": "12", "departure_airport": "IAD", "flight_number": 1019, "departure_month": "June", "departure_time_num": 7, "class": "economy", "return_time_num": 18, "return_month": "June", "return_day": "14", "num_connections": 1, "price": 200}, {"return_airport": "DFW", "airline": "Delta", "departure_day": "12", "departure_airport": "IAD", "flight_number": 1020, "departure_month": "June", "departure_time_num": 6, "class": "economy", "return_time_num": 18, "return_month": "June", "return_day": "14", "num_connections": 2, "price": 200}, {"return_airport": "IAD", "airline": "Delta", "departure_day": "12", "departure_airport": "DFW", "flight_number": 1021, "departure_month": "June", "departure_time_num": 11, "class": "business", "return_time_num": 8, "return_month": "June", "return_day": "14", "num_connections": 0, "price": 1000}, {"return_airport": "IAD", "airline": "JetBlue", "departure_day": "12", "departure_airport": "DTW", "flight_number": 1022, "departure_month": "June", "departure_time_num": 4, "class": "economy", "return_time_num": 14, "return_month": "June", "return_day": "13", "num_connections": 0, "price": 200}, {"return_airport": "IAD", "airline": "Frontier", "departure_day": "12", "departure_airport": "DTW", "flight_number": 1023, "departure_month": "June", "departure_time_num": 19, "class": "economy", "return_time_num": 23, "return_month": "June", "return_day": "13", "num_connections": 1, "price": 200}, {"return_airport": "DFW", "airline": "UA", "departure_day": "12", "departure_airport": "DTW", "flight_number": 1024, "departure_month": "June", "departure_time_num": 11, "class": "economy", "return_time_num": 19, "return_month": "June", "return_day": "15", "num_connections": 1, "price": 200}, {"return_airport": "DTW", "airline": "Hawaiian", "departure_day": "11", "departure_airport": "IAD", "flight_number": 1025, "departure_month": "June", "departure_time_num": 6, "class": "economy", "return_time_num": 10, "return_month": "June", "return_day": "14", "num_connections": 1, "price": 100}, {"return_airport": "DTW", "airline": "UA", "departure_day": "12", "departure_airport": "DFW", "flight_number": 1026, "departure_month": "June", "departure_time_num": 0, "class": "economy", "return_time_num": 18, "return_month": "June", "return_day": "14", "num_connections": 1, "price": 300}, {"return_airport": "IAD", "airline": "Delta", "departure_day": "12", "departure_airport": "DFW", "flight_number": 1027, "departure_month": "June", "departure_time_num": 17, "class": "economy", "return_time_num": 15, "return_month": "June", "return_day": "14", "num_connections": 1, "price": 200}, {"return_airport": "IAD", "airline": "Southwest", "departure_day": "12", "departure_airport": "DTW", "flight_number": 1028, "departure_month": "June", "departure_time_num": 23, "class": "economy", "return_time_num": 13, "return_month": "June", "return_day": "14", "num_connections": 1, "price": 100}, {"return_airport": "DFW", "airline": "Spirit", "departure_day": "11", "departure_airport": "DTW", "flight_number": 1029, "departure_month": "June", "departure_time_num": 22, "class": "business", "return_time_num": 4, "return_month": "June", "return_day": "14", "num_connections": 0, "price": 800}], "reservation": 0}
205
- ```
206
-
207
- ### Data Fields
208
-
209
- BuilderConfig: `air_dialogue_data`:
210
- Provides for customer context, dialogue states and environment
211
-
212
- key name | Description |
213
- |---|---|
214
- |'search_action' | search action performed by customer |
215
- |'action' | Action taken by the agent |
216
- |'intent' | Intents from the conversation |
217
- |'timestamps' | Timestamp for each of the dialogues |
218
- |'dialogue' | Dialogue recorded between agent & customer |
219
- |'expected_action' | Expected action from agent (human-annotated)|
220
- |'correct_sample' | whether action performed by agent was same as expected_action |
221
-
222
- BuilderConfig: `air_dialogue_kb`:
223
- Provides for the Agent Context _ca_ = (_db_, _r_ )
224
-
225
- key name | Description |
226
- |---|---|
227
- |'kb' | Available flights in the database |
228
- |'reservation' | whether customer has an existing reservation|
229
-
230
-
231
- ### Data Splits
232
-
233
- Data is split into Train/Dev & Test in the ration of 80%, 10% and 10%
234
-
235
- ## Dataset Creation
236
-
237
- ### Curation Rationale
238
-
239
- [Needs More Information]
240
-
241
- ### Source Data
242
-
243
- #### Initial Data Collection and Normalization
244
-
245
- [Needs More Information]
246
-
247
- #### Who are the source language producers?
