fabiencasenave's picture
Upload README.md with huggingface_hub
ce507fa verified
metadata
license: cc-by-4.0
task_categories:
  - graph-ml
tags:
  - physics learning
  - geometry learning
dataset_info:
  features:
    - name: Base_2_3/Zone/Elements_TRI_3/ElementConnectivity
      list: int64
    - name: Base_2_3/Zone/GridCoordinates/CoordinateX
      list: float32
    - name: Base_2_3/Zone/GridCoordinates/CoordinateY
      list: float32
    - name: Base_2_3/Zone/GridCoordinates/CoordinateZ
      list: float32
    - name: Base_2_3/Zone/PointData/pressure
      list: float32
  splits:
    - name: train
      num_bytes: 114714000
      num_examples: 500
    - name: test
      num_bytes: 25466508
      num_examples: 111
  download_size: 58600222
  dataset_size: 140180508
configs:
  - config_name: default
    data_files:
      - split: train
        path: data/train-*
      - split: test
        path: data/test-*
legal:
  owner: NeuralOperator (https://zenodo.org/records/13993629)
  license: cc-by-4.0
data_production:
  physics: CFD
  type: simulation
  script: Converted to PLAID format for standardized access; no changes to data content.
num_samples:
  train: 500
  test: 111
storage_backend: hf_datasets
plaid:
  version: 0.1.11.dev21+g94f13b9c8

Example of commands:

from datasets import load_dataset
from plaid.bridges import huggingface_bridge

repo_id = "chanel/dataset"
pb_def_name = "pb_def_name" #`pb_def_name` is to choose from the repo `problem_definitions` folder

# Load the dataset
hf_datasetdict = load_dataset(repo_id)

# Load addition required data
flat_cst, key_mappings = huggingface_bridge.load_tree_struct_from_hub(repo_id)
pb_def = huggingface_bridge.load_problem_definition_from_hub(repo_id, pb_def_name)

# Efficient reconstruction of plaid samples
for split_name, hf_dataset in hf_datasetdict.items():
    for i in range(len(hf_dataset)):
        sample = huggingface_bridge.to_plaid_sample(
            hf_dataset,
            i,
            flat_cst[split_name],
            key_mappings["cgns_types"],
        )

# Extract input and output features from samples:
for t in sample.get_all_mesh_times():
    for path in pb_def.get_in_features_identifiers():
        sample.get_feature_by_path(path=path, time=t)
    for path in pb_def.get_out_features_identifiers():
        sample.get_feature_by_path(path=path, time=t)

This dataset was generated in PLAID, we refer to this documentation for additional details on how to extract data from sample objects.