parquet-converter commited on
Commit
247cd49
1 Parent(s): 9281891

Update parquet files

Browse files
.gitattributes DELETED
@@ -1,27 +0,0 @@
1
- *.7z filter=lfs diff=lfs merge=lfs -text
2
- *.arrow filter=lfs diff=lfs merge=lfs -text
3
- *.bin filter=lfs diff=lfs merge=lfs -text
4
- *.bin.* filter=lfs diff=lfs merge=lfs -text
5
- *.bz2 filter=lfs diff=lfs merge=lfs -text
6
- *.ftz filter=lfs diff=lfs merge=lfs -text
7
- *.gz filter=lfs diff=lfs merge=lfs -text
8
- *.h5 filter=lfs diff=lfs merge=lfs -text
9
- *.joblib filter=lfs diff=lfs merge=lfs -text
10
- *.lfs.* filter=lfs diff=lfs merge=lfs -text
11
- *.model filter=lfs diff=lfs merge=lfs -text
12
- *.msgpack filter=lfs diff=lfs merge=lfs -text
13
- *.onnx filter=lfs diff=lfs merge=lfs -text
14
- *.ot filter=lfs diff=lfs merge=lfs -text
15
- *.parquet filter=lfs diff=lfs merge=lfs -text
16
- *.pb filter=lfs diff=lfs merge=lfs -text
17
- *.pt filter=lfs diff=lfs merge=lfs -text
18
- *.pth filter=lfs diff=lfs merge=lfs -text
19
- *.rar filter=lfs diff=lfs merge=lfs -text
20
- saved_model/**/* filter=lfs diff=lfs merge=lfs -text
21
- *.tar.* filter=lfs diff=lfs merge=lfs -text
22
- *.tflite filter=lfs diff=lfs merge=lfs -text
23
- *.tgz filter=lfs diff=lfs merge=lfs -text
24
- *.xz filter=lfs diff=lfs merge=lfs -text
25
- *.zip filter=lfs diff=lfs merge=lfs -text
26
- *.zstandard filter=lfs diff=lfs merge=lfs -text
27
- *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
README.md DELETED
@@ -1,254 +0,0 @@
1
- ---
2
- language:
3
- - en
4
- paperswithcode_id: null
5
- pretty_name: YelpPolarity
6
- train-eval-index:
7
- - config: plain_text
8
- task: text-classification
9
- task_id: binary_classification
10
- splits:
11
- train_split: train
12
- eval_split: test
13
- col_mapping:
14
- text: text
15
- label: target
16
- metrics:
17
- - type: accuracy
18
- name: Accuracy
19
- - type: f1
20
- name: F1 binary
21
- args:
22
- average: binary
23
- - type: precision
24
- name: Precision macro
25
- args:
26
- average: macro
27
- - type: precision
28
- name: Precision micro
29
- args:
30
- average: micro
31
- - type: precision
32
- name: Precision weighted
33
- args:
34
- average: weighted
35
- - type: recall
36
- name: Recall macro
37
- args:
38
- average: macro
39
- - type: recall
40
- name: Recall micro
41
- args:
42
- average: micro
43
- - type: recall
44
- name: Recall weighted
45
- args:
46
- average: weighted
47
- dataset_info:
48
- features:
49
- - name: text
50
- dtype: string
51
- - name: label
52
- dtype:
53
- class_label:
54
- names:
55
- 0: '1'
56
- 1: '2'
57
- config_name: plain_text
58
- splits:
59
- - name: train
60
- num_bytes: 413558837
61
- num_examples: 560000
62
- - name: test
63
- num_bytes: 27962097
64
- num_examples: 38000
65
- download_size: 166373201
66
- dataset_size: 441520934
67
- ---
68
-
69
- # Dataset Card for "yelp_polarity"
70
-
71
- ## Table of Contents
72
- - [Dataset Description](#dataset-description)
73
- - [Dataset Summary](#dataset-summary)
74
- - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
75
- - [Languages](#languages)
76
- - [Dataset Structure](#dataset-structure)
77
- - [Data Instances](#data-instances)
78
- - [Data Fields](#data-fields)
79
- - [Data Splits](#data-splits)
80
- - [Dataset Creation](#dataset-creation)
81
- - [Curation Rationale](#curation-rationale)
82
- - [Source Data](#source-data)
83
- - [Annotations](#annotations)
84
- - [Personal and Sensitive Information](#personal-and-sensitive-information)
85
- - [Considerations for Using the Data](#considerations-for-using-the-data)
86
- - [Social Impact of Dataset](#social-impact-of-dataset)
87
- - [Discussion of Biases](#discussion-of-biases)
88
- - [Other Known Limitations](#other-known-limitations)
89
- - [Additional Information](#additional-information)
90
- - [Dataset Curators](#dataset-curators)
91
- - [Licensing Information](#licensing-information)
92
- - [Citation Information](#citation-information)
93
- - [Contributions](#contributions)
94
-
95
- ## Dataset Description
96
-
97
- - **Homepage:** [https://course.fast.ai/datasets](https://course.fast.ai/datasets)
98
- - **Repository:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
99
- - **Paper:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
100
- - **Point of Contact:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
101
- - **Size of downloaded dataset files:** 158.67 MB
102
- - **Size of the generated dataset:** 421.28 MB
103
- - **Total amount of disk used:** 579.95 MB
104
-
105
- ### Dataset Summary
106
-
107
- Large Yelp Review Dataset.