248
-
249
- [Needs More Information]
250
-
251
- ### Annotations
252
-
253
- #### Annotation process
254
-
255
- To collect this dataset, we create a contextgenerator which provides travel and flight restrictions. We then ask human annotators to play the role of a customer or an agent and interact with the goal of successfully booking a trip given the restrictions. Key to our environment is the ease of evaluating the success of the dialogue, which is achieved by using ground-truth states (e.g., the flight being booked) generated by the restrictions. Any dialogue agent that does not generate the correct states is considered to fail.
256
-
257
- #### Who are the annotators?
258
-
259
- [Needs More Information]
260
-
261
- ### Personal and Sensitive Information
262
-
263
- No personal and sensitive information is stored
264
-
265
- ## Considerations for Using the Data
266
-
267
- ### Social Impact of Dataset
268
-
269
- [Needs More Information]
270
-
271
- ### Discussion of Biases
272
-
273
- [Needs More Information]
274
-
275
- ### Other Known Limitations
276
-
277
- [Needs More Information]
278
-
279
- ## Additional Information
280
-
281
- ### Dataset Curators
282
-
283
- [AirDialogue team](mailto:airdialogue@gmail.com)
284
-
285
- For issues regarding HuggingFace Dataset Hub implementation [Aakash Gupta](mailto:aakashg80@gmail.com)
286
-
287
- ### Licensing Information
288
-
289
- cc-by-nc-4.0
290
-
291
- ### Citation Information
292
-
293
- @inproceedings{wei-etal-2018-airdialogue,
294
- title = "{A}ir{D}ialogue: An Environment for Goal-Oriented Dialogue Research",
295
- author = "Wei, Wei and
296
- Le, Quoc and
297
- Dai, Andrew and
298
- Li, Jia",
299
- booktitle = "Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing",
300
- month = oct # "-" # nov,
301
- year = "2018",
302
- address = "Brussels, Belgium",
303
- publisher = "Association for Computational Linguistics",
304
- url = "https://www.aclweb.org/anthology/D18-1419",
305
- doi = "10.18653/v1/D18-1419",
306
- pages = "3844--3854",
307
- abstract = "Recent progress in dialogue generation has inspired a number of studies on dialogue systems that are capable of accomplishing tasks through natural language interactions. A promising direction among these studies is the use of reinforcement learning techniques, such as self-play, for training dialogue agents. However, current datasets are limited in size, and the environment for training agents and evaluating progress is relatively unsophisticated. We present AirDialogue, a large dataset that contains 301,427 goal-oriented conversations. To collect this dataset, we create a context-generator which provides travel and flight restrictions. We then ask human annotators to play the role of a customer or an agent and interact with the goal of successfully booking a trip given the restrictions. Key to our environment is the ease of evaluating the success of the dialogue, which is achieved by using ground-truth states (e.g., the flight being booked) generated by the restrictions. Any dialogue agent that does not generate the correct states is considered to fail. Our experimental results indicate that state-of-the-art dialogue models can only achieve a score of 0.17 while humans can reach a score of 0.91, which suggests significant opportunities for future improvement.",
308
- }
309
-
310
- ### Contributions
311
-
312
- Thanks to [@skyprince999](https://github.com/skyprince999) for adding this dataset.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
air_dialogue.py DELETED
@@ -1,289 +0,0 @@
1
- # coding=utf-8
2
- # Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
3
- #
4
- # Licensed under the Apache License, Version 2.0 (the "License");
5
- # you may not use this file except in compliance with the License.
6
- # You may obtain a copy of the License at
7
- #
8
- # http://www.apache.org/licenses/LICENSE-2.0
9
- #
10
- # Unless required by applicable law or agreed to in writing, software
11
- # distributed under the License is distributed on an "AS IS" BASIS,
12
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
- # See the License for the specific language governing permissions and
14
- # limitations under the License.
15
- """AirDialogue: A large dataset for goal oriented conversations."""
