Gaëtan Caillaut commited on
Commit
33b386f
1 Parent(s): c35c554

Add loading script

Browse files
Files changed (1) hide show
  1. cora.py +183 -0
cora.py ADDED
@@ -0,0 +1,183 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ """TODO: Add a description here."""
16
+
17
+
18
+ from datasets import features
19
+ import pandas
20
+ import os
21
+
22
+ import datasets
23
+
24
+
25
+ # TODO: Add BibTeX citation
26
+ # Find for instance the citation on arxiv or on the dataset repo/website
27
+ _CITATION = ""
28
+
29
+ # TODO: Add description of the dataset here
30
+ # You can copy an official description
31
+ _DESCRIPTION = """\
32
+ The Cora dataset consists of 2708 scientific publications classified into one of seven classes. The citation network consists of 5429 links. Each publication in the dataset is described by a 0/1-valued word vector indicating the absence/presence of the corresponding word from the dictionary. The dictionary consists of 1433 unique words.
33
+ """
34
+
35
+ # TODO: Add a link to an official homepage for the dataset here
36
+ _HOMEPAGE = "https://graphsandnetworks.com/the-cora-dataset/"
37
+
38
+ # TODO: Add the licence for the dataset here if you can find it
39
+ _LICENSE = ""
40
+
41
+ # TODO: Add link to the official dataset URLs here
42
+ # The HuggingFace dataset library don't host the datasets but only point to the original files
43
+ # This can be an arbitrary nested dict/list of URLs (see below in `_split_generators` method)
44
+ _URLs = {
45
+ "nodes": "https://linqs-data.soe.ucsc.edu/public/lbc/cora.tgz",
46
+ "edges": "https://linqs-data.soe.ucsc.edu/public/lbc/cora.tgz"
47
+ }
48
+
49
+
50
+ # TODO: Name of the dataset usually match the script name with CamelCase instead of snake_case
51
+ class CoraDataset(datasets.GeneratorBasedBuilder):
52
+ """
53
+ This dataset is the MNIST equivalent in graph learning and we explore it somewhat explicitly here in function of other articles using again and again this dataset as a testbed."""
54
+
55
+ VERSION = datasets.Version("1.0.0")
56
+
57
+ # This is an example of a dataset with multiple configurations.
58
+ # If you don't want/need to define several sub-sets in your dataset,
59
+ # just remove the BUILDER_CONFIG_CLASS and the BUILDER_CONFIGS attributes.
60
+
61
+ # If you need to make complex sub-parts in the datasets with configurable options
62
+ # You can create your own builder configuration class to store attribute, inheriting from datasets.BuilderConfig
63
+ # BUILDER_CONFIG_CLASS = MyBuilderConfig
64
+
65
+ # You will be able to load one or the other configurations in the following list with
66
+ # data = datasets.load_dataset('my_dataset', 'first_domain')
67
+ # data = datasets.load_dataset('my_dataset', 'second_domain')
68
+ BUILDER_CONFIGS = [
69
+ datasets.BuilderConfig(name="nodes", version=VERSION,
70
+ description="The Cora dataset"),
71
+ datasets.BuilderConfig(name="edges", version=VERSION,
72
+ description="The Cora network")
73
+ ]
74
+
75
+ # It's not mandatory to have a default configuration. Just use one if it make sense.
76
+ DEFAULT_CONFIG_NAME = "nodes"
77
+
78
+ def _info(self):
79
+ # TODO: This method specifies the datasets.DatasetInfo object which contains informations and typings for the dataset
80
+ # This is the name of the configuration selected in BUILDER_CONFIGS above
81
+ if self.config.name == "nodes":
82
+ features_dict = {
83
+ f"word{i}": datasets.Value("bool")
84
+ for i in range(1433)
85
+ }
86
+ features_dict["node"] = datasets.Value("string")
87
+ features_dict["label"] = datasets.Value("string")
88
+ features_dict["neighbors"] = datasets.Sequence(
89
+ datasets.Value("string")
90
+ )
91
+ features = datasets.Features(features_dict)
92
+ elif self.config.name == "edges": # This is an example to show how to have different features for "first_domain" and "second_domain"
93
+ features = datasets.Features(
94
+ {
95
+ "source": datasets.Value("string"),
96
+ "target": datasets.Value("string")
97
+ }
98
+ )
99
+ return datasets.DatasetInfo(
100
+ # This is the description that will appear on the datasets page.
