Datasets:

Modalities:
Text
Formats:
parquet
Sub-tasks:
extractive-qa
Libraries:
Datasets
Dask
License:
system HF staff commited on
Commit
a2f8b84
1 Parent(s): 23cef03

Update files from the datasets library (from 1.9.0)

Browse files

Release notes: https://github.com/huggingface/datasets/releases/tag/1.9.0

Files changed (3) hide show
  1. README.md +31 -4
  2. dataset_infos.json +1 -1
  3. tydiqa.py +6 -0
README.md CHANGED
@@ -1,6 +1,33 @@
1
  ---
 
 
 
 
 
2
  languages:
3
  - en
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4
  paperswithcode_id: tydi-qa
5
  ---
6
 
@@ -142,10 +169,10 @@ The data fields are the same among all splits.
142
 
143
  ### Data Splits
144
 
145
- | name |train |validation|
146
- |--------------|-----:|---------:|
147
- |primary_task |166916| 18670|
148
- |secondary_task| 49881| 5077|
149
 
150
  ## Dataset Creation
151
 
 
1
  ---
2
+ pretty_name: TyDi QA
3
+ annotations_creators:
4
+ - crowdsourced
5
+ language_creators:
6
+ - crowdsourced
7
  languages:
8
  - en
9
+ - ar
10
+ - bn
11
+ - fi
12
+ - id
13
+ - ja
14
+ - sw
15
+ - ko
16
+ - ru
17
+ - te
18
+ - th
19
+ licenses:
20
+ - apache-2-0
21
+ multilinguality:
22
+ - multilingual
23
+ size_categories:
24
+ - unknown
25
+ source_datasets:
26
+ - extended|wikipedia
27
+ task_categories:
28
+ - question-answering
29
+ task_ids:
30
+ - extractive-qa
31
  paperswithcode_id: tydi-qa
32
  ---
33
 
 
169
 
170
  ### Data Splits
171
 
172
+ | name | train | validation |
173
+ | -------------- | -----: | ---------: |
174
+ | primary_task | 166916 | 18670 |
175
+ | secondary_task | 49881 | 5077 |
176
 