16
-
17
-
18
- import json
19
-
20
- import datasets
21
-
22
-
23
- # TODO: Add BibTeX citation
24
- # Find for instance the citation on arxiv or on the dataset repo/website
25
- _CITATION = """\
26
- @inproceedings{wei-etal-2018-airdialogue,
27
- title = "{A}ir{D}ialogue: An Environment for Goal-Oriented Dialogue Research",
28
- author = "Wei, Wei and
29
- Le, Quoc and
30
- Dai, Andrew and
31
- Li, Jia",
32
- booktitle = "Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing",
33
- month = oct # "-" # nov,
34
- year = "2018",
35
- address = "Brussels, Belgium",
36
- publisher = "Association for Computational Linguistics",
37
- url = "https://www.aclweb.org/anthology/D18-1419",
38
- doi = "10.18653/v1/D18-1419",
39
- pages = "3844--3854",
40
- abstract = "Recent progress in dialogue generation has inspired a number of studies on dialogue systems that are capable of accomplishing tasks through natural language interactions. A promising direction among these studies is the use of reinforcement learning techniques, such as self-play, for training dialogue agents. However, current datasets are limited in size, and the environment for training agents and evaluating progress is relatively unsophisticated. We present AirDialogue, a large dataset that contains 301,427 goal-oriented conversations. To collect this dataset, we create a context-generator which provides travel and flight restrictions. We then ask human annotators to play the role of a customer or an agent and interact with the goal of successfully booking a trip given the restrictions. Key to our environment is the ease of evaluating the success of the dialogue, which is achieved by using ground-truth states (e.g., the flight being booked) generated by the restrictions. Any dialogue agent that does not generate the correct states is considered to fail. Our experimental results indicate that state-of-the-art dialogue models can only achieve a score of 0.17 while humans can reach a score of 0.91, which suggests significant opportunities for future improvement.",
41
- }
42
- """
43
-
44
- # TODO: Add description of the dataset here
45
- # You can copy an official description
46
- _DESCRIPTION = """\
47
- AirDialogue, is a large dataset that contains 402,038 goal-oriented conversations. To collect this dataset, we create a contextgenerator which provides travel and flight restrictions. Then the human annotators are asked to play the role of a customer or an agent and interact with the goal of successfully booking a trip given the restrictions.
48
- """
49
-
50
- # TODO: Add a link to an official homepage for the dataset here
51
- _HOMEPAGE = "https://worksheets.codalab.org/worksheets/0xa79833f4b3c24f4188cee7131b120a59"
52
-
53
- # TODO: Add the licence for the dataset here if you can find it
54
- _LICENSE = "cc-by-nc-4.0"
55
-
56
- # TODO: Add link to the official dataset URLs here
57
- # The HuggingFace dataset library don't host the datasets but only point to the original files
58
- # This can be an arbitrary nested dict/list of URLs (see below in `_split_generators` method)
59
- _URLs = {
60
- "air_dialogue_data": "https://storage.googleapis.com/airdialogue/airdialogue_data.tar.gz",
61
- "air_dialogue_kb": "https://storage.googleapis.com/airdialogue/airdialogue_data.tar.gz",
62
- }
63
-
64
-
65
- # TODO: Name of the dataset usually match the script name with CamelCase instead of snake_case
66
- class AirDialogue(datasets.GeneratorBasedBuilder):
67
- """TODO: Short description of my dataset."""
68
-
69
- VERSION = datasets.Version("1.1.0")
70
-
71
- # This is an example of a dataset with multiple configurations.
72
- # If you don't want/need to define several sub-sets in your dataset,
73
- # just remove the BUILDER_CONFIG_CLASS and the BUILDER_CONFIGS attributes.
74
-
75
- # If you need to make complex sub-parts in the datasets with configurable options
76
- # You can create your own builder configuration class to store attribute, inheriting from datasets.BuilderConfig
77
- # BUILDER_CONFIG_CLASS = MyBuilderConfig
78
-
79
- # You will be able to load one or the other configurations in the following list with
80
- # data = datasets.load_dataset('my_dataset', 'first_domain')
81
- # data = datasets.load_dataset('my_dataset', 'second_domain')
82
- BUILDER_CONFIGS = [
83
- datasets.BuilderConfig(
84
- name="air_dialogue_data", version=VERSION, description="This part of my dataset covers the dialog files"
85
- ),
86
- datasets.BuilderConfig(
87
- name="air_dialogue_kb", version=VERSION, description="This part of my dataset covers the knowledge base"
88
- ),
89
- ]
90
-
91
- DEFAULT_CONFIG_NAME = (
92
- "air_dialogue_data" # It's not mandatory to have a default configuration. Just use one if it make sense.
