parquet-converter commited on
Commit
80e0dbf
·
1 Parent(s): 1c59736

Update parquet files

Browse files
.gitattributes DELETED
@@ -1,27 +0,0 @@
1
- *.7z filter=lfs diff=lfs merge=lfs -text
2
- *.arrow filter=lfs diff=lfs merge=lfs -text
3
- *.bin filter=lfs diff=lfs merge=lfs -text
4
- *.bin.* filter=lfs diff=lfs merge=lfs -text
5
- *.bz2 filter=lfs diff=lfs merge=lfs -text
6
- *.ftz filter=lfs diff=lfs merge=lfs -text
7
- *.gz filter=lfs diff=lfs merge=lfs -text
8
- *.h5 filter=lfs diff=lfs merge=lfs -text
9
- *.joblib filter=lfs diff=lfs merge=lfs -text
10
- *.lfs.* filter=lfs diff=lfs merge=lfs -text
11
- *.model filter=lfs diff=lfs merge=lfs -text
12
- *.msgpack filter=lfs diff=lfs merge=lfs -text
13
- *.onnx filter=lfs diff=lfs merge=lfs -text
14
- *.ot filter=lfs diff=lfs merge=lfs -text
15
- *.parquet filter=lfs diff=lfs merge=lfs -text
16
- *.pb filter=lfs diff=lfs merge=lfs -text
17
- *.pt filter=lfs diff=lfs merge=lfs -text
18
- *.pth filter=lfs diff=lfs merge=lfs -text
19
- *.rar filter=lfs diff=lfs merge=lfs -text
20
- saved_model/**/* filter=lfs diff=lfs merge=lfs -text
21
- *.tar.* filter=lfs diff=lfs merge=lfs -text
22
- *.tflite filter=lfs diff=lfs merge=lfs -text
23
- *.tgz filter=lfs diff=lfs merge=lfs -text
24
- *.xz filter=lfs diff=lfs merge=lfs -text
25
- *.zip filter=lfs diff=lfs merge=lfs -text
26
- *.zstandard filter=lfs diff=lfs merge=lfs -text
27
- *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
README.md DELETED
@@ -1,256 +0,0 @@
1
- ---
2
- annotations_creators:
3
- - found
4
- language_creators:
5
- - found
6
- language:
7
- - en
8
- license:
9
- - unknown
10
- multilinguality:
11
- - monolingual
12
- size_categories:
13
- - 100K<n<1M
14
- source_datasets:
15
- - original
16
- task_categories:
17
- - text-classification
18
- task_ids:
19
- - topic-classification
20
- paperswithcode_id: ag-news
21
- pretty_name: AG’s News Corpus
22
- train-eval-index:
23
- - config: default
24
- task: text-classification
25
- task_id: multi_class_classification
26
- splits:
27
- train_split: train
28
- eval_split: test
29
- col_mapping:
30
- text: text
31
- label: target
32
- metrics:
33
- - type: accuracy
34
- name: Accuracy
35
- - type: f1
36
- name: F1 macro
37
- args:
38
- average: macro
39
- - type: f1
40
- name: F1 micro
41
- args:
42
- average: micro
43
- - type: f1
44
- name: F1 weighted
45
- args:
46
- average: weighted
47
- - type: precision
48
- name: Precision macro
49
- args:
50
- average: macro
51
- - type: precision
52
- name: Precision micro
53
- args:
54
- average: micro
55
- - type: precision
56
- name: Precision weighted
57
- args:
58
- average: weighted
59
- - type: recall
60
- name: Recall macro
61
- args:
62
- average: macro
63
- - type: recall
64
- name: Recall micro
65
- args:
66
- average: micro
67
- - type: recall
68
- name: Recall weighted
69
- args:
70
- average: weighted
71
- dataset_info:
72
- features:
73
- - name: text
74
- dtype: string
75
- - name: label
76
- dtype:
77
- class_label:
78
- names:
79
- 0: World
80
- 1: Sports
81
- 2: Business
82
- 3: Sci/Tech
83
- splits:
84
- - name: train
85
- num_bytes: 29817351
86
- num_examples: 120000
87
- - name: test
88
- num_bytes: 1879478
89
- num_examples: 7600
90
- download_size: 31327765
91
- dataset_size: 31696829
92
- ---
93
-
94
- # Dataset Card for "ag_news"
95
-
96
- ## Table of Contents
97
- - [Dataset Description](#dataset-description)
98
- - [Dataset Summary](#dataset-summary)
99
- - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
100
- - [Languages](#languages)
101
- - [Dataset Structure](#dataset-structure)
102
- - [Data Instances](#data-instances)
103
- - [Data Fields](#data-fields)
104
- - [Data Splits](#data-splits)
105
- - [Dataset Creation](#dataset-creation)
106
- - [Curation Rationale](#curation-rationale)
107
- - [Source Data](#source-data)
108
- - [Annotations](#annotations)
109
- - [Personal and Sensitive Information](#personal-and-sensitive-information)