177
  ## Dataset Creation
178
 
dataset_infos.json CHANGED
@@ -1 +1 @@
1
- {"primary_task": {"description": "TyDi QA is a question answering dataset covering 11 typologically diverse languages with 204K question-answer pairs. \nThe languages of TyDi QA are diverse with regard to their typology -- the set of linguistic features that each language \nexpresses -- such that we expect models performing well on this set to generalize across a large number of the languages \nin the world. It contains language phenomena that would not be found in English-only corpora. To provide a realistic \ninformation-seeking task and avoid priming effects, questions are written by people who want to know the answer, but \ndon\u2019t know the answer yet, (unlike SQuAD and its descendents) and the data is collected directly in each language without\nthe use of translation (unlike MLQA and XQuAD).\n", "citation": "@article{tydiqa,\ntitle = {TyDi QA: A Benchmark for Information-Seeking Question Answering in Typologically Diverse Languages},\nauthor = {Jonathan H. Clark and Eunsol Choi and Michael Collins and Dan Garrette and Tom Kwiatkowski and Vitaly Nikolaev and Jennimaria Palomaki}\nyear = {2020},\njournal = {Transactions of the Association for Computational Linguistics}\n}\n", "homepage": "https://github.com/google-research-datasets/tydiqa", "license": "", "features": {"passage_answer_candidates": {"feature": {"plaintext_start_byte": {"dtype": "int32", "id": null, "_type": "Value"}, "plaintext_end_byte": {"dtype": "int32", "id": null, "_type": "Value"}}, "length": -1, "id": null, "_type": "Sequence"}, "question_text": {"dtype": "string", "id": null, "_type": "Value"}, "document_title": {"dtype": "string", "id": null, "_type": "Value"}, "language": {"dtype": "string", "id": null, "_type": "Value"}, "annotations": {"feature": {"passage_answer_candidate_index": {"dtype": "int32", "id": null, "_type": "Value"}, "minimal_answers_start_byte": {"dtype": "int32", "id": null, "_type": "Value"}, "minimal_answers_end_byte": {"dtype": "int32", "id": null, "_type": "Value"}, "yes_no_answer": {"dtype": "string", "id": null, "_type": "Value"}}, "length": -1, "id": null, "_type": "Sequence"}, "document_plaintext": {"dtype": "string", "id": null, "_type": "Value"}, "document_url": {"dtype": "string", "id": null, "_type": "Value"}}, "supervised_keys": null, "builder_name": "tydiqa", "config_name": "primary_task", "version": {"version_str": "1.0.0", "description": "", "datasets_version_to_prepare": null, "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 5552662653, "num_examples": 166916, "dataset_name": "tydiqa"}, "validation": {"name": "validation", "num_bytes": 484604737, "num_examples": 18670, "dataset_name": "tydiqa"}}, "download_checksums": {"https://storage.googleapis.com/tydiqa/v1.0/tydiqa-v1.0-train.jsonl.gz": {"num_bytes": 1729651634, "checksum": "8eeedfee7593db7c3637d65a3d5c67b82486137ac6ac3ea7d08be9a64d71b629"}, "https://storage.googleapis.com/tydiqa/v1.0/tydiqa-v1.0-dev.jsonl.gz": {"num_bytes": 160614310, "checksum": "b52b8d4db1850b1549e960219e6056d8139986f8caf1b5e8b4eecadabed24413"}, "https://storage.googleapis.com/tydiqa/v1.1/tydiqa-goldp-v1.1-train.json": {"num_bytes": 58004076, "checksum": "cefc8e09ff2548d9b10a678d3a6bbbe5bc036be543f92418819ea676c97be23b"}, "https://storage.googleapis.com/tydiqa/v1.1/tydiqa-goldp-v1.1-dev.json": {"num_bytes": 5617409, "checksum": "b286e0f34bc7f52259359989716f369b160565bd12ad8f3a3e311f9b0dbad1c0"}}, "download_size": 1953887429, "dataset_size": 6037267390, "size_in_bytes": 7991154819}, "secondary_task": {"description": "TyDi QA is a question answering dataset covering 11 typologically diverse languages with 204K question-answer pairs. \nThe languages of TyDi QA are diverse with regard to their typology -- the set of linguistic features that each language \nexpresses -- such that we expect models performing well on this set to generalize across a large number of the languages \nin the world. It contains language phenomena that would not be found in English-only corpora. To provide a realistic \ninformation-seeking task and avoid priming effects, questions are written by people who want to know the answer, but \ndon\u2019t know the answer yet, (unlike SQuAD and its descendents) and the data is collected directly in each language without\nthe use of translation (unlike MLQA and XQuAD).\n", "citation": "@article{tydiqa,\ntitle = {TyDi QA: A Benchmark for Information-Seeking Question Answering in Typologically Diverse Languages},\nauthor = {Jonathan H. Clark and Eunsol Choi and Michael Collins and Dan Garrette and Tom Kwiatkowski and Vitaly Nikolaev and Jennimaria Palomaki}\nyear = {2020},\njournal = {Transactions of the Association for Computational Linguistics}\n}\n", "homepage": "https://github.com/google-research-datasets/tydiqa", "license": "", "features": {"id": {"dtype": "string", "id": null, "_type": "Value"}, "title": {"dtype": "string", "id": null, "_type": "Value"}, "context": {"dtype": "string", "id": null, "_type": "Value"}, "question": {"dtype": "string", "id": null, "_type": "Value"}, "answers": {"feature": {"text": {"dtype": "string", "id": null, "_type": "Value"}, "answer_start": {"dtype": "int32", "id": null, "_type": "Value"}}, "length": -1, "id": null, "_type": "Sequence"}}, "supervised_keys": null, "builder_name": "tydiqa", "config_name": "secondary_task", "version": {"version_str": "1.0.0", "description": "", "datasets_version_to_prepare": null, "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 53010855, "num_examples": 49881, "dataset_name": "tydiqa"}, "validation": {"name": "validation", "num_bytes": 5013731, "num_examples": 5077, "dataset_name": "tydiqa"}}, "download_checksums": {"https://storage.googleapis.com/tydiqa/v1.0/tydiqa-v1.0-train.jsonl.gz": {"num_bytes": 1729651634, "checksum": "8eeedfee7593db7c3637d65a3d5c67b82486137ac6ac3ea7d08be9a64d71b629"}, "https://storage.googleapis.com/tydiqa/v1.0/tydiqa-v1.0-dev.jsonl.gz": {"num_bytes": 160614310, "checksum": "b52b8d4db1850b1549e960219e6056d8139986f8caf1b5e8b4eecadabed24413"}, "https://storage.googleapis.com/tydiqa/v1.1/tydiqa-goldp-v1.1-train.json": {"num_bytes": 58004076, "checksum": "cefc8e09ff2548d9b10a678d3a6bbbe5bc036be543f92418819ea676c97be23b"}, "https://storage.googleapis.com/tydiqa/v1.1/tydiqa-goldp-v1.1-dev.json": {"num_bytes": 5617409, "checksum": "b286e0f34bc7f52259359989716f369b160565bd12ad8f3a3e311f9b0dbad1c0"}}, "download_size": 1953887429, "dataset_size": 58024586, "size_in_bytes": 2011912015}}
 