93
- )
94
-
95
- def _info(self):
96
- # TODO: This method specifies the datasets.DatasetInfo object which contains informations and typings for the dataset
97
- if (
98
- self.config.name == "air_dialogue_data"
99
- ): # This is the name of the configuration selected in BUILDER_CONFIGS above
100
- features = datasets.Features(
101
- {
102
- "action": {
103
- "status": datasets.Value("string"),
104
- "name": datasets.Value("string"),
105
- "flight": datasets.features.Sequence(datasets.Value("int32")),
106
- },
107
- "intent": {
108
- "return_month": datasets.Value("string"),
109
- "return_day": datasets.Value("string"),
110
- "max_price": datasets.Value("int32"),
111
- "departure_airport": datasets.Value("string"),
112
- "max_connections": datasets.Value("int32"),
113
- "departure_day": datasets.Value("string"),
114
- "goal": datasets.Value("string"),
115
- "departure_month": datasets.Value("string"),
116
- "name": datasets.Value("string"),
117
- "return_airport": datasets.Value("string"),
118
- },
119
- "timestamps": datasets.features.Sequence(datasets.Value("int64")),
120
- "dialogue": datasets.features.Sequence(datasets.Value("string")),
121
- "expected_action": {
122
- "status": datasets.Value("string"),
123
- "name": datasets.Value("string"),
124
- "flight": datasets.features.Sequence(datasets.Value("int32")),
125
- },
126
- "search_info": [
127
- {
128
- "button_name": datasets.Value("string"),
129
- "field_name": datasets.Value("string"),
130
- "field_value": datasets.Value("string"),
131
- "timestmamp": datasets.Value("int64"),
132
- },
133
- ],
134
- "correct_sample": datasets.Value("bool_"),
135
- }
136
- )
137
- else:
138
- features = datasets.Features(
139
- {
140
- "kb": [
141
- {
142
- "airline": datasets.Value("string"),
143
- "class": datasets.Value("string"),
144
- "departure_airport": datasets.Value("string"),
145
- "departure_day": datasets.Value("string"),
146
- "departure_month": datasets.Value("string"),
147
- "departure_time_num": datasets.Value("int32"),
148
- "flight_number": datasets.Value("int32"),
149
- "num_connections": datasets.Value("int32"),
150
- "price": datasets.Value("int32"),
151
- "return_airport": datasets.Value("string"),
152
- "return_day": datasets.Value("string"),
153
- "return_month": datasets.Value("string"),
154
- "return_time_num": datasets.Value("int32"),
155
- },
156
- ],
157
- "reservation": datasets.Value("int32"),
158
- }
159
- )
160
-
161
- return datasets.DatasetInfo(
162
- # This is the description that will appear on the datasets page.
163
- description=_DESCRIPTION,
164
- # This defines the different columns of the dataset and their types
165
- features=features, # Here we define them above because they are different between the two configurations
166
- # If there's a common (input, target) tuple from the features,
167
- # specify them here. They'll be used if as_supervised=True in
168
- # builder.as_dataset.
169
- supervised_keys=None,
170
- # Homepage of the dataset for documentation
171
- homepage=_HOMEPAGE,
172
- # License for the dataset if available
173
- license=_LICENSE,
174
- # Citation for the dataset
175
- citation=_CITATION,
176
- )
177
-
178
- def _split_generators(self, dl_manager):
179
- """Returns SplitGenerators."""
180
- # TODO: This method is tasked with downloading/extracting the data and defining the splits depending on the configuration
181
- # If several configurations are possible (listed in BUILDER_CONFIGS), the configuration selected by the user is in self.config.name
182
-
183
- # dl_manager is a datasets.download.DownloadManager that can be used to download and extract URLs
184
- # It can accept any type or nested list/dict and will give back the same structure with the url replaced with path to local files.
