|
import os |
|
import json |
|
import argparse |
|
import hashlib |
|
import requests |
|
import time |
|
from safetensors import safe_open |
|
from tqdm import tqdm |
|
|
|
MAX_RETRIES = 3 |
|
BACKOFF_BASE = 2 |
|
|
|
def retry_request(url, timeout=10, desc=""): |
|
attempt = 0 |
|
while attempt < MAX_RETRIES: |
|
try: |
|
response = requests.get(url, timeout=timeout) |
|
if response.status_code == 200: |
|
return response |
|
elif response.status_code == 429: |
|
tqdm.write(f"{desc} - Rate limited (HTTP 429). Retrying ({attempt + 1}/{MAX_RETRIES})...") |
|
else: |
|
tqdm.write(f"{desc} - HTTP {response.status_code}. Retrying ({attempt + 1}/{MAX_RETRIES})...") |
|
except requests.exceptions.RequestException as e: |
|
tqdm.write(f"{desc} - Error: {e}. Retrying ({attempt + 1}/{MAX_RETRIES})...") |
|
|
|
attempt += 1 |
|
time.sleep(BACKOFF_BASE * (2 ** (attempt - 1))) |
|
tqdm.write(f"{desc} - Failed after {MAX_RETRIES} attempts.") |
|
return None |
|
|
|
def compute_sha256(file_path): |
|
sha256_hash = hashlib.sha256() |
|
with open(file_path, "rb") as f: |
|
for byte_block in iter(lambda: f.read(4096), b""): |
|
sha256_hash.update(byte_block) |
|
return sha256_hash.hexdigest() |
|
|
|
def extract_local_metadata(safetensors_file): |
|
try: |
|
with safe_open(safetensors_file, framework="pt") as f: |
|
metadata = f.metadata() |
|
return metadata |
|
except Exception as e: |
|
tqdm.write(f"Error reading {safetensors_file}: {e}") |
|
return None |
|
|
|
def fetch_civitai_metadata_by_model_id(model_id): |
|
url = f"https://civitai.com/api/v1/models/{model_id}" |
|
response = retry_request(url, desc=f"Fetching metadata for model ID {model_id}") |
|
if response and response.status_code == 200: |
|
return response.json() |
|
return None |
|
|
|
def fetch_civitai_metadata_by_hash(file_hash): |
|
url = f"https://civitai.com/api/v1/model-versions/by-hash/{file_hash}" |
|
response = retry_request(url, desc=f"Fetching metadata by hash {file_hash[:10]}...") |
|
if response and response.status_code == 200: |
|
return response.json() |
|
return None |
|
|
|
def download_preview_images(images_list, save_dir, base_filename, delay=0.5, image_pbar=None, use_subdir=True): |
|
if use_subdir: |
|
subdir = os.path.join(save_dir, f"{base_filename}_previews") |
|
os.makedirs(subdir, exist_ok=True) |
|
else: |
|
subdir = save_dir |
|
|
|
for idx, img_data in enumerate(images_list): |
|
url = img_data.get('url') |
|
if not url: |
|
continue |
|
ext = os.path.splitext(url)[1].split('?')[0] |
|
img_name = f"{base_filename}_preview_{idx+1}{ext}" |
|
|
|
|
|
flat_img_path = os.path.join(save_dir, img_name) |
|
subdir_img_path = os.path.join(subdir, img_name) |
|
|
|
if os.path.exists(flat_img_path) or os.path.exists(subdir_img_path): |
|
tqdm.write(f"Preview already exists: {img_name} (skipping)") |
|
if image_pbar: |
|
image_pbar.update(1) |
|
continue |
|
|
|
desc = f"Downloading media {idx + 1}/{len(images_list)}" |
|
response = retry_request(url, desc=desc) |
|
if response and response.status_code == 200: |
|
img_path = subdir_img_path if use_subdir else flat_img_path |
|
with open(img_path, 'wb') as img_file: |
|
img_file.write(response.content) |
|
tqdm.write(f"Saved preview: {img_path}") |
|
if image_pbar: |
|
image_pbar.update(1) |
|
time.sleep(delay) |
|
|
|
