Datasets:
Modalities:
Text
Sub-tasks:
masked-language-modeling
Languages:
English
Size:
1M - 10M
ArXiv:
License:
# coding=utf-8 | |
# Copyright 2020 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
# Lint as: python3 | |
"""The FTRACE benchmark.""" | |
import json | |
import os | |
import textwrap | |
import datasets | |
_FTRACE_CITATION = """\ | |
""" | |
_FTRACE_DESCRIPTION = """\ | |
Factual Tracing Dataset that contains queries and abstracts, and their corresponding ground truth. | |
""" | |
_FTRACE_ABSTRACTS_DESCRIPTION = """\ | |
Abstracts based on TREx dataset. | |
""" | |
_FTRACE_ABSTRACTS_LICENSE = """\ | |
Creative Commons Attribution-ShareAlike 4.0 International License. | |
see https://creativecommons.org/licenses/by-sa/4.0/""" | |
_FTRACE_ABSTRACTS_CITATION = """\ | |
@inproceedings{elsahar2018t, | |
title={T-rex: A large scale alignment of natural language with knowledge base triples}, | |
author={Elsahar, Hady and Vougiouklis, Pavlos and Remaci, Arslen and Gravier, Christophe and Hare, Jonathon and Laforest, Frederique and Simperl, Elena}, | |
booktitle={Proceedings of the Eleventh International Conference on Language Resources and Evaluation (LREC 2018)}, | |
year={2018} | |
}""" | |
_FTRACE_QUERIES_DESCRIPTION = """\ | |
Queries based on LAMA dataset. | |
""" | |
_FTRACE_QUERIES_CITATION = """\ | |
@inproceedings{petroni2019language, | |
title={Language Models as Knowledge Bases?}, | |
author={F. Petroni, T. Rockt{\"{a}}schel, A. H. Miller, P. Lewis, A. Bakhtin, Y. Wu and S. Riedel}, | |
booktitle={In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing (EMNLP), 2019}, | |
year={2019} | |
}""" | |
FTRACE_QUERIES_LICENSE = """\ | |
The Creative Commons Attribution-Noncommercial 4.0 International License. | |
see https://github.com/facebookresearch/LAMA/blob/master/LICENSE""" | |
class FTRACEConfig(datasets.BuilderConfig): | |
"""BuilderConfig for FTRACE.""" | |
def __init__( | |
self, | |
features, | |
data_url, | |
citation, | |
license, | |
url, | |
**kwargs, | |
): | |
"""BuilderConfig for FTRACE. | |
Args: | |
features: `list[string]`, list of the features that will appear in the | |
feature dict. Should not include "label". | |
data_url: `string`, url to download the zip file from. | |
citation: `string`, citation for the data set. | |
url: `string`, url for information about the data set. | |
**kwargs: keyword arguments forwarded to super. | |
""" | |
# Version history: | |
# 0.0.2: Initial version. | |
super(FTRACEConfig, self).__init__( | |
version=datasets.Version("0.0.2"), **kwargs | |
) | |
self.features = features | |
self.data_url = data_url | |
self.citation = citation | |
self.license = license | |
self.url = url | |
class FTRACE(datasets.GeneratorBasedBuilder): | |
"""The SuperFTRACE benchmark.""" | |
BUILDER_CONFIGS = [ | |
FTRACEConfig( | |
name="abstracts", | |
description=_FTRACE_ABSTRACTS_DESCRIPTION, | |
features=[ | |
"inputs_pretokenized", | |
"targets_pretokenized", | |
"masked_uri", | |
"masked_type", | |
"facts", | |
"id", | |
"example_uris", | |
"page_uri", | |
], | |
data_url="https://people.csail.mit.edu/akyurek/ftrace/abstracts.zip", | |
citation=textwrap.dedent(_FTRACE_ABSTRACTS_CITATION), | |
license=_FTRACE_ABSTRACTS_LICENSE, | |
url="https://hadyelsahar.github.io/t-rex/", | |
), | |
FTRACEConfig( | |
name="queries", | |
description=_FTRACE_QUERIES_DESCRIPTION, | |
features=[ | |
"inputs_pretokenized", | |
"targets_pretokenized", | |
"uuid", | |
"obj_uri", | |
"sub_uri", | |
"predicate_id", | |
"sub_surface", | |
"obj_surface", | |
], | |
data_url="https://people.csail.mit.edu/akyurek/ftrace/queries.zip", | |
citation=textwrap.dedent(_FTRACE_QUERIES_CITATION), | |
license=FTRACE_QUERIES_LICENSE, | |
url="https://github.com/facebookresearch/LAMA", | |
), | |
] | |
def _info(self): | |
features = { | |
feature: datasets.Value("string") | |
for feature in self.config.features | |
} | |
return datasets.DatasetInfo( | |
description=_FTRACE_DESCRIPTION + self.config.description, | |
features=datasets.Features(features), | |
homepage=self.config.url, | |
citation=self.config.citation + "\n" + _FTRACE_CITATION, | |
) | |
def _split_generators(self, dl_manager): | |
dl_dir = dl_manager.download_and_extract(self.config.data_url) or "" | |
task_name = _get_task_name_from_data_url(self.config.data_url) | |
dl_dir = os.path.join(dl_dir, task_name) | |
return [ | |
datasets.SplitGenerator( | |
name=datasets.Split.TRAIN, | |
gen_kwargs={ | |
"data_file": os.path.join(dl_dir, "train.jsonl"), | |
"split": "train", | |
}, | |
), | |
] | |
def _generate_examples(self, data_file, split): | |
with open(data_file, encoding="utf-8") as f: | |
for idx, line in enumerate(f): | |
row = json.loads(line) | |
yield idx, row | |
def _get_task_name_from_data_url(data_url): | |
if "queries" in data_url: | |
return "queries" | |
elif "abstracts" in data_url: | |
return "abstracts" | |
return "queries" | |