test_dataset / peg_transfer_fjw.py
fujiawei0724's picture
Upload peg_transfer_fjw.py
dcb4bf3 verified
import os
import time
from turtle import pos
import numpy as np
import pybullet as p
from surrol.const import ASSET_DIR_PATH
from surrol.tasks.psm_env import PsmEnv, goal_distance
from surrol.utils.pybullet_utils import get_link_pose, wrap_angle
class PegTransfer(PsmEnv):
POSE_BOARD = ((0.55, 0, 0.6861), (0, 0, 0)) # 0.675 + 0.011 + 0.001
WORKSPACE_LIMITS = ((0.50, 0.60), (-0.05, 0.05), (0.686, 0.745))
SCALING = 5.
# TODO: grasp is sometimes not stable; check how to fix it
def _env_setup(self):
super(PegTransfer, self)._env_setup()
self.has_object = True
# robot
workspace_limits = self.workspace_limits1
pos = (workspace_limits[0][0],
workspace_limits[1][1],
workspace_limits[2][1])
orn = (0.5, 0.5, -0.5, -0.5)
joint_positions = self.psm1.inverse_kinematics((pos, orn), self.psm1.EEF_LINK_INDEX)
self.psm1.reset_joint(joint_positions)
self.block_gripper = False
# peg board
obj_id = p.loadURDF(os.path.join(ASSET_DIR_PATH, 'peg_board/peg_board.urdf'),
np.array(self.POSE_BOARD[0]) * self.SCALING,
p.getQuaternionFromEuler(self.POSE_BOARD[1]),
globalScaling=self.SCALING)
self.obj_ids['fixed'].append(obj_id) # 1
self._pegs = np.arange(12)
np.random.shuffle(self._pegs[:6])
np.random.shuffle(self._pegs[6: 12])
#self._pegs = [ 1 , 2 , 3 , 4 , 5 , 0 , 7 ,11 , 9 ,10 , 6 , 8]
# blocks
num_blocks = 4
# for i in range(6, 6 + num_blocks):
for i in self._pegs[6: 6 + num_blocks]:
pos, orn = get_link_pose(self.obj_ids['fixed'][1], i)
yaw = (np.random.rand() - 0.5) * np.deg2rad(60)
obj_id = p.loadURDF(os.path.join(ASSET_DIR_PATH, 'block/block.urdf'),
np.array(pos) + np.array([0, 0, 0.03]),
p.getQuaternionFromEuler((0, 0, yaw)),
useFixedBase=False,
globalScaling=self.SCALING)
self.obj_ids['rigid'].append(obj_id)
self._blocks = np.array(self.obj_ids['rigid'][-num_blocks:])
np.random.shuffle(self._blocks)
#self._blocks = [5,8,7,6]
for obj_id in self._blocks[:1]:
# change color to red
p.changeVisualShape(obj_id, -1, rgbaColor=(255 / 255, 69 / 255, 58 / 255, 1))
self.obj_id, self.obj_link1 = self._blocks[0], 1
#print(self._pegs, self.obj_id, self._blocks)
def _is_success(self, achieved_goal, desired_goal):
""" Indicates whether or not the achieved goal successfully achieved the desired goal.
"""
# TODO: may need to tune parameters
return np.logical_and(
goal_distance(achieved_goal[..., :2], desired_goal[..., :2]) < 5e-3 * self.SCALING,
np.abs(achieved_goal[..., -1] - desired_goal[..., -1]) < 4e-3 * self.SCALING
).astype(np.float32)
def _sample_goal(self) -> np.ndarray:
""" Samples a new goal and returns it.
