Datasets:
Tasks:
Text Classification
Sub-tasks:
multi-class-classification
Languages:
English
Size:
10K<n<100K
License:
# coding=utf-8 | |
# Copyright 2020 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
# Lint as: python3 | |
"""20Newsgroup dataset""" | |
import os | |
import datasets | |
_CITATION = """ | |
@inproceedings{Lang95, | |
author = {Ken Lang}, | |
title = {Newsweeder: Learning to filter netnews} | |
year = {1995} | |
booktitle = {Proceedings of the Twelfth International Conference on Machine Learning} | |
pages = {331-339} | |
} | |
""" | |
_DESCRIPTION = """ | |
The 20 Newsgroups data set is a collection of approximately 20,000 newsgroup documents, partitioned (nearly) evenly across | |
20 different newsgroups. The 20 newsgroups collection has become a popular data set for experiments in text applications of | |
machine learning techniques, such as text classification and text clustering. | |
""" | |
_DOWNLOAD_URL = { | |
"bydate": "http://qwone.com/~jason/20Newsgroups/20news-bydate.tar.gz", | |
"19997": "http://qwone.com/~jason/20Newsgroups/20news-19997.tar.gz", | |
"18828": "http://qwone.com/~jason/20Newsgroups/20news-18828.tar.gz", | |
} | |
_NEWS_GROUPS = [ | |
"comp.graphics", | |
"comp.os.ms-windows.misc", | |
"comp.sys.ibm.pc.hardware", | |
"comp.sys.mac.hardware", | |
"comp.windows.x", | |
"rec.autos", | |
"rec.motorcycles", | |
"rec.sport.baseball", | |
"rec.sport.hockey", | |
"sci.crypt", | |
"sci.electronics", | |
"sci.med", | |
"sci.space", | |
"misc.forsale", | |
"talk.politics.misc", | |
"talk.politics.guns", | |
"talk.politics.mideast", | |
"talk.religion.misc", | |
"alt.atheism", | |
"soc.religion.christian", | |
] | |
_VERSIONS = {"19997": "1.0.0", "bydate": "2.0.0", "18828": "3.0.0"} | |
_DESC = { | |
"19997": "the original, unmodified version.", | |
"bydate": "sorted by date into training(60%) and test(40%) sets, does not include cross-posts (duplicates) and does not include newsgroup-identifying headers (Xref, Newsgroups, Path, Followup-To, Date)", | |
"18828": 'does not include cross-posts and includes only the "From" and "Subject" headers.', | |
} | |
_CONFIG_NAMES = [] | |
for version in _VERSIONS: | |
for group in _NEWS_GROUPS: | |
_CONFIG_NAMES.append(version + "_" + group) | |
_CONFIG_NAMES = sorted(_CONFIG_NAMES) | |
class NewsgroupConfig(datasets.BuilderConfig): | |
"""BuilderConfig for 20Newsgroup.""" | |
def __init__(self, sub_dir, **kwargs): | |
"""Constructs a 20Newsgroup. | |
Args: | |
sub_dirs: str | |
**kwargs: keyword arguments forwarded to super. | |
""" | |
super(NewsgroupConfig, self).__init__(**kwargs) | |
self.sub_dir = sub_dir | |
class Newsgroups(datasets.GeneratorBasedBuilder): | |
BUILDER_CONFIGS = [ | |
NewsgroupConfig( | |
name=name, | |
description=_DESC[name.split("_")[0]], | |
sub_dir=name.split("_")[1], | |
version=datasets.Version(_VERSIONS[name.split("_")[0]]), | |
) | |
for name in _CONFIG_NAMES | |
] | |
def _info(self): | |
return datasets.DatasetInfo( | |
description=_DESCRIPTION + "\n" + self.config.description, | |
features=datasets.Features( | |
{ | |
"text": datasets.Value("string"), | |
} | |
), | |
homepage="http://qwone.com/~jason/20Newsgroups/", | |
citation=_CITATION, | |
) | |
def _split_generators(self, dl_manager): | |
url = _DOWNLOAD_URL[self.config.name.split("_")[0]] | |
path = dl_manager.download_and_extract(url) | |
if self.config.name.startswith("bydate"): | |
return [ | |
datasets.SplitGenerator( | |
name=datasets.Split.TRAIN, | |
gen_kwargs={"files_path": os.path.join(path, "20news-bydate-train", self.config.sub_dir)}, | |
), | |
datasets.SplitGenerator( | |
name=datasets.Split.TEST, | |
gen_kwargs={"files_path": os.path.join(path, "20news-bydate-test", self.config.sub_dir)}, | |
), | |
] | |
elif self.config.name.startswith("19997"): | |
return [ | |
datasets.SplitGenerator( | |
name=datasets.Split.TRAIN, | |
gen_kwargs={"files_path": os.path.join(path, "20_newsgroups", self.config.sub_dir)}, | |
) | |
] | |
else: | |
return [ | |
datasets.SplitGenerator( | |
name=datasets.Split.TRAIN, | |
gen_kwargs={"files_path": os.path.join(path, "20news-18828", self.config.sub_dir)}, | |
) | |
] | |
def _generate_examples(self, files_path): | |
"""Yields examples.""" | |
files = sorted(os.listdir(files_path)) | |
for id_, file in enumerate(files): | |
filepath = os.path.join(files_path, file) | |
with open( | |
filepath, encoding="utf8", errors="ignore" | |
) as f: # here we can ignore byte encoded tokens. we only have a very few and in most case it happens at the end of the file (kind of \FF) | |
text = f.read() | |
yield id_, {"text": text} | |