Datasets:
Tasks:
Image-to-Text
Formats:
parquet
Sub-tasks:
image-captioning
Languages:
English
Size:
1M - 10M
License:
Delete conceptual_captions.py
Browse files- conceptual_captions.py +0 -159
conceptual_captions.py
DELETED
@@ -1,159 +0,0 @@
|
|
1 |
-
# coding=utf-8
|
2 |
-
# Copyright 2020 HuggingFace Datasets Authors.
|
3 |
-
#
|
4 |
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
-
# you may not use this file except in compliance with the License.
|
6 |
-
# You may obtain a copy of the License at
|
7 |
-
#
|
8 |
-
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
-
#
|
10 |
-
# Unless required by applicable law or agreed to in writing, software
|
11 |
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
-
# See the License for the specific language governing permissions and
|
14 |
-
# limitations under the License.
|
15 |
-
|
16 |
-
# Lint as: python3
|
17 |
-
"""Conceptual Captions dataset."""
|
18 |
-
|
19 |
-
import csv
|
20 |
-
import textwrap
|
21 |
-
|
22 |
-
import datasets
|
23 |
-
|
24 |
-
|
25 |
-
_DESCRIPTION = """\
|
26 |
-
Google's Conceptual Captions dataset has more than 3 million images, paired with natural-language captions.
|
27 |
-
In contrast with the curated style of the MS-COCO images, Conceptual Captions images and their raw descriptions are harvested from the web,
|
28 |
-
and therefore represent a wider variety of styles. The raw descriptions are harvested from the Alt-text HTML attribute associated with web images.
|
29 |
-
The authors developed an automatic pipeline that extracts, filters, and transforms candidate image/caption pairs, with the goal of achieving a balance of cleanliness,
|
30 |
-
informativeness, fluency, and learnability of the resulting captions.
|
31 |
-
"""
|
32 |
-
|
33 |
-
_HOMEPAGE = "http://data.statmt.org/cc-100/"
|
34 |
-
|
35 |
-
_LICENSE = """\
|
36 |
-
The dataset may be freely used for any purpose, although acknowledgement of
|
37 |
-
Google LLC ("Google") as the data source would be appreciated. The dataset is
|
38 |
-
provided "AS IS" without any warranty, express or implied. Google disclaims all
|
39 |
-
liability for any damages, direct or indirect, resulting from the use of the
|
40 |
-
dataset.
|
41 |
-
"""
|
42 |
-
|
43 |
-
_CITATION = """\
|
44 |
-
@inproceedings{sharma2018conceptual,
|
45 |
-
title = {Conceptual Captions: A Cleaned, Hypernymed, Image Alt-text Dataset For Automatic Image Captioning},
|
46 |
-
author = {Sharma, Piyush and Ding, Nan and Goodman, Sebastian and Soricut, Radu},
|
47 |
-
booktitle = {Proceedings of ACL},
|
48 |
-
year = {2018},
|
49 |
-
}
|
50 |
-
"""
|
51 |
-
|
52 |
-
_URLS = {
|
53 |
-
"unlabeled": {
|
54 |
-
"train": "https://storage.googleapis.com/gcc-data/Train/GCC-training.tsv?_ga=2.191230122.-1896153081.1529438250",
|
55 |
-
"validation": "https://storage.googleapis.com/gcc-data/Validation/GCC-1.1.0-Validation.tsv?_ga=2.141047602.-1896153081.1529438250",
|
56 |
-
},
|
57 |
-
"labeled": {
|
58 |
-
"train": "https://storage.googleapis.com/conceptual-captions-v1-1-labels/Image_Labels_Subset_Train_GCC-Labels-training.tsv?_ga=2.234395421.-20118413.1607637118",
|
59 |
-
},
|
60 |
-
}
|
61 |
-
|
62 |
-
_DESCRIPTIONS = {
|
63 |
-
"unlabeled": textwrap.dedent(
|
64 |
-
"""\
|
65 |
-
The basic version of the dataset split into Training, Validation, and Test splits.
|
66 |
-
The Training split consists of 3,318,333 image-URL/caption pairs, with a total number of 51,201 total token types in the captions (i.e., total vocabulary).
|
67 |
-
The average number of tokens per captions is 10.3 (standard deviation of 4.5), while the median is 9.0 tokens per caption.
|
68 |
-
The Validation split consists of 15,840 image-URL/caption pairs, with similar statistics.
|
69 |
-
"""
|
70 |
-
),
|
71 |
-
"labeled": textwrap.dedent(
|
72 |
-
"""\
|
73 |
-
A subset of 2,007,090 image-URL/caption pairs from the training set with machine-generated image labels.
