Datasets:

Modalities:
Text
Languages:
English
ArXiv:
Libraries:
Datasets
License:
ftrace / ftrace.py
Ekin Akyürek
update citations
6c3f9fe
raw
history blame
5.98 kB
# coding=utf-8
# Copyright 2020 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Lint as: python3
"""The FTRACE benchmark."""
import json
import os
import textwrap
import datasets
_FTRACE_CITATION = """\
"""
_FTRACE_DESCRIPTION = """\
Factual Tracing Dataset that contains queries and abstracts, and their corresponding ground truth.
"""
_FTRACE_ABSTRACTS_DESCRIPTION = """\
Abstracts based on TREx dataset.
"""
_FTRACE_ABSTRACTS_LICENSE = """\
Creative Commons Attribution-ShareAlike 4.0 International License.
see https://creativecommons.org/licenses/by-sa/4.0/"""
_FTRACE_ABSTRACTS_CITATION = """\
@inproceedings{elsahar2018t,
title={T-rex: A large scale alignment of natural language with knowledge base triples},
author={Elsahar, Hady and Vougiouklis, Pavlos and Remaci, Arslen and Gravier, Christophe and Hare, Jonathon and Laforest, Frederique and Simperl, Elena},
booktitle={Proceedings of the Eleventh International Conference on Language Resources and Evaluation (LREC 2018)},
year={2018}
}"""
_FTRACE_QUERIES_DESCRIPTION = """\
Queries based on LAMA dataset.
"""
_FTRACE_QUERIES_CITATION = """\
@inproceedings{petroni2019language,
title={Language Models as Knowledge Bases?},
author={F. Petroni, T. Rockt{\"{a}}schel, A. H. Miller, P. Lewis, A. Bakhtin, Y. Wu and S. Riedel},
booktitle={In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing (EMNLP), 2019},
year={2019}
}"""
FTRACE_QUERIES_LICENSE = """\
The Creative Commons Attribution-Noncommercial 4.0 International License.
see https://github.com/facebookresearch/LAMA/blob/master/LICENSE"""
class FTRACEConfig(datasets.BuilderConfig):
"""BuilderConfig for FTRACE."""
def __init__(
self,
features,
data_url,
citation,
license,
url,
**kwargs,
):
"""BuilderConfig for FTRACE.
Args:
features: `list[string]`, list of the features that will appear in the
feature dict. Should not include "label".
data_url: `string`, url to download the zip file from.
citation: `string`, citation for the data set.
url: `string`, url for information about the data set.
**kwargs: keyword arguments forwarded to super.
"""
# Version history:
# 0.0.2: Initial version.
super(FTRACEConfig, self).__init__(
version=datasets.Version("0.0.2"), **kwargs
)
self.features = features
self.data_url = data_url
self.citation = citation
self.license = license
self.url = url
class FTRACE(datasets.GeneratorBasedBuilder):
"""The SuperFTRACE benchmark."""
BUILDER_CONFIGS = [
FTRACEConfig(
name="abstracts",
description=_FTRACE_ABSTRACTS_DESCRIPTION,
features=[
"inputs_pretokenized",
"targets_pretokenized",
"masked_uri",
"masked_type",
"facts",
"id",
"example_uris",
"page_uri",
],
data_url="https://people.csail.mit.edu/akyurek/ftrace/abstracts.zip",
citation=textwrap.dedent(_FTRACE_ABSTRACTS_CITATION),
license=_FTRACE_ABSTRACTS_LICENSE,
url="https://hadyelsahar.github.io/t-rex/",
),
FTRACEConfig(
name="queries",
description=_FTRACE_QUERIES_DESCRIPTION,
features=[
"inputs_pretokenized",
"targets_pretokenized",
"uuid",
"obj_uri",
"sub_uri",
"predicate_id",
"sub_surface",
"obj_surface",
],
data_url="https://people.csail.mit.edu/akyurek/ftrace/queries.zip",
citation=textwrap.dedent(_FTRACE_QUERIES_CITATION),
license=FTRACE_QUERIES_LICENSE,
url="https://github.com/facebookresearch/LAMA",
),
]
def _info(self):
features = {
feature: datasets.Value("string")
for feature in self.config.features
}
return datasets.DatasetInfo(
description=_FTRACE_DESCRIPTION + self.config.description,
features=datasets.Features(features),
homepage=self.config.url,
citation=self.config.citation + "\n" + _FTRACE_CITATION,
)
def _split_generators(self, dl_manager):
dl_dir = dl_manager.download_and_extract(self.config.data_url) or ""
task_name = _get_task_name_from_data_url(self.config.data_url)
dl_dir = os.path.join(dl_dir, task_name)
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"data_file": os.path.join(dl_dir, "train.jsonl"),
"split": "train",
},
),
]
def _generate_examples(self, data_file, split):
with open(data_file, encoding="utf-8") as f:
for idx, line in enumerate(f):
row = json.loads(line)
yield idx, row
def _get_task_name_from_data_url(data_url):
if "queries" in data_url:
return "queries"
elif "abstracts" in data_url:
return "abstracts"
return "queries"