108
- This is a dataset for binary sentiment classification. We provide a set of 560,000 highly polar yelp reviews for training, and 38,000 for testing.
109
- ORIGIN
110
- The Yelp reviews dataset consists of reviews from Yelp. It is extracted
111
- from the Yelp Dataset Challenge 2015 data. For more information, please
112
- refer to http://www.yelp.com/dataset_challenge
113
-
114
- The Yelp reviews polarity dataset is constructed by
115
- Xiang Zhang (xiang.zhang@nyu.edu) from the above dataset.
116
- It is first used as a text classification benchmark in the following paper:
117
- Xiang Zhang, Junbo Zhao, Yann LeCun. Character-level Convolutional Networks
118
- for Text Classification. Advances in Neural Information Processing Systems 28
119
- (NIPS 2015).
120
-
121
- DESCRIPTION
122
-
123
- The Yelp reviews polarity dataset is constructed by considering stars 1 and 2
124
- negative, and 3 and 4 positive. For each polarity 280,000 training samples and
125
- 19,000 testing samples are take randomly. In total there are 560,000 trainig
126
- samples and 38,000 testing samples. Negative polarity is class 1,
127
- and positive class 2.
128
-
129
- The files train.csv and test.csv contain all the training samples as
130
- comma-sparated values. There are 2 columns in them, corresponding to class
131
- index (1 and 2) and review text. The review texts are escaped using double
132
- quotes ("), and any internal double quote is escaped by 2 double quotes ("").
133
- New lines are escaped by a backslash followed with an "n" character,
134
- that is "
135
- ".
136
-
137
- ### Supported Tasks and Leaderboards
138
-
139
- [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
140
-
141
- ### Languages
142
-
143
- [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
144
-
145
- ## Dataset Structure
146
-
147
- ### Data Instances
148
-
149
- #### plain_text
150
-
151
- - **Size of downloaded dataset files:** 158.67 MB
152
- - **Size of the generated dataset:** 421.28 MB
153
- - **Total amount of disk used:** 579.95 MB
154
-
155
- An example of 'train' looks as follows.
156
- ```
157
- This example was too long and was cropped:
158
-
159
- {
160
- "label": 0,
161
- "text": "\"Unfortunately, the frustration of being Dr. Goldberg's patient is a repeat of the experience I've had with so many other doctor..."
162
- }
163
- ```
164
-
165
- ### Data Fields
166
-
167
- The data fields are the same among all splits.
168
-
169
- #### plain_text
170
- - `text`: a `string` feature.
171
- - `label`: a classification label, with possible values including `1` (0), `2` (1).
172
-
173
- ### Data Splits
174
-
175
- | name |train |test |
176
- |----------|-----:|----:|
177
- |plain_text|560000|38000|
178
-
179
- ## Dataset Creation
180
-
181
- ### Curation Rationale
182
-
183
- [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
184
-
185
- ### Source Data
186
-
187
- #### Initial Data Collection and Normalization
188
-
189
- [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
190
-
191
- #### Who are the source language producers?
