metadata
language:
- ar
- bg
- de
- el
- en
- es
- fr
- hi
- ru
- sw
- th
- tr
- ur
- vi
- zh
paperswithcode_id: xnli
pretty_name: Cross-lingual Natural Language Inference
dataset_info:
- config_name: ar
features:
- name: premise
dtype: string
- name: hypothesis
dtype: string
- name: label
dtype:
class_label:
names:
'0': entailment
'1': neutral
'2': contradiction
splits:
- name: train
num_bytes: 107399934
num_examples: 392702
- name: test
num_bytes: 1294561
num_examples: 5010
- name: validation
num_bytes: 633009
num_examples: 2490
download_size: 483963712
dataset_size: 109327504
- config_name: bg
features:
- name: premise
dtype: string
- name: hypothesis
dtype: string
- name: label
dtype:
class_label:
names:
'0': entailment
'1': neutral
'2': contradiction
splits:
- name: train
num_bytes: 125973545
num_examples: 392702
- name: test
num_bytes: 1573042
num_examples: 5010
- name: validation
num_bytes: 774069
num_examples: 2490
download_size: 483963712
dataset_size: 128320656
- config_name: de
features:
- name: premise
dtype: string
- name: hypothesis
dtype: string
- name: label
dtype:
class_label:
names:
'0': entailment
'1': neutral
'2': contradiction
splits:
- name: train
num_bytes: 84684460
num_examples: 392702
- name: test
num_bytes: 996496
num_examples: 5010
- name: validation
num_bytes: 494612
num_examples: 2490
download_size: 483963712
dataset_size: 86175568
- config_name: el
features:
- name: premise
dtype: string
- name: hypothesis
dtype: string
- name: label
dtype:
class_label:
names:
'0': entailment
'1': neutral
'2': contradiction
splits:
- name: train
num_bytes: 139753678
num_examples: 392702
- name: test
num_bytes: 1704793
num_examples: 5010
- name: validation
num_bytes: 841234
num_examples: 2490
download_size: 483963712
dataset_size: 142299705
- config_name: en
features:
- name: premise
dtype: string
- name: hypothesis
dtype: string
- name: label
dtype:
class_label:
names:
'0': entailment
'1': neutral
'2': contradiction
splits:
- name: train
num_bytes: 74444346
num_examples: 392702
- name: test
num_bytes: 875142
num_examples: 5010
- name: validation
num_bytes: 433471
num_examples: 2490
download_size: 483963712
dataset_size: 75752959
- config_name: es
features:
- name: premise
dtype: string
- name: hypothesis
dtype: string
- name: label
dtype:
class_label:
names:
'0': entailment
'1': neutral
'2': contradiction
splits:
- name: train
num_bytes: 81383604
num_examples: 392702
- name: test
num_bytes: 969821
num_examples: 5010
- name: validation
num_bytes: 478430
num_examples: 2490
download_size: 483963712
dataset_size: 82831855
- config_name: fr
features:
- name: premise
dtype: string
- name: hypothesis
dtype: string
- name: label
dtype:
class_label:
names:
'0': entailment
'1': neutral
'2': contradiction
splits:
- name: train
num_bytes: 85809099
num_examples: 392702
- name: test
num_bytes: 1029247
num_examples: 5010
- name: validation
num_bytes: 510112
num_examples: 2490
download_size: 483963712
dataset_size: 87348458
- config_name: hi
features:
- name: premise
dtype: string
- name: hypothesis
dtype: string
- name: label
dtype:
class_label:
names:
'0': entailment
'1': neutral
'2': contradiction
splits:
- name: train
num_bytes: 170594284
num_examples: 392702
- name: test
num_bytes: 2073081
num_examples: 5010
- name: validation
num_bytes: 1023923
num_examples: 2490
download_size: 483963712
dataset_size: 173691288
- config_name: ru
features:
- name: premise
dtype: string
- name: hypothesis
dtype: string
- name: label
dtype:
class_label:
names:
'0': entailment
'1': neutral
'2': contradiction
splits:
- name: train
num_bytes: 129859935
num_examples: 392702
- name: test
num_bytes: 1603474
num_examples: 5010
- name: validation
num_bytes: 786450
num_examples: 2490
download_size: 483963712
dataset_size: 132249859
- config_name: sw
features:
- name: premise
dtype: string
- name: hypothesis
dtype: string
- name: label
dtype:
class_label:
names:
'0': entailment
'1': neutral