def process_directory(root_dir, force=False, scrape_civitai=False, delay=0.5, previews_subdir=True, max_media=None): |
|
safetensors_files = [] |
|
for dirpath, dirnames, filenames in os.walk(root_dir): |
|
for filename in filenames: |
|
if filename.endswith(".safetensors"): |
|
safetensors_files.append(os.path.join(dirpath, filename)) |
|
|
|
print(f"\nFound {len(safetensors_files)} .safetensors files.\n") |
|
|
|
with tqdm(total=len(safetensors_files), desc="Total Progress", unit="file") as total_pbar: |
|
for safetensors_path in safetensors_files: |
|
dirpath = os.path.dirname(safetensors_path) |
|
filename = os.path.basename(safetensors_path) |
|
base_filename = os.path.splitext(filename)[0] |
|
json_filename = f"{base_filename}.metadata.json" |
|
json_path = os.path.join(dirpath, json_filename) |
|
|
|
if os.path.exists(json_path) and not force: |
|
tqdm.write(f"Skipping (metadata exists): {safetensors_path}") |
|
total_pbar.update(1) |
|
continue |
|
|
|
tqdm.write(f"\nProcessing: {safetensors_path}") |
|
metadata = extract_local_metadata(safetensors_path) |
|
combined_metadata = {'local_metadata': metadata if metadata else {}} |
|
|
|
civitai_data = None |
|
|
|
if scrape_civitai: |
|
civitai_model_id = None |
|
if metadata: |
|
if 'ss_civitai_model_id' in metadata: |
|
civitai_model_id = metadata['ss_civitai_model_id'] |
|
elif 'ss_civitai_url' in metadata: |
|
parts = metadata['ss_civitai_url'].split('/') |
|
civitai_model_id = next((part for part in parts if part.isdigit()), None) |
|
|
|
if civitai_model_id: |
|
tqdm.write(f"Found model ID in metadata: {civitai_model_id}") |
|
civitai_data = fetch_civitai_metadata_by_model_id(civitai_model_id) |
|
time.sleep(delay) |
|
else: |
|
tqdm.write("No CivitAI model ID found in metadata. Trying hash lookup...") |
|
file_hash = compute_sha256(safetensors_path) |
|
civitai_data = fetch_civitai_metadata_by_hash(file_hash) |
|
time.sleep(delay) |
|
|
|
if civitai_data: |
|
civitai_meta = { |
|
'civitai_model_id': civitai_data.get('modelId') or civitai_data.get('id'), |
|
'civitai_model_version_id': civitai_data.get('id'), |
|
'civitai_name': civitai_data.get('name'), |
|
'description': civitai_data.get('description'), |
|
'tags': civitai_data.get('tags'), |
|
'trainedWords': civitai_data.get('trainedWords'), |
|
'images': civitai_data.get('images') |
|
} |
|
combined_metadata['civitai_metadata'] = civitai_meta |
|
|
|
images_list = civitai_meta.get('images', []) |
|
if images_list: |
|
|
|
if max_media == 0: |
|
tqdm.write("Skipping download of preview images/videos (user selected 0).") |
|
else: |
|
if max_media is not None: |
|
images_list = images_list[:max_media] |
|
with tqdm(total=len(images_list), desc="Image/Video Progress", leave=False) as image_pbar: |
|
download_preview_images( |
|
images_list, |
|
dirpath, |
|
base_filename, |
|
delay=delay, |
|
image_pbar=image_pbar, |
|
use_subdir=previews_subdir |
|
) |
|
else: |
|
tqdm.write("No preview images/videos found.") |
|
else: |
|
tqdm.write("No CivitAI data found (model ID or hash lookup failed).") |
|
|
|
with open(json_path, "w", encoding="utf-8") as f: |
|
json.dump(combined_metadata, f, indent=4, ensure_ascii=False) |
|
tqdm.write(f"Saved metadata to: {json_path}") |
|
total_pbar.update(1) |
|
|
|
def interactive_menu(): |
|