110
- - [Considerations for Using the Data](#considerations-for-using-the-data)
111
- - [Social Impact of Dataset](#social-impact-of-dataset)
112
- - [Discussion of Biases](#discussion-of-biases)
113
- - [Other Known Limitations](#other-known-limitations)
114
- - [Additional Information](#additional-information)
115
- - [Dataset Curators](#dataset-curators)
116
- - [Licensing Information](#licensing-information)
117
- - [Citation Information](#citation-information)
118
- - [Contributions](#contributions)
119
-
120
- ## Dataset Description
121
-
122
- - **Homepage:** [http://groups.di.unipi.it/~gulli/AG_corpus_of_news_articles.html](http://groups.di.unipi.it/~gulli/AG_corpus_of_news_articles.html)
123
- - **Repository:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
124
- - **Paper:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
125
- - **Point of Contact:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
126
- - **Size of downloaded dataset files:** 29.88 MB
127
- - **Size of the generated dataset:** 30.23 MB
128
- - **Total amount of disk used:** 60.10 MB
129
-
130
- ### Dataset Summary
131
-
132
- AG is a collection of more than 1 million news articles. News articles have been
133
- gathered from more than 2000 news sources by ComeToMyHead in more than 1 year of
134
- activity. ComeToMyHead is an academic news search engine which has been running
135
- since July, 2004. The dataset is provided by the academic comunity for research
136
- purposes in data mining (clustering, classification, etc), information retrieval
137
- (ranking, search, etc), xml, data compression, data streaming, and any other
138
- non-commercial activity. For more information, please refer to the link
139
- http://www.di.unipi.it/~gulli/AG_corpus_of_news_articles.html .
140
-
141
- The AG's news topic classification dataset is constructed by Xiang Zhang
142
- (xiang.zhang@nyu.edu) from the dataset above. It is used as a text
143
- classification benchmark in the following paper: Xiang Zhang, Junbo Zhao, Yann
144
- LeCun. Character-level Convolutional Networks for Text Classification. Advances
145
- in Neural Information Processing Systems 28 (NIPS 2015).
146
-
147
- ### Supported Tasks and Leaderboards
148
-
149
- [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
150
-
151
- ### Languages
152
-
153
- [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
154
-
155
- ## Dataset Structure
156
-
157
- ### Data Instances
158
-
159
- #### default
160
-
161
- - **Size of downloaded dataset files:** 29.88 MB
162
- - **Size of the generated dataset:** 30.23 MB
163
- - **Total amount of disk used:** 60.10 MB
164
-
165
- An example of 'train' looks as follows.
166
- ```
167
- {
168
- "label": 3,
169
- "text": "New iPad released Just like every other September, this one is no different. Apple is planning to release a bigger, heavier, fatter iPad that..."
170
- }
171
- ```
172
-
173
- ### Data Fields
174
-
175
- The data fields are the same among all splits.
176
-
177
- #### default
178
- - `text`: a `string` feature.
179
- - `label`: a classification label, with possible values including `World` (0), `Sports` (1), `Business` (2), `Sci/Tech` (3).
180
-
181
- ### Data Splits
182
-
183
- | name |train |test|
184
- |-------|-----:|---:|
185
- |default|120000|7600|
186
-
187
- ## Dataset Creation
188
-
189
- ### Curation Rationale
190
-
191
- [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
192
-
193
- ### Source Data
194
-
195
- #### Initial Data Collection and Normalization
196
-
197
- [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
198
-
199
- #### Who are the source language producers?
200
-
201
- [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
202
-
203
- ### Annotations
204
-
205
- #### Annotation process
206
-
207
- [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
208
-
209
- #### Who are the annotators?