192
-
193
- [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
194
-
195
- ### Annotations
196
-
197
- #### Annotation process
198
-
199
- [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
200
-
201
- #### Who are the annotators?
202
-
203
- [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
204
-
205
- ### Personal and Sensitive Information
206
-
207
- [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
208
-
209
- ## Considerations for Using the Data
210
-
211
- ### Social Impact of Dataset
212
-
213
- [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
214
-
215
- ### Discussion of Biases
216
-
217
- [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
218
-
219
- ### Other Known Limitations
220
-
221
- [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
222
-
223
- ## Additional Information
224
-
225
- ### Dataset Curators
226
-
227
- [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
228
-
229
- ### Licensing Information
230
-
231
- [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
232
-
233
- ### Citation Information
234
-
235
- ```
236
- @article{zhangCharacterlevelConvolutionalNetworks2015,
237
- archivePrefix = {arXiv},
238
- eprinttype = {arxiv},
239
- eprint = {1509.01626},
240
- primaryClass = {cs},
241
- title = {Character-Level {{Convolutional Networks}} for {{Text Classification}}},
242
- abstract = {This article offers an empirical exploration on the use of character-level convolutional networks (ConvNets) for text classification. We constructed several large-scale datasets to show that character-level convolutional networks could achieve state-of-the-art or competitive results. Comparisons are offered against traditional models such as bag of words, n-grams and their TFIDF variants, and deep learning models such as word-based ConvNets and recurrent neural networks.},
243
- journal = {arXiv:1509.01626 [cs]},
244
- author = {Zhang, Xiang and Zhao, Junbo and LeCun, Yann},
245
- month = sep,
246
- year = {2015},
247
- }
248
-
249
- ```
250
-
251
-
252
- ### Contributions
253
-
254
- Thanks to [@patrickvonplaten](https://github.com/patrickvonplaten), [@lewtun](https://github.com/lewtun), [@mariamabarham](https://github.com/mariamabarham), [@thomwolf](https://github.com/thomwolf), [@julien-c](https://github.com/julien-c) for adding this dataset.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dataset_infos.json DELETED
@@ -1 +0,0 @@
1
- {"plain_text": {"description": "Large Yelp Review Dataset.\nThis is a dataset for binary sentiment classification. We provide a set of 560,000 highly polar yelp reviews for training, and 38,000 for testing. \nORIGIN\nThe Yelp reviews dataset consists of reviews from Yelp. It is extracted\nfrom the Yelp Dataset Challenge 2015 data. For more information, please\nrefer to http://www.yelp.com/dataset_challenge\n\nThe Yelp reviews polarity dataset is constructed by\nXiang Zhang (xiang.zhang@nyu.edu) from the above dataset.\nIt is first used as a text classification benchmark in the following paper:\nXiang Zhang, Junbo Zhao, Yann LeCun. Character-level Convolutional Networks\nfor Text Classification. Advances in Neural Information Processing Systems 28\n(NIPS 2015).\n\n\nDESCRIPTION\n\nThe Yelp reviews polarity dataset is constructed by considering stars 1 and 2\nnegative, and 3 and 4 positive. For each polarity 280,000 training samples and\n19,000 testing samples are take randomly. In total there are 560,000 trainig\nsamples and 38,000 testing samples. Negative polarity is class 1,\nand positive class 2.\n\nThe files train.csv and test.csv contain all the training samples as\ncomma-sparated values. There are 2 columns in them, corresponding to class\nindex (1 and 2) and review text. The review texts are escaped using double\nquotes (\"), and any internal double quote is escaped by 2 double quotes (\"\").\nNew lines are escaped by a backslash followed with an \"n\" character,\nthat is \"\n\".\n", "citation": "@article{zhangCharacterlevelConvolutionalNetworks2015,\n archivePrefix = {arXiv},\n eprinttype = {arxiv},\n eprint = {1509.01626},\n primaryClass = {cs},\n title = {Character-Level {{Convolutional Networks}} for {{Text Classification}}},\n abstract = {This article offers an empirical exploration on the use of character-level convolutional networks (ConvNets) for text classification. We constructed several large-scale datasets to show that character-level convolutional networks could achieve state-of-the-art or competitive results. Comparisons are offered against traditional models such as bag of words, n-grams and their TFIDF variants, and deep learning models such as word-based ConvNets and recurrent neural networks.