185
- # By default the archives will be extracted and a path to a cached folder where they are extracted is returned instead of the archive
186
- my_urls = _URLs[self.config.name]
187
- archive = dl_manager.download(my_urls)
188
- if self.config.name == "air_dialogue_data":
189
- train = "airdialogue_data/airdialogue/train_data.json"
190
- dev = "airdialogue_data/airdialogue/dev_data.json"
191
- else:
192
- train = "airdialogue_data/airdialogue/train_kb.json"
193
- dev = "airdialogue_data/airdialogue/dev_kb.json"
194
-
195
- return [
196
- datasets.SplitGenerator(
197
- name=datasets.Split.TRAIN,
198
- # These kwargs will be passed to _generate_examples
199
- gen_kwargs={
200
- "filepath": train,
201
- "files": dl_manager.iter_archive(archive),
202
- },
203
- ),
204
- datasets.SplitGenerator(
205
- name=datasets.Split.VALIDATION,
206
- # These kwargs will be passed to _generate_examples
207
- gen_kwargs={
208
- "filepath": dev,
209
- "files": dl_manager.iter_archive(archive),
210
- },
211
- ),
212
- ]
213
-
214
- def _generate_examples(self, filepath, files):
215
- """Yields examples."""
216
- # TODO: This method will receive as arguments the `gen_kwargs` defined in the previous `_split_generators` method.
217
- # It is in charge of opening the given file and yielding (key, example) tuples from the dataset
218
- # The key is not important, it's more here for legacy reason (legacy from tfds)
219
-
220
- for path, f in files:
221
- if path == filepath:
222
- for id_, row in enumerate(f):
223
- row = row.decode("utf-8")
224
- data = json.loads(row)
225
- if self.config.name == "air_dialogue_data":
226
-
227
- intent = {
228
- "return_month": data["intent"]["return_month"],
229
- "return_day": data["intent"]["return_day"],
230
- "max_price": data["intent"]["max_price"],
231
- "departure_airport": data["intent"]["departure_airport"],
232
- "max_connections": data["intent"].get("max_connections", -1),
233
- "departure_day": data["intent"]["departure_day"],
234
- "goal": data["intent"]["goal"],
235
- "departure_month": data["intent"]["departure_month"],
236
- "name": data["intent"]["name"],
237
- "return_airport": data["intent"]["return_airport"],
238
- }
239
-
240
- search_info = (
241
- []
242
- if "search_info" not in data
243
- else [
244
- {
245
- "button_name": search_info.get("button_name", ""),
246
- "field_name": search_info.get("field_name", ""),
247
- "field_value": search_info.get("field_value", ""),
248
- "timestmamp": search_info["timestmamp"],
249
- }
250
- for search_info in data["search_info"]
251
- ]
252
- )
253
-
254
- yield id_, {
255
- "action": {key: data["action"][key] for key in data["action"]},
256
- "intent": intent,
257
- "timestamps": data["timestamps"],
258
- "dialogue": data["dialogue"],
259
- "expected_action": {key: data["expected_action"][key] for key in data["expected_action"]},
260
- "search_info": search_info,
261
- "correct_sample": data["correct_sample"],
262
- }
263
-
264
- else:
265
-
266
- kb = [
267
- {
268
- "airline": kb["airline"],
269
- "class": kb["class"],
270
- "departure_airport": kb["departure_airport"],
271
- "departure_day": kb["departure_day"],
272
- "departure_month": kb["departure_month"],
273
- "departure_time_num": kb["departure_time_num"],
274
- "flight_number": kb["flight_number"],
275
- "num_connections": kb["num_connections"],
276
- "price": kb["price"],
277
- "return_airport": kb["return_airport"],
278
- "return_day": kb["return_day"],
279
- "return_month": kb["return_month"],
280
- "return_time_num": kb["return_time_num"],
281
- }
282
- for kb in data["kb"]
283
- ]
284
-
285
- yield id_, {
286
- "kb": kb,
287
- "reservation": data["reservation"],
288
- }
289
- break
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
air_dialogue_data/air_dialogue-train.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:caab7af542f11ae9461cd2446b8cbbed959c41413483a80cbeb7df9b036d3385
3
+ size 125924076
air_dialogue_data/air_dialogue-validation.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d95a500b49f063540ca4dfd8d680451bc3bb31b5676358e0514f405870e55da4
3
+ size 15843754
air_dialogue_kb/air_dialogue-train-00000-of-00002.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4553670d10f9ea26aad06dad4c02d0fc7116a941a0e2462a04af1c524e51e19a
3
+ size 32628935
air_dialogue_kb/air_dialogue-train-00001-of-00002.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d2d7d5582f30797ee03cbe11bb0d59ca6502caf689c6952ec5cdd92d464be9e8
3
+ size 18782105