210
-
211
- [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
212
-
213
- ### Personal and Sensitive Information
214
-
215
- [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
216
-
217
- ## Considerations for Using the Data
218
-
219
- ### Social Impact of Dataset
220
-
221
- [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
222
-
223
- ### Discussion of Biases
224
-
225
- [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
226
-
227
- ### Other Known Limitations
228
-
229
- [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
230
-
231
- ## Additional Information
232
-
233
- ### Dataset Curators
234
-
235
- [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
236
-
237
- ### Licensing Information
238
-
239
- [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
240
-
241
- ### Citation Information
242
-
243
- ```
244
- @inproceedings{Zhang2015CharacterlevelCN,
245
- title={Character-level Convolutional Networks for Text Classification},
246
- author={Xiang Zhang and Junbo Jake Zhao and Yann LeCun},
247
- booktitle={NIPS},
248
- year={2015}
249
- }
250
-
251
- ```
252
-
253
-
254
- ### Contributions
255
-
256
- Thanks to [@jxmorris12](https://github.com/jxmorris12), [@thomwolf](https://github.com/thomwolf), [@lhoestq](https://github.com/lhoestq), [@lewtun](https://github.com/lewtun) for adding this dataset.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ag_news.py DELETED
@@ -1,94 +0,0 @@
1
- # coding=utf-8
2
- # Copyright 2020 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors.
3
- #
4
- # Licensed under the Apache License, Version 2.0 (the "License");
5
- # you may not use this file except in compliance with the License.
6
- # You may obtain a copy of the License at
7
- #
8
- # http://www.apache.org/licenses/LICENSE-2.0
9
- #
10
- # Unless required by applicable law or agreed to in writing, software
11
- # distributed under the License is distributed on an "AS IS" BASIS,
12
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
- # See the License for the specific language governing permissions and
14
- # limitations under the License.
15
-
16
- # Lint as: python3
17
- """AG News topic classification dataset."""
18
-
19
-
20
- import csv
21
-
22
- import datasets
23
- from datasets.tasks import TextClassification
24
-
25
-
26
- _DESCRIPTION = """\
27
- AG is a collection of more than 1 million news articles. News articles have been
28
- gathered from more than 2000 news sources by ComeToMyHead in more than 1 year of
29
- activity. ComeToMyHead is an academic news search engine which has been running
30
- since July, 2004. The dataset is provided by the academic comunity for research
31
- purposes in data mining (clustering, classification, etc), information retrieval
32
- (ranking, search, etc), xml, data compression, data streaming, and any other
33
- non-commercial activity. For more information, please refer to the link
34
- http://www.di.unipi.it/~gulli/AG_corpus_of_news_articles.html .
35
-
36
- The AG's news topic classification dataset is constructed by Xiang Zhang
37
- (xiang.zhang@nyu.edu) from the dataset above. It is used as a text
38
- classification benchmark in the following paper: Xiang Zhang, Junbo Zhao, Yann
39
- LeCun. Character-level Convolutional Networks for Text Classification. Advances
40
- in Neural Information Processing Systems 28 (NIPS 2015).
41
- """
42
-
43
- _CITATION = """\
44
- @inproceedings{Zhang2015CharacterlevelCN,
45
- title={Character-level Convolutional Networks for Text Classification},
46
- author={Xiang Zhang and Junbo Jake Zhao and Yann LeCun},
47
- booktitle={NIPS},
48
- year={2015}
49
- }
50
- """
51
-
52
- _TRAIN_DOWNLOAD_URL = "https://raw.githubusercontent.com/mhjabreel/CharCnn_Keras/master/data/ag_news_csv/train.csv"
53
- _TEST_DOWNLOAD_URL = "https://raw.githubusercontent.com/mhjabreel/CharCnn_Keras/master/data/ag_news_csv/test.csv"
54
-
55
-
56
- class AGNews(datasets.GeneratorBasedBuilder):
57
- """AG News topic classification dataset."""