},\n journal = {arXiv:1509.01626 [cs]},\n author = {Zhang, Xiang and Zhao, Junbo and LeCun, Yann},\n month = sep,\n year = {2015},\n}\n\n", "homepage": "https://course.fast.ai/datasets", "license": "", "features": {"text": {"dtype": "string", "id": null, "_type": "Value"}, "label": {"num_classes": 2, "names": ["1", "2"], "id": null, "_type": "ClassLabel"}}, "post_processed": null, "supervised_keys": null, "task_templates": [{"task": "text-classification", "text_column": "text", "label_column": "label"}], "builder_name": "yelp_polarity", "config_name": "plain_text", "version": {"version_str": "1.0.0", "description": "", "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 413558837, "num_examples": 560000, "dataset_name": "yelp_polarity"}, "test": {"name": "test", "num_bytes": 27962097, "num_examples": 38000, "dataset_name": "yelp_polarity"}}, "download_checksums": {"https://s3.amazonaws.com/fast-ai-nlp/yelp_review_polarity_csv.tgz": {"num_bytes": 166373201, "checksum": "528f22e286cad085948acbc3bea7e58188416546b0e364d0ae4ca0ce666abe35"}}, "download_size": 166373201, "post_processing_size": null, "dataset_size": 441520934, "size_in_bytes": 607894135}}
 
 
plain_text/yelp_polarity-test.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7bda66b42b8e0c36f9a7872a034975a0f012d6aa29b6921c32be5fdc7b5a7383
3
+ size 17701457
plain_text/yelp_polarity-train.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6754c3aeca189120e87d1321f7c589918dfa7146782bd87058e353381bf1c8c8
3
+ size 256101806
yelp_polarity.py DELETED
@@ -1,162 +0,0 @@
1
- # coding=utf-8
2
- # Copyright 2020 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors.
3
- #
4
- # Licensed under the Apache License, Version 2.0 (the "License");
5
- # you may not use this file except in compliance with the License.
6
- # You may obtain a copy of the License at
7
- #
8
- # http://www.apache.org/licenses/LICENSE-2.0
9
- #
10
- # Unless required by applicable law or agreed to in writing, software
11
- # distributed under the License is distributed on an "AS IS" BASIS,
12
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
- # See the License for the specific language governing permissions and
14
- # limitations under the License.
15
-
16
- # Lint as: python3
17
- # Copyright 2019 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors.
18
- #
19
- # Licensed under the Apache License, Version 2.0 (the "License");
20
- # you may not use this file except in compliance with the License.
21
- # You may obtain a copy of the License at
22
- #
23
- # http://www.apache.org/licenses/LICENSE-2.0
24
- #
25
- # Unless required by applicable law or agreed to in writing, software
26
- # distributed under the License is distributed on an "AS IS" BASIS,
27
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
28
- # See the License for the specific language governing permissions and
29
- # limitations under the License.
30
- """Yelp Polarity Reviews dataset."""
31
-
32
-
33
- import datasets
34
- from datasets.tasks import TextClassification
35
-
36
-
37
- _DESCRIPTION = """\
38
- Large Yelp Review Dataset.
39
- This is a dataset for binary sentiment classification. \
40
- We provide a set of 560,000 highly polar yelp reviews for training, and 38,000 for testing. \
41
-
42
- ORIGIN
43
- The Yelp reviews dataset consists of reviews from Yelp. It is extracted
44
- from the Yelp Dataset Challenge 2015 data. For more information, please
45
- refer to http://www.yelp.com/dataset_challenge
46
-
47
- The Yelp reviews polarity dataset is constructed by
48
- Xiang Zhang (xiang.zhang@nyu.edu) from the above dataset.
49
- It is first used as a text classification benchmark in the following paper:
50
- Xiang Zhang, Junbo Zhao, Yann LeCun. Character-level Convolutional Networks
51
- for Text Classification. Advances in Neural Information Processing Systems 28
52
- (NIPS 2015).
53
-
54
-
55
- DESCRIPTION
56
-
57
- The Yelp reviews polarity dataset is constructed by considering stars 1 and 2
58
- negative, and 3 and 4 positive. For each polarity 280,000 training samples and
59
- 19,000 testing samples are take randomly. In total there are 560,000 trainig
60
- samples and 38,000 testing samples. Negative polarity is class 1,
61
- and positive class 2.