air_dialogue_kb/air_dialogue-validation.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:dbf5a4327fc97ca2b4ee93b6ef4398db511e3ec76cfb5d7101d25241fd700393
3
+ size 6461341
dataset_infos.json DELETED
@@ -1 +0,0 @@
1
- {"air_dialogue_data": {"description": "AirDialogue, is a large dataset that contains 402,038 goal-oriented conversations. To collect this dataset, we create a contextgenerator which provides travel and flight restrictions. Then the human annotators are asked to play the role of a customer or an agent and interact with the goal of successfully booking a trip given the restrictions.\n", "citation": "@inproceedings{wei-etal-2018-airdialogue,\n title = \"{A}ir{D}ialogue: An Environment for Goal-Oriented Dialogue Research\",\n author = \"Wei, Wei and\n Le, Quoc and\n Dai, Andrew and\n Li, Jia\",\n booktitle = \"Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing\",\n month = oct # \"-\" # nov,\n year = \"2018\",\n address = \"Brussels, Belgium\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://www.aclweb.org/anthology/D18-1419\",\n doi = \"10.18653/v1/D18-1419\",\n pages = \"3844--3854\",\n abstract = \"Recent progress in dialogue generation has inspired a number of studies on dialogue systems that are capable of accomplishing tasks through natural language interactions. A promising direction among these studies is the use of reinforcement learning techniques, such as self-play, for training dialogue agents. However, current datasets are limited in size, and the environment for training agents and evaluating progress is relatively unsophisticated. We present AirDialogue, a large dataset that contains 301,427 goal-oriented conversations. To collect this dataset, we create a context-generator which provides travel and flight restrictions. We then ask human annotators to play the role of a customer or an agent and interact with the goal of successfully booking a trip given the restrictions. Key to our environment is the ease of evaluating the success of the dialogue, which is achieved by using ground-truth states (e.g., the flight being booked) generated by the restrictions. Any dialogue agent that does not generate the correct states is considered to fail. Our experimental results indicate that state-of-the-art dialogue models can only achieve a score of 0.17 while humans can reach a score of 0.91, which suggests significant opportunities for future improvement.\",\n}\n", "homepage": "https://worksheets.codalab.org/worksheets/0xa79833f4b3c24f4188cee7131b120a59", "license": "cc-by-nc-4.0", "features": {"action": {"status": {"dtype": "string", "id": null, "_type": "Value"}, "name": {"dtype": "string", "id": null, "_type": "Value"}, "flight": {"feature": {"dtype": "int32", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}}, "intent": {"return_month": {"dtype": "string", "id": null, "_type": "Value"}, "return_day": {"dtype": "string", "id": null, "_type": "Value"}, "max_price": {"dtype": "int32", "id": null, "_type": "Value"}, "departure_airport": {"dtype": "string", "id": null, "_type": "Value"}, "max_connections": {"dtype": "int32", "id": null, "_type": "Value"}, "departure_day": {"dtype": "string", "id": null, "_type": "Value"}, "goal": {"dtype": "string", "id": null, "_type": "Value"}, "departure_month": {"dtype": "string", "id": null, "_type": "Value"}, "name": {"dtype": "string", "id": null, "_type": "Value"}, "return_airport": {"dtype": "string", "id": null, "_type": "Value"}}, "timestamps": {"feature": {"dtype": "int64", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}, "dialogue": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}, "expected_action": {"status": {"dtype": "string", "id": null, "_type": "Value"}, "name": {"dtype": "string", "id": null, "_type": "Value"}, "flight": {"feature": {"dtype": "int32", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}}, "search_info": [{"button_name": {"dtype": "string", "id": null, "_type": "Value"}, "field_name": {"dtype": "string", "id": null, "_type": "Value"}, "field_value": {"dtype": "string", "id": null, "_type": "Value"}, "timestmamp": {"dtype": "int64", "id": null, "_type": "Value"}}], "correct_sample": {"dtype": "bool_", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": null, "builder_name": "air_dialogue", "config_name": "air_dialogue_data", "version": {"version_str": "1.1.0", "description": null, "major": 1, "minor": 1, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 353721137, "num_examples": 