58
-
59
- def _info(self):
60
- return datasets.DatasetInfo(
61
- description=_DESCRIPTION,
62
- features=datasets.Features(
63
- {
64
- "text": datasets.Value("string"),
65
- "label": datasets.features.ClassLabel(names=["World", "Sports", "Business", "Sci/Tech"]),
66
- }
67
- ),
68
- homepage="http://groups.di.unipi.it/~gulli/AG_corpus_of_news_articles.html",
69
- citation=_CITATION,
70
- task_templates=[TextClassification(text_column="text", label_column="label")],
71
- )
72
-
73
- def _split_generators(self, dl_manager):
74
- train_path = dl_manager.download_and_extract(_TRAIN_DOWNLOAD_URL)
75
- test_path = dl_manager.download_and_extract(_TEST_DOWNLOAD_URL)
76
- return [
77
- datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": train_path}),
78
- datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": test_path}),
79
- ]
80
-
81
- def _generate_examples(self, filepath):
82
- """Generate AG News examples."""
83
- with open(filepath, encoding="utf-8") as csv_file:
84
- csv_reader = csv.reader(
85
- csv_file, quotechar='"', delimiter=",", quoting=csv.QUOTE_ALL, skipinitialspace=True
86
- )
87
- for id_, row in enumerate(csv_reader):
88
- label, title, description = row
89
- # Original labels are [1, 2, 3, 4] ->
90
- # ['World', 'Sports', 'Business', 'Sci/Tech']
91
- # Re-map to [0, 1, 2, 3].
92
- label = int(label) - 1
93
- text = " ".join((title, description))
94
- yield id_, {"text": text, "label": label}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dataset_infos.json DELETED
@@ -1 +0,0 @@
1
- {"default": {"description": "AG is a collection of more than 1 million news articles. News articles have been\ngathered from more than 2000 news sources by ComeToMyHead in more than 1 year of\nactivity. ComeToMyHead is an academic news search engine which has been running\nsince July, 2004. The dataset is provided by the academic comunity for research\npurposes in data mining (clustering, classification, etc), information retrieval\n(ranking, search, etc), xml, data compression, data streaming, and any other\nnon-commercial activity. For more information, please refer to the link\nhttp://www.di.unipi.it/~gulli/AG_corpus_of_news_articles.html .\n\nThe AG's news topic classification dataset is constructed by Xiang Zhang\n(xiang.zhang@nyu.edu) from the dataset above. It is used as a text\nclassification benchmark in the following paper: Xiang Zhang, Junbo Zhao, Yann\nLeCun. Character-level Convolutional Networks for Text Classification. Advances\nin Neural Information Processing Systems 28 (NIPS 2015).\n", "citation": "@inproceedings{Zhang2015CharacterlevelCN,\n title={Character-level Convolutional Networks for Text Classification},\n author={Xiang Zhang and Junbo Jake Zhao and Yann LeCun},\n booktitle={NIPS},\n year={2015}\n}\n", "homepage": "http://groups.di.unipi.it/~gulli/AG_corpus_of_news_articles.html", "license": "", "features": {"text": {"dtype": "string", "id": null, "_type": "Value"}, "label": {"num_classes": 4, "names": ["World", "Sports", "Business", "Sci/Tech"], "names_file": null, "id": null, "_type": "ClassLabel"}}, "post_processed": null, "supervised_keys": null, "task_templates": [{"task": "text-classification", "text_column": "text", "label_column": "label", "labels": ["Business", "Sci/Tech", "Sports", "World"]}], "builder_name": "ag_news", "config_name": "default", "version": {"version_str": "0.0.0", "description": null, "major": 0, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 29817351, "num_examples": 120000, "dataset_name": "ag_news"}, "test": {"name": "test", "num_bytes": 1879478, "num_examples": 7600, "dataset_name": "ag_news"}}, "download_checksums": {"https://raw.githubusercontent.com/mhjabreel/CharCnn_Keras/master/data/ag_news_csv/train.csv": {"num_bytes": 29470338, "checksum": "76a0a2d2f92b286371fe4d4044640910a04a803fdd2538e0f3f29a5c6f6b672e"}, "https://raw.githubusercontent.com/mhjabreel/CharCnn_Keras/master/data/ag_news_csv/test.csv": {"num_bytes": 1857427, "checksum": "521465c2428ed7f02f8d6db6ffdd4b5447c1c701962353eb2c40d548c3c85699"}}, "download_size": 31327765, "post_processing_size": null, "dataset_size": 31696829, "size_in_bytes": 63024594}}
 
 
default/ag_news-test.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:29c40feec94e92d8d609aaec0d9927bb35c16532540cb9c9555f28973cec0360
3
+ size 1234828
default/ag_news-train.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:17c8ed585491d9f7636026b7a51cf09264e6794e75f3e4049c720bff74b5420e
3
+ size 18585437