62
-
63
- The files train.csv and test.csv contain all the training samples as
64
- comma-sparated values. There are 2 columns in them, corresponding to class
65
- index (1 and 2) and review text. The review texts are escaped using double
66
- quotes ("), and any internal double quote is escaped by 2 double quotes ("").
67
- New lines are escaped by a backslash followed with an "n" character,
68
- that is "\n".
69
- """
70
-
71
- _CITATION = """\
72
- @article{zhangCharacterlevelConvolutionalNetworks2015,
73
- archivePrefix = {arXiv},
74
- eprinttype = {arxiv},
75
- eprint = {1509.01626},
76
- primaryClass = {cs},
77
- title = {Character-Level {{Convolutional Networks}} for {{Text Classification}}},
78
- abstract = {This article offers an empirical exploration on the use of character-level convolutional networks (ConvNets) for text classification. We constructed several large-scale datasets to show that character-level convolutional networks could achieve state-of-the-art or competitive results. Comparisons are offered against traditional models such as bag of words, n-grams and their TFIDF variants, and deep learning models such as word-based ConvNets and recurrent neural networks.},
79
- journal = {arXiv:1509.01626 [cs]},
80
- author = {Zhang, Xiang and Zhao, Junbo and LeCun, Yann},
81
- month = sep,
82
- year = {2015},
83
- }
84
-
85
- """
86
-
87
- _DOWNLOAD_URL = "https://s3.amazonaws.com/fast-ai-nlp/yelp_review_polarity_csv.tgz"
88
-
89
-
90
- class YelpPolarityReviewsConfig(datasets.BuilderConfig):
91
- """BuilderConfig for YelpPolarityReviews."""
92
-
93
- def __init__(self, **kwargs):
94
- """BuilderConfig for YelpPolarityReviews.
95
-
96
- Args:
97
-
98
- **kwargs: keyword arguments forwarded to super.
99
- """
100
- super(YelpPolarityReviewsConfig, self).__init__(version=datasets.Version("1.0.0", ""), **kwargs)
101
-
102
-
103
- class YelpPolarity(datasets.GeneratorBasedBuilder):
104
- """Yelp Polarity reviews dataset."""
105
-
106
- BUILDER_CONFIGS = [
107
- YelpPolarityReviewsConfig(
108
- name="plain_text",
109
- description="Plain text",
110
- )
111
- ]
112
-
113
- def _info(self):
114
- return datasets.DatasetInfo(
115
- description=_DESCRIPTION,
116
- features=datasets.Features(
117
- {
118
- "text": datasets.Value("string"),
119
- "label": datasets.features.ClassLabel(names=["1", "2"]),
120
- }
121
- ),
122
- supervised_keys=None,
123
- homepage="https://course.fast.ai/datasets",
124
- citation=_CITATION,
125
- task_templates=[TextClassification(text_column="text", label_column="label")],
126
- )
127
-
128
- def _vocab_text_gen(self, train_file):
129
- for _, ex in self._generate_examples(train_file):
130
- yield ex["text"]
131
-
132
- def _split_generators(self, dl_manager):
133
- arch_path = dl_manager.download(_DOWNLOAD_URL)
134
- train_file = "yelp_review_polarity_csv/train.csv"
135
- test_file = "yelp_review_polarity_csv/test.csv"
136
- return [
137
- datasets.SplitGenerator(
138
- name=datasets.Split.TRAIN,
139
- gen_kwargs={
140
- "filepath": train_file,
141
- "files": dl_manager.iter_archive(arch_path),
142
- },
143
- ),
144
- datasets.SplitGenerator(
145
- name=datasets.Split.TEST,
146
- gen_kwargs={
147
- "filepath": test_file,
148
- "files": dl_manager.iter_archive(arch_path),
149
- },
150
- ),
151
- ]
152
-
153
- def _generate_examples(self, filepath, files):
154
- """Generate Yelp examples."""
155
- for path, f in files:
156
- if path == filepath:
157
- for line_id, line in enumerate(f):
158
- line = line.decode("utf-8")
159
- # The format of the line is:
160
- # "1", "The text of the review."
161
- yield line_id, {"text": line[5:-2].strip(), "label": line[1]}
162
- break