|
74 |
-
The image labels are obtained using the Google Cloud Vision API.
|
75 |
-
Each image label has a machine-generated identifier (MID) corresponding to the label's Google Knowledge Graph entry and a confidence score for its presence in the image.
|
76 |
-
|
77 |
-
Note: 2,007,528 is the number of image-URL/caption pairs specified by the authors, but some rows are missing labels, so they are not included.
|
78 |
-
"""
|
79 |
-
),
|
80 |
-
}
|
81 |
-
|
82 |
-
|
83 |
-
class ConceptualCaptions(datasets.GeneratorBasedBuilder):
|
84 |
-
"""Builder for Conceptual Captions dataset."""
|
85 |
-
|
86 |
-
VERSION = datasets.Version("1.0.0")
|
87 |
-
|
88 |
-
BUILDER_CONFIGS = [
|
89 |
-
datasets.BuilderConfig("unlabeled", version=VERSION, description=_DESCRIPTIONS["unlabeled"]),
|
90 |
-
datasets.BuilderConfig("labeled", version=VERSION, description=_DESCRIPTIONS["labeled"]),
|
91 |
-
]
|
92 |
-
|
93 |
-
DEFAULT_CONFIG_NAME = "unlabeled"
|
94 |
-
|
95 |
-
def _info(self):
|
96 |
-
features = datasets.Features(
|
97 |
-
{
|
98 |
-
"image_url": datasets.Value("string"),
|
99 |
-
"caption": datasets.Value("string"),
|
100 |
-
},
|
101 |
-
)
|
102 |
-
if self.config.name == "labeled":
|
103 |
-
features.update(
|
104 |
-
{
|
105 |
-
"labels": datasets.Sequence(datasets.Value("string")),
|
106 |
-
"MIDs": datasets.Sequence(datasets.Value("string")),
|
107 |
-
"confidence_scores": datasets.Sequence(datasets.Value("float64")),
|
108 |
-
}
|
109 |
-
)
|
110 |
-
return datasets.DatasetInfo(
|
111 |
-
description=_DESCRIPTION,
|
112 |
-
features=features,
|
113 |
-
supervised_keys=None,
|
114 |
-
homepage=_HOMEPAGE,
|
115 |
-
license=_LICENSE,
|
116 |
-
citation=_CITATION,
|
117 |
-
)
|
118 |
-
|
119 |
-
def _split_generators(self, dl_manager):
|
120 |
-
downloaded_data = dl_manager.download(_URLS[self.config.name])
|
121 |
-
splits = [
|
122 |
-
datasets.SplitGenerator(
|
123 |
-
name=datasets.Split.TRAIN,
|
124 |
-
gen_kwargs={"annotations_file": downloaded_data["train"]},
|
125 |
-
),
|
126 |
-
]
|
127 |
-
if self.config.name == "unlabeled":
|
128 |
-
splits += [
|
129 |
-
datasets.SplitGenerator(
|
130 |
-
name=datasets.Split.VALIDATION,
|
131 |
-
gen_kwargs={"annotations_file": downloaded_data["validation"]},
|
132 |
-
),
|
133 |
-
]
|
134 |
-
return splits
|
135 |
-
|
136 |
-
def _generate_examples(self, annotations_file):
|
137 |
-
if self.config.name == "unlabeled":
|
138 |
-
with open(annotations_file, encoding="utf-8") as f:
|
139 |
-
for i, row in enumerate(csv.reader(f, delimiter="\t")):
|
140 |
-
# Sanity check
|
141 |
-
assert len(row) == 2
|
142 |
-
caption, image_url = row
|
143 |
-
yield i, {
|
144 |
-
"image_url": image_url,
|
145 |
-
"caption": caption,
|
146 |
-
},
|
147 |
-
else:
|
148 |
-
with open(annotations_file, encoding="utf-8") as f:
|
149 |
-
for i, row in enumerate(csv.reader(f, delimiter="\t")):
|
150 |
-
caption, image_url, labels, MIDs, confidence_scores = row
|
151 |
-
if not labels:
|
152 |
-
continue
|
153 |
-
yield i, {
|
154 |
-
"image_url": image_url,
|
155 |
-
"caption": caption,
|
156 |
-
"labels": labels.split(","),
|
157 |
-
"MIDs": MIDs.split(","),
|
158 |
-
"confidence_scores": [float(x) for x in confidence_scores.split(",")],
|
159 |
-
},
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|