"""
goal = np.array(get_link_pose(self.obj_ids['fixed'][1], self._pegs[0])[0])
return goal.copy()
def _sample_goal_callback(self):
""" Define waypoints
"""
super()._sample_goal_callback()
self._waypoints = [None, None, None, None, None, None, None] # six waypoints
pos_obj, orn_obj = get_link_pose(self.obj_id, self.obj_link1)
orn = p.getEulerFromQuaternion(orn_obj)
orn_eef = get_link_pose(self.psm1.body, self.psm1.EEF_LINK_INDEX)[1]
orn_eef = p.getEulerFromQuaternion(orn_eef)
yaw = orn[2] if abs(wrap_angle(orn[2] - orn_eef[2])) < abs(wrap_angle(orn[2] + np.pi - orn_eef[2])) \
else wrap_angle(orn[2] + np.pi) # minimize the delta yaw
self._waypoints[0] = np.array([pos_obj[0], pos_obj[1],
pos_obj[2] + 0.045 * self.SCALING, yaw, 0.5]) # above object
self._waypoints[1] = np.array([pos_obj[0], pos_obj[1],
pos_obj[2] + (0.003 + 0.0102) * self.SCALING, yaw, 0.5]) # approach
self._waypoints[2] = np.array([pos_obj[0], pos_obj[1],
pos_obj[2] + (0.003 + 0.0102) * self.SCALING, yaw, -0.5]) # grasp
self._waypoints[3] = np.array([pos_obj[0], pos_obj[1],
pos_obj[2] + 0.045 * self.SCALING, yaw, -0.5]) # lift up
# pos_peg = get_link_pose(self.obj_ids['fixed'][1], self.obj_id - np.min(self._blocks) + 6)[0] # 6 pegs
pos_peg = get_link_pose(self.obj_ids['fixed'][1],
self._pegs[self.obj_id - np.min(self._blocks) + 6])[0] # 6 pegs
pos_place = [self.goal[0] + pos_obj[0] - pos_peg[0],
self.goal[1] + pos_obj[1] - pos_peg[1], self._waypoints[0][2]] # consider offset
self._waypoints[4] = np.array([pos_place[0], pos_place[1], pos_place[2], yaw, -0.5]) # above goal
self._waypoints[5] = np.array([pos_place[0], pos_place[1], self._waypoints[2][2], yaw, -0.5]) # release
#self._waypoints[5] = np.array([pos_place[0], pos_place[1], pos_place[2], yaw, 0.5]) # release
self._waypoints[6] = np.array([pos_place[0], pos_place[1], self._waypoints[2][2], yaw, 0.5]) # release
self.waypoints = self._waypoints.copy()
def _meet_contact_constraint_requirement(self):
# add a contact constraint to the grasped block to make it stable
pose = get_link_pose(self.obj_id, -1)
return pose[0][2] > self.goal[2] + 0.01 * self.SCALING
def get_oracle_action(self, obs) -> np.ndarray:
"""
Define a human expert strategy
"""
# six waypoints executed in sequential order
action = np.zeros(5)
for i, waypoint in enumerate(self._waypoints):
if waypoint is None:
continue
# if i == 3:
# delta_pos = (waypoint[:3] - obs['achieved_goal'][:3]) / 0.01 / self.SCALING
# else:
delta_pos = (waypoint[:3] - obs['observation'][:3]) / 0.01 / self.SCALING
delta_yaw = (waypoint[3] - obs['observation'][5]).clip(-0.4, 0.4)
if np.abs(delta_pos).max() > 1:
delta_pos /= np.abs(delta_pos).max()
scale_factor = 0.7
delta_pos *= scale_factor
action = np.array([delta_pos[0], delta_pos[1], delta_pos[2], delta_yaw, waypoint[4]])
if np.linalg.norm(delta_pos) * 0.01 / scale_factor < 2e-3 and np.abs(delta_yaw) < np.deg2rad(2.):
self._waypoints[i] = None
break
return action
def subgoal_grasp(self):
scale_factor = 0.7
# robot_state
robot_state = self._get_robot_state(idx=0)
pos_robot = robot_state[:3]
yaw_robot = robot_state[5]
orn_eef = get_link_pose(self.psm1.body, self.psm1.EEF_LINK_INDEX)[1]
orn_eef = p.getEulerFromQuaternion(orn_eef)
yaw_angle = robot_state[-1]
pos_tip = np.array(get_link_pose(self.psm1.body, self.psm1.TIP_LINK_INDEX)[0])
# object pose
pos_obj, orn_obj = get_link_pose(self.obj_id, self.obj_link1)
orn = p.getEulerFromQuaternion(orn_obj)
yaw_grasp = orn[2] if abs(wrap_angle(orn[2] - orn_eef[2])) < abs(wrap_angle(orn[2] + np.pi - orn_eef[2])) \
else wrap_angle(orn[2] + np.pi) # minimize the delta yaw
pos_grasp = np.array([pos_obj[0], pos_obj[1],
pos_obj[2]]) # grasp
# is_success
is_grasp = yaw_angle < 0.2 # TODO: fine-tune
is_success = self._is_success(pos_grasp, pos_tip) #and (is_grasp or self._meet_contact_constraint_requirement())
return is_success.astype(np.float32)
def is_success(self, achieved_goal, desired_goal):
""" Indicates whether or not the achieved goal successfully achieved the desired goal.
"""
return self._is_success(achieved_goal, desired_goal)
@property
def pegs(self):
return self._pegs
if __name__ == "__main__":
env = PegTransfer(render_mode='human') # create one process and corresponding env
env.test()
env.close()
time.sleep(2)