Datasets:
dataset_info:
- config_name: OSCAR-2301
features:
- name: id
dtype: int64
- name: text
dtype: string
- name: meta
struct:
- name: categories
sequence: string
- name: dedup
struct:
- name: exact_norm
struct:
- name: cluster_main_idx
dtype: int64
- name: cluster_size
dtype: int64
- name: exact_hash_idx
dtype: int64
- name: is_duplicate
dtype: bool
- name: minhash
struct:
- name: cluster_main_idx
dtype: int64
- name: cluster_size
dtype: int64
- name: is_duplicate
dtype: bool
- name: minhash_idx
dtype: int64
- name: harmful_pp
dtype: float64
- name: identification
struct:
- name: label
dtype: string
- name: prob
dtype: float64
- name: quality_warnings
sequence: string
- name: sentence_identifications
list:
- name: label
dtype: string
- name: prob
dtype: float64
- name: tlsh
dtype: string
- name: warc_headers
struct:
- name: content-length
dtype: int64
- name: content-type
dtype: string
- name: warc-block-digest
dtype: string
- name: warc-date
dtype: string
- name: warc-identified-content-language
dtype: string
- name: warc-record-id
dtype: string
- name: warc-refers-to
dtype: string
- name: warc-target-uri
dtype: string
- name: warc-type
dtype: string
splits:
- name: train
num_bytes: 77259995670.30853
num_examples: 10888966
download_size: 42589347661
dataset_size: 77259995670.30853
- config_name: brwac
features:
- name: id
dtype: int64
- name: text
dtype: string
- name: meta
struct:
- name: dedup
struct:
- name: exact_norm
struct:
- name: cluster_main_idx
dtype: int64
- name: cluster_size
dtype: int64
- name: exact_hash_idx
dtype: int64
- name: is_duplicate
dtype: bool
- name: minhash
struct:
- name: cluster_main_idx
dtype: int64
- name: cluster_size
dtype: int64
- name: is_duplicate
dtype: bool
- name: minhash_idx
dtype: int64
- name: doc_id
dtype: string
- name: title
dtype: string
- name: uri
dtype: string
splits:
- name: train
num_bytes: 18218935459.169613
num_examples: 3513588
download_size: 11210909325
dataset_size: 18218935459.169613
- config_name: cc100
features:
- name: id
dtype: int64
- name: text
dtype: string
- name: meta
struct:
- name: dedup
struct:
- name: exact_norm
struct:
- name: cluster_main_idx
dtype: int64
- name: cluster_size
dtype: int64
- name: exact_hash_idx
dtype: int64
- name: is_duplicate
dtype: bool
- name: minhash
struct:
- name: cluster_main_idx
dtype: int64
- name: cluster_size
dtype: int64
- name: is_duplicate
dtype: bool
- name: minhash_idx
dtype: int64
splits:
- name: train
num_bytes: 53707749127.11777
num_examples: 38059979
download_size: 34844109320
dataset_size: 53707749127.11777
configs:
- config_name: OSCAR-2301
data_files:
- split: train
path: OSCAR-2301/train-*
- config_name: brwac
data_files:
- split: train
path: brwac/train-*
- config_name: cc100
data_files:
- split: train
path: cc100/train-*
license: cc-by-4.0
task_categories:
- text-generation
language:
- pt
pretty_name: CrawlPT (deduplicated)
size_categories:
- 10M<n<100M
CrawlPT (deduplicated)
CrawlPT is a generic Portuguese corpus extracted from various web pages.
Dataset Details
Dataset is composed by three corpora: brWaC, C100-PT, OSCAR-2301.
brWaC: a web corpus for Brazilian Portuguese from 120,000 different websites.
C100-PT: Portuguese subset from CC-100. C100 was created for training the multilingual Transformer XLM-R, containing two terabytes of cleaned data from 2018 snapshots of the Common Crawl project in 100 languages. We use the , which contains 49.1 GiB of text.
OSCAR-2301-PT: curation from OSCAR-2301 in the Portuguese language.
Dataset Description
Curated by: [More Information Needed]
Funded by: [More Information Needed]
Language(s) (NLP): Brazilian Portuguese (pt-BR)
License: Creative Commons Attribution 4.0 International Public License
Dataset Sources
- Repository: https://github.com/eduagarcia/roberta-legal-portuguese
- Paper: [More Information Needed]
Dataset Structure
[More Information Needed]
Data Collection and Processing
Raw corpora sizes in terms of billions of tokens and file size in GiB:
Corpus | Domain | Tokens (B) | Size (GiB) |
---|---|---|---|
brWaC | General | 2.7 | 16.3 |
CC100 (PT) | General | 8.4 | 49.1 |
OSCAR-2301 (PT) | General | 18.1 | 97.8 |
CrawlPT is deduplicated using MinHash algorithm and Locality Sensitive Hashing, following the approach of Lee et al. (2022).
We used 5-grams and a signature of size 256, considering two documents to be identical if their Jaccard Similarity exceeded 0.7. Deduplicate rate found by the Minhash-LSH algorithm for the CrawlPT corpus:
Corpus | Documents | Docs. after deduplicatio} | Duplicates (%) |
---|---|---|---|
brWaC | 3,530,796 | 3,513,588 | 0.49 |
OSCAR-2301 (PT Subset) | 18,031,400 | 10,888,966 | 39.61 |
CC100 (PT Subset) | 38,999,388 | 38,059,979 | 2.41 |
Total (CrawlPT) | 60,561,584 | 52,462,533 | 13.37 |
Citation
@InProceedings{garcia2024_roberlexpt,
author="Garcia, Eduardo A. S.
and Silva, N{\'a}dia F. F.
and Siqueira, Felipe
and Gomes, Juliana R. S.
and Albuqueruqe, Hidelberg O.
and Souza, Ellen
and Lima, Eliomar
and De Carvalho, André",
title="RoBERTaLexPT: A Legal RoBERTa Model pretrained with deduplication for Portuguese",
booktitle="Computational Processing of the Portuguese Language",
year="2024",
publisher="Association for Computational Linguistics"
}
Acknowledgment
This work has been supported by the AI Center of Excellence (Centro de Excelência em Inteligência Artificial – CEIA) of the Institute of Informatics at the Federal University of Goiás (INF-UFG).