1
+ {"primary_task": {"description": "TyDi QA is a question answering dataset covering 11 typologically diverse languages with 204K question-answer pairs.\nThe languages of TyDi QA are diverse with regard to their typology -- the set of linguistic features that each language\nexpresses -- such that we expect models performing well on this set to generalize across a large number of the languages\nin the world. It contains language phenomena that would not be found in English-only corpora. To provide a realistic\ninformation-seeking task and avoid priming effects, questions are written by people who want to know the answer, but\ndon\u2019t know the answer yet, (unlike SQuAD and its descendents) and the data is collected directly in each language without\nthe use of translation (unlike MLQA and XQuAD).\n", "citation": "@article{tydiqa,\ntitle = {TyDi QA: A Benchmark for Information-Seeking Question Answering in Typologically Diverse Languages},\nauthor = {Jonathan H. Clark and Eunsol Choi and Michael Collins and Dan Garrette and Tom Kwiatkowski and Vitaly Nikolaev and Jennimaria Palomaki}\nyear = {2020},\njournal = {Transactions of the Association for Computational Linguistics}\n}\n", "homepage": "https://github.com/google-research-datasets/tydiqa", "license": "", "features": {"passage_answer_candidates": {"feature": {"plaintext_start_byte": {"dtype": "int32", "id": null, "_type": "Value"}, "plaintext_end_byte": {"dtype": "int32", "id": null, "_type": "Value"}}, "length": -1, "id": null, "_type": "Sequence"}, "question_text": {"dtype": "string", "id": null, "_type": "Value"}, "document_title": {"dtype": "string", "id": null, "_type": "Value"}, "language": {"dtype": "string", "id": null, "_type": "Value"}, "annotations": {"feature": {"passage_answer_candidate_index": {"dtype": "int32", "id": null, "_type": "Value"}, "minimal_answers_start_byte": {"dtype": "int32", "id": null, "_type": "Value"}, "minimal_answers_end_byte": {"dtype": "int32", "id": null, "_type": "Value"}, "yes_no_answer": {"dtype": "string", "id": null, "_type": "Value"}}, "length": -1, "id": null, "_type": "Sequence"}, "document_plaintext": {"dtype": "string", "id": null, "_type": "Value"}, "document_url": {"dtype": "string", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": null, "task_templates": null, "builder_name": "tydiqa", "config_name": "primary_task", "version": {"version_str": "1.0.0", "description": "", "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 5550574617, "num_examples": 166916, "dataset_name": "tydiqa"}, "validation": {"name": "validation", "num_bytes": 484380443, "num_examples": 18670, "dataset_name": "tydiqa"}}, "download_checksums": {"https://storage.googleapis.com/tydiqa/v1.0/tydiqa-v1.0-train.jsonl.gz": {"num_bytes": 1729651634, "checksum": "8eeedfee7593db7c3637d65a3d5c67b82486137ac6ac3ea7d08be9a64d71b629"}, "https://storage.googleapis.com/tydiqa/v1.0/tydiqa-v1.0-dev.jsonl.gz": {"num_bytes": 160614310, "checksum": "b52b8d4db1850b1549e960219e6056d8139986f8caf1b5e8b4eecadabed24413"}, "https://storage.googleapis.com/tydiqa/v1.1/tydiqa-goldp-v1.1-train.json": {"num_bytes": 58004076, "checksum": "cefc8e09ff2548d9b10a678d3a6bbbe5bc036be543f92418819ea676c97be23b"}, "https://storage.googleapis.com/tydiqa/v1.1/tydiqa-goldp-v1.1-dev.json": {"num_bytes": 5617409, "checksum": "b286e0f34bc7f52259359989716f369b160565bd12ad8f3a3e311f9b0dbad1c0"}}, "download_size": 1953887429, "post_processing_size": null, "dataset_size": 6034955060, "size_in_bytes": 7988842489}, "secondary_task": {"description": "TyDi QA is a question answering dataset covering 11 typologically diverse languages with 204K question-answer pairs.