'2': contradiction
splits:
- name: train
num_bytes: 69286045
num_examples: 392702
- name: test
num_bytes: 871659
num_examples: 5010
- name: validation
num_bytes: 429858
num_examples: 2490
download_size: 483963712
dataset_size: 70587562
- config_name: th
features:
- name: premise
dtype: string
- name: hypothesis
dtype: string
- name: label
dtype:
class_label:
names:
'0': entailment
'1': neutral
'2': contradiction
splits:
- name: train
num_bytes: 176063212
num_examples: 392702
- name: test
num_bytes: 2147023
num_examples: 5010
- name: validation
num_bytes: 1061168
num_examples: 2490
download_size: 483963712
dataset_size: 179271403
- config_name: tr
features:
- name: premise
dtype: string
- name: hypothesis
dtype: string
- name: label
dtype:
class_label:
names:
'0': entailment
'1': neutral
'2': contradiction
splits:
- name: train
num_bytes: 71637460
num_examples: 392702
- name: test
num_bytes: 934942
num_examples: 5010
- name: validation
num_bytes: 459316
num_examples: 2490
download_size: 483963712
dataset_size: 73031718
- config_name: ur
features:
- name: premise
dtype: string
- name: hypothesis
dtype: string
- name: label
dtype:
class_label:
names:
'0': entailment
'1': neutral
'2': contradiction
splits:
- name: train
num_bytes: 96441806
num_examples: 392702
- name: test
num_bytes: 1416249
num_examples: 5010
- name: validation
num_bytes: 699960
num_examples: 2490
download_size: 483963712
dataset_size: 98558015
- config_name: vi
features:
- name: premise
dtype: string
- name: hypothesis
dtype: string
- name: label
dtype:
class_label:
names:
'0': entailment
'1': neutral
'2': contradiction
splits:
- name: train
num_bytes: 101417750
num_examples: 392702
- name: test
num_bytes: 1190225
num_examples: 5010
- name: validation
num_bytes: 590688
num_examples: 2490
download_size: 483963712
dataset_size: 103198663
- config_name: zh
features:
- name: premise
dtype: string
- name: hypothesis
dtype: string
- name: label
dtype:
class_label:
names:
'0': entailment
'1': neutral
'2': contradiction
splits:
- name: train
num_bytes: 72225161
num_examples: 392702
- name: test
num_bytes: 777937
num_examples: 5010
- name: validation
num_bytes: 384859
num_examples: 2490
download_size: 483963712
dataset_size: 73387957
- config_name: all_languages
features:
- name: premise
dtype:
translation:
languages:
- ar
- bg
- de
- el
- en
- es
- fr
- hi
- ru
- sw
- th
- tr
- ur
- vi
- zh
- name: hypothesis
dtype:
translation_variable_languages:
languages:
- ar
- bg
- de
- el
- en
- es
- fr
- hi
- ru
- sw
- th
- tr
- ur
- vi
- zh
num_languages: 15
- name: label
dtype:
class_label:
names:
'0': entailment
'1': neutral
'2': contradiction
splits:
- name: train
num_bytes: 1581474731
num_examples: 392702
- name: test
num_bytes: 19387508
num_examples: 5010
- name: validation
num_bytes: 9566255
num_examples: 2490
download_size: 483963712
dataset_size: 1610428494
Dataset Card for "xnli"
Table of Contents
- Dataset Description
- Dataset Structure
- Dataset Creation
- Considerations for Using the Data
- Additional Information
Dataset Description
- Homepage: https://www.nyu.edu/projects/bowman/xnli/
- Repository: More Information Needed
- Paper: More Information Needed
- Point of Contact: More Information Needed
- Size of downloaded dataset files: 7384.70 MB
- Size of the generated dataset: 3076.99 MB
- Total amount of disk used: 10461.69 MB
Dataset Summary
XNLI is a subset of a few thousand examples from MNLI which has been translated into a 14 different languages (some low-ish resource). As with MNLI, the goal is to predict textual entailment (does sentence A imply/contradict/neither sentence B) and is a classification task (given two sentences, predict one of three labels).
Supported Tasks and Leaderboards
Languages
Dataset Structure
Data Instances
all_languages
- Size of downloaded dataset files: 461.54 MB
- Size of the generated dataset: 1535.82 MB
- Total amount of disk used: 1997.37 MB
An example of 'train' looks as follows.