print("\n=== LoRA Metadata Scraper Config ===\n") |
|
scrape_civitai = input("A) Scrape CivitAI? (Y/N) [Default: N]: ").strip().lower() == 'y' |
|
delay_choice = input("B) Use default delay (0.5s), no delay (0), or custom? (D/N/C) [Default: D]: ").strip().lower() |
|
if delay_choice == 'n': |
|
delay = 0.0 |
|
elif delay_choice == 'c': |
|
delay = float(input("Enter delay in seconds (e.g., 0.5): ").strip()) |
|
else: |
|
delay = 0.5 |
|
force = input("C) Force re-scrape if metadata exists? (Y/N) [Default: N]: ").strip().lower() == 'y' |
|
loras_only = input("D) Scan only the LoRAs folder? (Y/N) [Default: Y]: ").strip().lower() != 'n' |
|
previews_subdir = input("E) Save preview images in a subdirectory? (Y/N) [Default: Y]: ").strip().lower() != 'n' |
|
media_choice = input("F) How many preview images/videos to download? (A=All [default], N=None, X=Number): ").strip().lower() |
|
if media_choice == 'n': |
|
max_media = 0 |
|
elif media_choice == 'a' or media_choice == '': |
|
max_media = None |
|
else: |
|
try: |
|
max_media = int(media_choice) |
|
except ValueError: |
|
max_media = None |
|
print("\n=== Starting with your selected options ===\n") |
|
return force, scrape_civitai, delay, loras_only, previews_subdir, max_media |
|
|
|
if __name__ == "__main__": |
|
print(">>> Script started") |
|
|
|
parser = argparse.ArgumentParser(description="Scrape and save metadata for .safetensors files.") |
|
parser.add_argument("--force", action="store_true", help="Force re-scrape even if metadata file exists.") |
|
parser.add_argument("--scrape-civitai", action="store_true", help="Enable scraping CivitAI metadata + images.") |
|
parser.add_argument("--delay", type=float, default=0.5, help="Delay time (seconds) between API/image steps (default: 0.5s).") |
|
parser.add_argument("--interactive", action="store_true", help="Run in interactive mode.") |
|
parser.add_argument("--loras-only", action="store_true", help="Scan only the LoRAs folder (models/loras).") |
|
parser.add_argument("--previews-subdir", dest="previews_subdir", action="store_true", help="Save preview images in a subdirectory.") |
|
parser.add_argument("--no-previews-subdir", dest="previews_subdir", action="store_false", help="Save preview images in the same folder.") |
|
parser.add_argument("--max-media", type=int, default=None, help="Max number of preview images/videos to download (0 = none).") |
|
parser.set_defaults(previews_subdir=True) |
|
|
|
args = parser.parse_args() |
|
|
|
if args.interactive: |
|
force, scrape_civitai, delay, loras_only, previews_subdir, max_media = interactive_menu() |
|
else: |
|
force, scrape_civitai, delay, loras_only, previews_subdir, max_media = ( |
|
args.force, |
|
args.scrape_civitai, |
|
args.delay, |
|
args.loras_only, |
|
args.previews_subdir, |
|
args.max_media |
|
) |
|
|
|
script_dir = os.path.dirname(os.path.abspath(__file__)) |
|
if loras_only: |
|
comfyui_dir = os.path.abspath(os.path.join(script_dir, "..", "..", "models", "loras")) |
|
else: |
|
comfyui_dir = os.path.abspath(os.path.join(script_dir, "..", "..")) |
|
|
|
tqdm.write(f"Scanning directory: {comfyui_dir}") |
|
|
|
process_directory( |
|
comfyui_dir, |
|
force=force, |
|
scrape_civitai=scrape_civitai, |
|
delay=delay, |
|
previews_subdir=previews_subdir, |
|
max_media=max_media |
|
) |
|
|