\nThe languages of TyDi QA are diverse with regard to their typology -- the set of linguistic features that each language\nexpresses -- such that we expect models performing well on this set to generalize across a large number of the languages\nin the world. It contains language phenomena that would not be found in English-only corpora. To provide a realistic\ninformation-seeking task and avoid priming effects, questions are written by people who want to know the answer, but\ndon\u2019t know the answer yet, (unlike SQuAD and its descendents) and the data is collected directly in each language without\nthe use of translation (unlike MLQA and XQuAD).\n", "citation": "@article{tydiqa,\ntitle = {TyDi QA: A Benchmark for Information-Seeking Question Answering in Typologically Diverse Languages},\nauthor = {Jonathan H. Clark and Eunsol Choi and Michael Collins and Dan Garrette and Tom Kwiatkowski and Vitaly Nikolaev and Jennimaria Palomaki}\nyear = {2020},\njournal = {Transactions of the Association for Computational Linguistics}\n}\n", "homepage": "https://github.com/google-research-datasets/tydiqa", "license": "", "features": {"id": {"dtype": "string", "id": null, "_type": "Value"}, "title": {"dtype": "string", "id": null, "_type": "Value"}, "context": {"dtype": "string", "id": null, "_type": "Value"}, "question": {"dtype": "string", "id": null, "_type": "Value"}, "answers": {"feature": {"text": {"dtype": "string", "id": null, "_type": "Value"}, "answer_start": {"dtype": "int32", "id": null, "_type": "Value"}}, "length": -1, "id": null, "_type": "Sequence"}}, "post_processed": null, "supervised_keys": null, "task_templates": [{"task": "question-answering-extractive", "question_column": "question", "context_column": "context", "answers_column": "answers"}], "builder_name": "tydiqa", "config_name": "secondary_task", "version": {"version_str": "1.0.0", "description": "", "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 52948607, "num_examples": 49881, "dataset_name": "tydiqa"}, "validation": {"name": "validation", "num_bytes": 5006461, "num_examples": 5077, "dataset_name": "tydiqa"}}, "download_checksums": {"https://storage.googleapis.com/tydiqa/v1.0/tydiqa-v1.0-train.jsonl.gz": {"num_bytes": 1729651634, "checksum": "8eeedfee7593db7c3637d65a3d5c67b82486137ac6ac3ea7d08be9a64d71b629"}, "https://storage.googleapis.com/tydiqa/v1.0/tydiqa-v1.0-dev.jsonl.gz": {"num_bytes": 160614310, "checksum": "b52b8d4db1850b1549e960219e6056d8139986f8caf1b5e8b4eecadabed24413"}, "https://storage.googleapis.com/tydiqa/v1.1/tydiqa-goldp-v1.1-train.json": {"num_bytes": 58004076, "checksum": "cefc8e09ff2548d9b10a678d3a6bbbe5bc036be543f92418819ea676c97be23b"}, "https://storage.googleapis.com/tydiqa/v1.1/tydiqa-goldp-v1.1-dev.json": {"num_bytes": 5617409, "checksum": "b286e0f34bc7f52259359989716f369b160565bd12ad8f3a3e311f9b0dbad1c0"}}, "download_size": 1953887429, "post_processing_size": null, "dataset_size": 57955068, "size_in_bytes": 2011842497}}
tydiqa.py CHANGED
@@ -5,6 +5,7 @@ import json
5
  import textwrap
6
 
7
  import datasets
 
8
 
9
 
10
  # TODO(tydiqa): BibTeX citation
@@ -151,6 +152,11 @@ class Tydiqa(datasets.GeneratorBasedBuilder):
151
  supervised_keys=None,
152
  homepage="https://github.com/google-research-datasets/tydiqa",
153
  citation=_CITATION,
 
 
 
 
 
154
  )
155
 
156
  def _split_generators(self, dl_manager):
 
5
  import textwrap
6
 
7
  import datasets
8
+ from datasets.tasks import QuestionAnsweringExtractive
9
 
10
 
11
  # TODO(tydiqa): BibTeX citation
 
152
  supervised_keys=None,
153
  homepage="https://github.com/google-research-datasets/tydiqa",
154
  citation=_CITATION,
155
+ task_templates=[
156
+ QuestionAnsweringExtractive(
157
+ question_column="question", context_column="context", answers_column="answers"
158
+ )
159
+ ],
160
  )
161
 
162
  def _split_generators(self, dl_manager):