|
--- |
|
dataset_info: |
|
features: |
|
- name: wikicaps_id |
|
dtype: int64 |
|
- name: wikimedia_file |
|
dtype: string |
|
- name: caption |
|
dtype: string |
|
- name: tokens |
|
sequence: string |
|
- name: num_tok |
|
dtype: int64 |
|
- name: sentence_spans |
|
sequence: string |
|
- name: sentence_languages |
|
sequence: string |
|
- name: num_sent |
|
dtype: int64 |
|
- name: min_sent_len |
|
dtype: int64 |
|
- name: max_sent_len |
|
dtype: int64 |
|
- name: num_ne |
|
dtype: int64 |
|
- name: ne_types |
|
sequence: string |
|
- name: ne_texts |
|
sequence: string |
|
- name: num_nouns |
|
dtype: int64 |
|
- name: num_propn |
|
dtype: int64 |
|
- name: num_conj |
|
dtype: int64 |
|
- name: num_verb |
|
dtype: int64 |
|
- name: num_sym |
|
dtype: int64 |
|
- name: num_num |
|
dtype: int64 |
|
- name: num_adp |
|
dtype: int64 |
|
- name: num_adj |
|
dtype: int64 |
|
- name: ratio_ne_tok |
|
dtype: float64 |
|
- name: ratio_noun_tok |
|
dtype: float64 |
|
- name: ratio_propn_tok |
|
dtype: float64 |
|
- name: ratio_all_noun_tok |
|
dtype: float64 |
|
- name: image_path |
|
dtype: string |
|
splits: |
|
- name: train |
|
num_bytes: 398344229 |
|
num_examples: 295886 |
|
- name: test |
|
num_bytes: 6727191 |
|
num_examples: 5000 |
|
download_size: 183918204 |
|
dataset_size: 405071420 |
|
configs: |
|
- config_name: default |
|
data_files: |
|
- split: train |
|
path: data/train-* |
|
- split: test |
|
path: data/test-* |
|
license: cc-by-sa-4.0 |
|
language: |
|
- en |
|
pretty_name: WISMIR 3 |
|
size_categories: |
|
- 100K<n<1M |
|
--- |
|
# WISMIR3: A Multi-Modal Dataset to Challenge Text-Image Retrieval Approaches |
|
|
|
This repository holds the WISMIR3 dataset. For more information, please refer to the paper: |
|
|
|
```bibtex |
|
@inproceedings{ |
|
schneider2024wismir, |
|
title={{WISMIR}3: A Multi-Modal Dataset to Challenge Text-Image Retrieval Approaches}, |
|
author={Florian Schneider and Chris Biemann}, |
|
booktitle={3rd Workshop on Advances in Language and Vision Research (ALVR)}, |
|
year={2024}, |
|
url={https://openreview.net/forum?id=Q93yqpfECQ} |
|
} |
|
``` |
|
|
|
## Columns |
|
|
|
| ColumnId | Description | Datatype | |
|
|-------------------|---------------------------------------------------------------------------|-----------| |
|
| wikicaps_id | ID (line number) of the row in the original WikiCaps Dataset __img_en__ | int | |
|
| wikimedia_file | Wikimedia File ID of the Image associated with the Caption | str | |
|
| caption | Caption of the Image | str | |
|
| image_path | Local path to the (downloaded) image | str | |
|
| num_tok | Number of Tokens in the caption | int | |
|
| num_sent | Number of Sentences in the caption | int | |
|
| min_sent_len | Minimum number of Tokens in the Sentences of the caption | int | |
|
| max_sent_len | Maximum number of Tokens in the Sentences of the caption | int | |
|
| num_ne | Number of Named Entities in the caption | int | |
|
| num_nouns | Number of Tokens with NOUN POS Tag | int | |
|
| num_propn | Number of Tokens with PROPN POS Tag | int | |
|
| num_conj | Number of Tokens with CONJ POS Tag | int | |
|
| num_verb | Number of Tokens with VERB POS Tag | int | |
|
| num_sym | Number of Tokens with SYM POS Tag | int | |
|
| num_num | Number of Tokens with NUM POS Tag | int | |
|
| num_adp | Number of Tokens with ADP POS Tag | int | |
|
| num_adj | Number of Tokens with ADJ POS Tag | int | |
|
| ratio_ne_tok | Ratio of tokens associated with Named Entities vs all Tokens | int | |
|
| ratio_noun_tok | Ratio of tokens tagged as NOUN vs all Tokens | int | |
|
| ratio_propn_tok | Ratio of tokens tagged as PROPN vs all Tokens | int | |
|
| ratio_all_noun_tok| Ratio of tokens tagged as PROPN or NOUN vs all Tokens | int | |
|
| fk_re_score | Flesch-Kincaid Reading Ease score of the Caption *** | int | |
|
| fk_gl_score | Flesch-Kincaid Grade Level score of the Caption *** | int | |
|
| dc_score | Dale-Chall score of the Caption *** | int | |
|
| ne_texts | Surface form of detected NamedEntities | List[str] | |
|
| ne_types | Types of the detected NamedEntities (PER, LOC, GPE, etc.) | List[str] | |
|
|
|
*** |
|
See [https://en.wikipedia.org/wiki/List_of_readability_tests_and_formulas](https://en.wikipedia.org/wiki/List_of_readability_tests_and_formulas) for more information about |
|
Readability Scores |
|
|
|
## WikiCaps publication |
|
WISMIR3 is based on the WikiCaps dataset. For more information about the WikiCaps, see [https://www.cl.uni-heidelberg.de/statnlpgroup/wikicaps/](https://www.cl.uni-heidelberg.de/statnlpgroup/wikicaps/) |
|
|
|
```bibtex |
|
@inproceedings{schamoni-etal-2018-dataset, |
|
title = "A Dataset and Reranking Method for Multimodal {MT} of User-Generated Image Captions", |
|
author = "Schamoni, Shigehiko and |
|
Hitschler, Julian and |
|
Riezler, Stefan", |
|
editor = "Cherry, Colin and |
|
Neubig, Graham", |
|
booktitle = "Proceedings of the 13th Conference of the Association for Machine Translation in the {A}mericas (Volume 1: Research Track)", |
|
month = mar, |
|
year = "2018", |
|
address = "Boston, MA", |
|
publisher = "Association for Machine Translation in the Americas", |
|
url = "https://aclanthology.org/W18-1814", |
|
pages = "140--153", |
|
} |
|
|
|
``` |
|
|