This example was too long and was cropped:
{
"hypothesis": "{\"language\": [\"ar\", \"bg\", \"de\", \"el\", \"en\", \"es\", \"fr\", \"hi\", \"ru\", \"sw\", \"th\", \"tr\", \"ur\", \"vi\", \"zh\"], \"translation\": [\"احد اع...",
"label": 0,
"premise": "{\"ar\": \"واحدة من رقابنا ستقوم بتنفيذ تعليماتك كلها بكل دقة\", \"bg\": \"един от нашите номера ще ви даде инструкции .\", \"de\": \"Eine ..."
}
ar
- Size of downloaded dataset files: 461.54 MB
- Size of the generated dataset: 104.26 MB
- Total amount of disk used: 565.81 MB
An example of 'validation' looks as follows.
{
"hypothesis": "اتصل بأمه حالما أوصلته حافلة المدرسية.",
"label": 1,
"premise": "وقال، ماما، لقد عدت للمنزل."
}
bg
- Size of downloaded dataset files: 461.54 MB
- Size of the generated dataset: 122.38 MB
- Total amount of disk used: 583.92 MB
An example of 'train' looks as follows.
This example was too long and was cropped:
{
"hypothesis": "\"губиш нещата на следното ниво , ако хората си припомнят .\"...",
"label": 0,
"premise": "\"по време на сезона и предполагам , че на твоето ниво ще ги загубиш на следващото ниво , ако те решат да си припомнят отбора на ..."
}
de
- Size of downloaded dataset files: 461.54 MB
- Size of the generated dataset: 82.18 MB
- Total amount of disk used: 543.73 MB
An example of 'train' looks as follows.
This example was too long and was cropped:
{
"hypothesis": "Man verliert die Dinge auf die folgende Ebene , wenn sich die Leute erinnern .",
"label": 0,
"premise": "\"Du weißt , während der Saison und ich schätze , auf deiner Ebene verlierst du sie auf die nächste Ebene , wenn sie sich entschl..."
}
el
- Size of downloaded dataset files: 461.54 MB
- Size of the generated dataset: 135.71 MB
- Total amount of disk used: 597.25 MB
An example of 'validation' looks as follows.
This example was too long and was cropped:
{
"hypothesis": "\"Τηλεφώνησε στη μαμά του μόλις το σχολικό λεωφορείο τον άφησε.\"...",
"label": 1,
"premise": "Και είπε, Μαμά, έφτασα στο σπίτι."
}
Data Fields
The data fields are the same among all splits.
all_languages
premise
: a multilingualstring
variable, with possible languages includingar
,bg
,de
,el
,en
.hypothesis
: a multilingualstring
variable, with possible languages includingar
,bg
,de
,el
,en
.label
: a classification label, with possible values includingentailment
(0),neutral
(1),contradiction
(2).
ar
premise
: astring
feature.hypothesis
: astring
feature.label
: a classification label, with possible values includingentailment
(0),neutral
(1),contradiction
(2).
bg
premise
: astring
feature.hypothesis
: astring
feature.label
: a classification label, with possible values includingentailment
(0),neutral
(1),contradiction
(2).
de
premise
: astring
feature.hypothesis
: astring
feature.label
: a classification label, with possible values includingentailment
(0),neutral
(1),contradiction
(2).
el
premise
: astring
feature.hypothesis
: astring
feature.label
: a classification label, with possible values includingentailment
(0),neutral
(1),contradiction
(2).
Data Splits
name | train | validation | test |
---|---|---|---|
all_languages | 392702 | 2490 | 5010 |
ar | 392702 | 2490 | 5010 |
bg | 392702 | 2490 | 5010 |
de | 392702 | 2490 | 5010 |
el | 392702 | 2490 | 5010 |
Dataset Creation
Curation Rationale
Source Data
Initial Data Collection and Normalization
Who are the source language producers?
Annotations
Annotation process
Who are the annotators?
Personal and Sensitive Information
Considerations for Using the Data
Social Impact of Dataset
Discussion of Biases
Other Known Limitations
Additional Information
Dataset Curators
Licensing Information
Citation Information
@InProceedings{conneau2018xnli,
author = {Conneau, Alexis
and Rinott, Ruty
and Lample, Guillaume
and Williams, Adina
and Bowman, Samuel R.
and Schwenk, Holger
and Stoyanov, Veselin},
title = {XNLI: Evaluating Cross-lingual Sentence Representations},
booktitle = {Proceedings of the 2018 Conference on Empirical Methods
in Natural Language Processing},
year = {2018},
publisher = {Association for Computational Linguistics},
location = {Brussels, Belgium},
}
Contributions
Thanks to @lewtun, @mariamabarham, @thomwolf, @lhoestq, @patrickvonplaten for adding this dataset.