321459, "dataset_name": "air_dialogue"}, "validation": {"name": "validation", "num_bytes": 44442238, "num_examples": 40363, "dataset_name": "air_dialogue"}}, "download_checksums": {"https://storage.googleapis.com/airdialogue/airdialogue_data.tar.gz": {"num_bytes": 272898923, "checksum": "7d2130cdde73a59afd6ad6c463a25453d8ed677c1b3a4a4aaa2406db9c9712cb"}}, "download_size": 272898923, "post_processing_size": null, "dataset_size": 398163375, "size_in_bytes": 671062298}, "air_dialogue_kb": {"description": "AirDialogue, is a large dataset that contains 402,038 goal-oriented conversations. To collect this dataset, we create a contextgenerator which provides travel and flight restrictions. Then the human annotators are asked to play the role of a customer or an agent and interact with the goal of successfully booking a trip given the restrictions.\n", "citation": "@inproceedings{wei-etal-2018-airdialogue,\n title = \"{A}ir{D}ialogue: An Environment for Goal-Oriented Dialogue Research\",\n author = \"Wei, Wei and\n Le, Quoc and\n Dai, Andrew and\n Li, Jia\",\n booktitle = \"Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing\",\n month = oct # \"-\" # nov,\n year = \"2018\",\n address = \"Brussels, Belgium\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://www.aclweb.org/anthology/D18-1419\",\n doi = \"10.18653/v1/D18-1419\",\n pages = \"3844--3854\",\n abstract = \"Recent progress in dialogue generation has inspired a number of studies on dialogue systems that are capable of accomplishing tasks through natural language interactions. A promising direction among these studies is the use of reinforcement learning techniques, such as self-play, for training dialogue agents. However, current datasets are limited in size, and the environment for training agents and evaluating progress is relatively unsophisticated. We present AirDialogue, a large dataset that contains 301,427 goal-oriented conversations. To collect this dataset, we create a context-generator which provides travel and flight restrictions. We then ask human annotators to play the role of a customer or an agent and interact with the goal of successfully booking a trip given the restrictions. Key to our environment is the ease of evaluating the success of the dialogue, which is achieved by using ground-truth states (e.g., the flight being booked) generated by the restrictions. Any dialogue agent that does not generate the correct states is considered to fail. Our experimental results indicate that state-of-the-art dialogue models can only achieve a score of 0.17 while humans can reach a score of 0.91, which suggests significant opportunities for future improvement.\",\n}\n", "homepage": "https://worksheets.codalab.org/worksheets/0xa79833f4b3c24f4188cee7131b120a59", "license": "cc-by-nc-4.0", "features": {"kb": [{"airline": {"dtype": "string", "id": null, "_type": "Value"}, "class": {"dtype": "string", "id": null, "_type": "Value"}, "departure_airport": {"dtype": "string", "id": null, "_type": "Value"}, "departure_day": {"dtype": "string", "id": null, "_type": "Value"}, "departure_month": {"dtype": "string", "id": null, "_type": "Value"}, "departure_time_num": {"dtype": "int32", "id": null, "_type": "Value"}, "flight_number": {"dtype": "int32", "id": null, "_type": "Value"}, "num_connections": {"dtype": "int32", "id": null, "_type": "Value"}, "price": {"dtype": "int32", "id": null, "_type": "Value"}, "return_airport": {"dtype": "string", "id": null, "_type": "Value"}, "return_day": {"dtype": "string", "id": null, "_type": "Value"}, "return_month": {"dtype": "string", "id": null, "_type": "Value"}, "return_time_num": {"dtype": "int32", "id": null, "_type": "Value"}}], "reservation": {"dtype": "int32", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": null, "builder_name": "air_dialogue", "config_name": "air_dialogue_kb", "version": {"version_str": "1.1.0", "description": null, "major": 1, "minor": 1, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 782592158, "num_examples": 321459, "dataset_name": "air_dialogue"}, "validation": {"name": "validation", "num_bytes": 98269789, "num_examples": 40363, "dataset_name": "air_dialogue"}}, "download_checksums": {"https://storage.googleapis.com/airdialogue/airdialogue_data.tar.gz": {"num_bytes": 272898923, "checksum": "7d2130cdde73a59afd6ad6c463a25453d8ed677c1b3a4a4aaa2406db9c9712cb"}}, "download_size": 272898923, "post_processing_size": null, "dataset_size": 880861947, "size_in_bytes": 1153760870}}