Datasets:
Tasks:
Token Classification
Sub-tasks:
named-entity-recognition
Languages:
German
Size:
1M<n<10M
ArXiv:
DOI:
License:
elenanereiss
commited on
Commit
•
245ce3b
1
Parent(s):
e30e13f
Update german-ler.py
Browse filesadd coarse-grained tags
- german-ler.py +13 -13
german-ler.py
CHANGED
@@ -158,18 +158,7 @@ class German_LER(datasets.GeneratorBasedBuilder):
|
|
158 |
gen_kwargs={"datapath": data_dir["dev"], "split": "dev"},
|
159 |
),
|
160 |
]
|
161 |
-
|
162 |
-
def _generate_coarse_tags(label):
|
163 |
-
if label == 'O': return label
|
164 |
-
|
165 |
-
bio, fine_tag = label.split("-")
|
166 |
-
if fine_tag in ['PER', 'RR', 'AN']: return bio + '-PER'
|
167 |
-
elif fine_tag in ['LD', 'ST', 'STR', 'LDS']: return bio + '-LOC'
|
168 |
-
elif fine_tag in ['ORG', 'UN', 'INN', 'GRT', 'MRK']: return bio + '-ORG'
|
169 |
-
elif fine_tag in ['GS', 'VO', 'EUN']: return bio + '-NRM'
|
170 |
-
elif fine_tag in ['VS', 'VT']: return bio + '-REG'
|
171 |
-
else: return label
|
172 |
-
|
173 |
def _generate_examples(self, datapath, split):
|
174 |
sentence_counter = 0
|
175 |
with open(datapath, encoding="utf-8") as f:
|
@@ -183,7 +172,18 @@ class German_LER(datasets.GeneratorBasedBuilder):
|
|
183 |
token, label = row_split
|
184 |
current_words.append(token)
|
185 |
current_labels.append(label)
|
186 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
187 |
else:
|
188 |
if not current_words:
|
189 |
continue
|
|
|
158 |
gen_kwargs={"datapath": data_dir["dev"], "split": "dev"},
|
159 |
),
|
160 |
]
|
161 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
162 |
def _generate_examples(self, datapath, split):
|
163 |
sentence_counter = 0
|
164 |
with open(datapath, encoding="utf-8") as f:
|
|
|
172 |
token, label = row_split
|
173 |
current_words.append(token)
|
174 |
current_labels.append(label)
|
175 |
+
|
176 |
+
# generate coarse-grained tags
|
177 |
+
if label == 'O': continue
|
178 |
+
else:
|
179 |
+
bio, fine_tag = label.split("-")
|
180 |
+
if fine_tag in ['PER', 'RR', 'AN']: label = bio + '-PER'
|
181 |
+
elif fine_tag in ['LD', 'ST', 'STR', 'LDS']: label = bio + '-LOC'
|
182 |
+
elif fine_tag in ['ORG', 'UN', 'INN', 'GRT', 'MRK']: label = bio + '-ORG'
|
183 |
+
elif fine_tag in ['GS', 'VO', 'EUN']: label = bio + '-NRM'
|
184 |
+
elif fine_tag in ['VS', 'VT']: label = bio + '-REG'
|
185 |
+
current_coarse_labels.append(label)
|
186 |
+
|
187 |
else:
|
188 |
if not current_words:
|
189 |
continue
|