101
+ description=_DESCRIPTION,
102
+ # This defines the different columns of the dataset and their types
103
+ # Here we define them above because they are different between the two configurations
104
+ features=features,
105
+ # If there's a common (input, target) tuple from the features,
106
+ # specify them here. They'll be used if as_supervised=True in
107
+ # builder.as_dataset.
108
+ supervised_keys=None,
109
+ # Homepage of the dataset for documentation
110
+ homepage=_HOMEPAGE,
111
+ # License for the dataset if available
112
+ license=_LICENSE,
113
+ # Citation for the dataset
114
+ citation=_CITATION,
115
+ )
116
+
117
+ def _split_generators(self, dl_manager):
118
+ """Returns SplitGenerators."""
119
+ # TODO: This method is tasked with downloading/extracting the data and defining the splits depending on the configuration
120
+ # If several configurations are possible (listed in BUILDER_CONFIGS), the configuration selected by the user is in self.config.name
121
+
122
+ # dl_manager is a datasets.download.DownloadManager that can be used to download and extract URLs
123
+ # It can accept any type or nested list/dict and will give back the same structure with the url replaced with path to local files.
124
+ # By default the archives will be extracted and a path to a cached folder where they are extracted is returned instead of the archive
125
+ my_urls = _URLs[self.config.name]
126
+ data_dir = dl_manager.download_and_extract(my_urls)
127
+ return [
128
+ datasets.SplitGenerator(
129
+ name=datasets.Split.TRAIN,
130
+ # These kwargs will be passed to _generate_examples
131
+ gen_kwargs={
132
+ "edges_path": os.path.join(data_dir, "cora", "cora.cites"),
133
+ "nodes_path": os.path.join(data_dir, "cora", "cora.content"),
134
+ "split": "train"
135
+ }
136
+ )
137
+ ]
138
+
139
+ def _generate_examples(
140
+ # method parameters are unpacked from `gen_kwargs` as given in `_split_generators`
141
+ self, edges_path, nodes_path, split
142
+ ):
143
+ """ Yields examples as (key, example) tuples. """
144
+ # This method handles input defined in _split_generators to yield (key, example) tuples from the dataset.
145
+ # The `key` is here for legacy reason (tfds) and is not important in itself.
146
+
147
+ if self.config.name == "nodes":
148
+ neighbors = {}
149
+ with open(edges_path, "rt", encoding="UTF-8") as f:
150
+ for line in f:
151
+ target, src = line.strip().split()
152
+ for n in (target, src):
153
+ if n not in neighbors:
154
+ neighbors[n] = []
155
+ neighbors[src].append(target)
156
+
157
+ colnames = ["node"] + [f"word{i}" for i in range(1433)] + ["label"]
158
+ dtypes = [str] + [bool] * 1433 + [str]
159
+ nodes = pandas.read_csv(
160
+ nodes_path,
161
+ sep="\t",
162
+ header=None,
163
+ names=colnames,
164
+ dtype=dict(zip(colnames, dtypes))
165
+ )
166
+ col2idx = {col: i for i, col in enumerate(list(nodes))}
167
+ for id, row in enumerate(nodes.itertuples(index=False, name=None)):
168
+ n = row[col2idx["node"]]
169
+ features = {
170
+ "node": n,
171
+ "label": row[col2idx["label"]],
172
+ "neighbors": neighbors[n]
173
+ }
174
+ for i in range(1433):
175
+ feature_name = f"word{i}"
176
+ features[feature_name] = row[col2idx[feature_name]]
177
+ yield id, features
178
+
179
+ elif self.config.name == "edges":
180
+ with open(edges_path, "rt", encoding="UTF-8") as f:
181
+ for id, line in enumerate(f):
182
+ target, src = line.strip().split()
183
+ yield id, {"source": src, "target": target}