|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""ASSET: a dataset for sentence simplification evaluation""" |
|
|
|
|
|
import csv |
|
|
|
import datasets |
|
|
|
|
|
_CITATION = """\ |
|
@inproceedings{alva-manchego-etal-2020-asset, |
|
title = "{ASSET}: {A} Dataset for Tuning and Evaluation of Sentence Simplification Models with Multiple Rewriting Transformations", |
|
author = "Alva-Manchego, Fernando and |
|
Martin, Louis and |
|
Bordes, Antoine and |
|
Scarton, Carolina and |
|
Sagot, Benoit and |
|
Specia, Lucia", |
|
booktitle = "Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics", |
|
month = jul, |
|
year = "2020", |
|
address = "Online", |
|
publisher = "Association for Computational Linguistics", |
|
url = "https://www.aclweb.org/anthology/2020.acl-main.424", |
|
pages = "4668--4679", |
|
} |
|
""" |
|
|
|
_DESCRIPTION = """\ |
|
ASSET is a dataset for evaluating Sentence Simplification systems with multiple rewriting transformations, |
|
as described in "ASSET: A Dataset for Tuning and Evaluation of Sentence Simplification Models with Multiple Rewriting Transformations". |
|
The corpus is composed of 2000 validation and 359 test original sentences that were each simplified 10 times by different annotators. |
|
The corpus also contains human judgments of meaning preservation, fluency and simplicity for the outputs of several automatic text simplification systems. |
|
""" |
|
|
|
_HOMEPAGE = "https://github.com/facebookresearch/asset" |
|
|
|
_LICENSE = "Creative Common Attribution-NonCommercial 4.0 International" |
|
|
|
_URL_LIST = [ |
|
("human_ratings.csv", "https://github.com/facebookresearch/asset/raw/master/human_ratings/human_ratings.csv"), |
|
("asset.valid.orig", "https://github.com/facebookresearch/asset/raw/master/dataset/asset.valid.orig"), |
|
("asset.test.orig", "https://github.com/facebookresearch/asset/raw/master/dataset/asset.test.orig"), |
|
] |
|
_URL_LIST += [ |
|
( |
|
f"asset.{spl}.simp.{i}", |
|
f"https://github.com/facebookresearch/asset/raw/master/dataset/asset.{spl}.simp.{i}", |
|
) |
|
for spl in ["valid", "test"] |
|
for i in range(10) |
|
] |
|
|
|
_URLs = dict(_URL_LIST) |
|
|
|
|
|
class Asset(datasets.GeneratorBasedBuilder): |
|
|
|
VERSION = datasets.Version("1.0.0") |
|
|
|
BUILDER_CONFIGS = [ |
|
datasets.BuilderConfig( |
|
name="simplification", |
|
version=VERSION, |
|
description="A set of original sentences aligned with 10 possible simplifications for each.", |
|
), |
|
datasets.BuilderConfig( |
|
name="ratings", version=VERSION, description="Human ratings of automatically produced text implification." |
|
), |
|
] |
|
|
|
DEFAULT_CONFIG_NAME = "simplification" |
|
|
|
def _info(self): |
|
if self.config.name == "simplification": |
|
features = datasets.Features( |
|
{ |
|
"original": datasets.Value("string"), |
|
"simplifications": datasets.Sequence(datasets.Value("string")), |
|
} |
|
) |
|
else: |
|
features = datasets.Features( |
|
{ |
|
"original": datasets.Value("string"), |
|
"simplification": datasets.Value("string"), |
|
"original_sentence_id": datasets.Value("int32"), |
|
"aspect": datasets.ClassLabel(names=["meaning", "fluency", "simplicity"]), |
|
"worker_id": datasets.Value("int32"), |
|
"rating": datasets.Value("int32"), |
|
} |
|
) |
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=features, |
|
supervised_keys=None, |
|
homepage=_HOMEPAGE, |
|
license=_LICENSE, |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
data_dir = dl_manager.download_and_extract(_URLs) |
|
if self.config.name == "simplification": |
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.VALIDATION, |
|
gen_kwargs={ |
|
"filepaths": data_dir, |
|
"split": "valid", |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, |
|
gen_kwargs={"filepaths": data_dir, "split": "test"}, |
|
), |
|
] |
|
else: |
|
return [ |
|
datasets.SplitGenerator( |
|
name="full", |
|
gen_kwargs={ |
|
"filepaths": data_dir, |
|
"split": "full", |
|
}, |
|
), |
|
] |
|
|
|
def _generate_examples(self, filepaths, split): |
|
"""Yields examples.""" |
|
if self.config.name == "simplification": |
|
files = [open(filepaths[f"asset.{split}.orig"], encoding="utf-8")] + [ |
|
open(filepaths[f"asset.{split}.simp.{i}"], encoding="utf-8") for i in range(10) |
|
] |
|
for id_, lines in enumerate(zip(*files)): |
|
yield id_, {"original": lines[0].strip(), "simplifications": [line.strip() for line in lines[1:]]} |
|
else: |
|
with open(filepaths["human_ratings.csv"], encoding="utf-8") as f: |
|
reader = csv.reader(f, delimiter=",") |
|
for id_, row in enumerate(reader): |
|
if id_ == 0: |
|
keys = row[:] |
|
else: |
|
res = dict([(k, v) for k, v in zip(keys, row)]) |
|
for k in ["original_sentence_id", "worker_id", "rating"]: |
|
res[k] = int(res[k]) |
|
yield (id_ - 1), res |
|
|