Datasets:
patrickvonplaten
commited on
Commit
•
305afbb
1
Parent(s):
5523b83
Create new file
Browse files
ami.py
ADDED
@@ -0,0 +1,383 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
"""
|
15 |
+
GigaSpeech is an evolving, multi-domain English speech recognition corpus with 10,000 hours of high quality
|
16 |
+
labeled audio suitable for supervised training, and 40,000 hours of total audio suitable for semi-supervised
|
17 |
+
and unsupervised training. Around 40,000 hours of transcribed audio is first collected from audiobooks, podcasts
|
18 |
+
and YouTube, covering both read and spontaneous speaking styles, and a variety of topics, such as arts, science,
|
19 |
+
sports, etc. A new forced alignment and segmentation pipeline is proposed to create sentence segments suitable
|
20 |
+
for speech recognition training, and to filter out segments with low-quality transcription. For system training,
|
21 |
+
GigaSpeech provides five subsets of different sizes, 10h, 250h, 1000h, 2500h, and 10000h.
|
22 |
+
For our 10,000-hour XL training subset, we cap the word error rate at 4% during the filtering/validation stage,
|
23 |
+
and for all our other smaller training subsets, we cap it at 0%. The DEV and TEST evaluation sets, on the other hand,
|
24 |
+
are re-processed by professional human transcribers to ensure high transcription quality.
|
25 |
+
"""
|
26 |
+
|
27 |
+
import csv
|
28 |
+
import os
|
29 |
+
|
30 |
+
import datasets
|
31 |
+
|
32 |
+
_CITATION = """\
|
33 |
+
@article{DBLP:journals/corr/abs-2106-06909,
|
34 |
+
author = {Guoguo Chen and
|
35 |
+
Shuzhou Chai and
|
36 |
+
Guanbo Wang and
|
37 |
+
Jiayu Du and
|
38 |
+
Wei{-}Qiang Zhang and
|
39 |
+
Chao Weng and
|
40 |
+
Dan Su and
|
41 |
+
Daniel Povey and
|
42 |
+
Jan Trmal and
|
43 |
+
Junbo Zhang and
|
44 |
+
Mingjie Jin and
|
45 |
+
Sanjeev Khudanpur and
|
46 |
+
Shinji Watanabe and
|
47 |
+
Shuaijiang Zhao and
|
48 |
+
Wei Zou and
|
49 |
+
Xiangang Li and
|
50 |
+
Xuchen Yao and
|
51 |
+
Yongqing Wang and
|
52 |
+
Yujun Wang and
|
53 |
+
Zhao You and
|
54 |
+
Zhiyong Yan},
|
55 |
+
title = {GigaSpeech: An Evolving, Multi-domain {ASR} Corpus with 10, 000 Hours
|
56 |
+
of Transcribed Audio},
|
57 |
+
journal = {CoRR},
|
58 |
+
volume = {abs/2106.06909},
|
59 |
+
year = {2021},
|
60 |
+
url = {https://arxiv.org/abs/2106.06909},
|
61 |
+
eprinttype = {arXiv},
|
62 |
+
eprint = {2106.06909},
|
63 |
+
timestamp = {Wed, 29 Dec 2021 14:29:26 +0100},
|
64 |
+
biburl = {https://dblp.org/rec/journals/corr/abs-2106-06909.bib},
|
65 |
+
bibsource = {dblp computer science bibliography, https://dblp.org}
|
66 |
+
}
|
67 |
+
"""
|
68 |
+
|
69 |
+
_DESCRIPTION = """\
|
70 |
+
GigaSpeech is an evolving, multi-domain English speech recognition corpus with 10,000 hours of high quality
|
71 |
+
labeled audio suitable for supervised training, and 40,000 hours of total audio suitable for semi-supervised
|
72 |
+
and unsupervised training. Around 40,000 hours of transcribed audio is first collected from audiobooks, podcasts
|
73 |
+
and YouTube, covering both read and spontaneous speaking styles, and a variety of topics, such as arts, science,
|
74 |
+
sports, etc. A new forced alignment and segmentation pipeline is proposed to create sentence segments suitable
|
75 |
+
for speech recognition training, and to filter out segments with low-quality transcription. For system training,
|
76 |
+
GigaSpeech provides five subsets of different sizes, 10h, 250h, 1000h, 2500h, and 10000h.
|
77 |
+
For our 10,000-hour XL training subset, we cap the word error rate at 4% during the filtering/validation stage,
|
78 |
+
and for all our other smaller training subsets, we cap it at 0%. The DEV and TEST evaluation sets, on the other hand,
|
79 |
+
are re-processed by professional human transcribers to ensure high transcription quality.
|
80 |
+
"""
|
81 |
+
|
82 |
+
_HOMEPAGE = "https://groups.inf.ed.ac.uk/ami/corpus/"
|
83 |
+
|
84 |
+
_LICENSE = "CC BY 4.0"
|
85 |
+
|
86 |
+
_TRAIN_SAMPLE_IDS = [
|
87 |
+
"EN2001a",
|
88 |
+
"EN2001b",
|
89 |
+
"EN2001d",
|
90 |
+
"EN2001e",
|
91 |
+
"EN2003a",
|
92 |
+
"EN2004a",
|
93 |
+
"EN2005a",
|
94 |
+
"EN2006a",
|
95 |
+
"EN2006b",
|
96 |
+
"EN2009b",
|
97 |
+
"EN2009c",
|
98 |
+
"EN2009d",
|
99 |
+
"ES2002a",
|
100 |
+
"ES2002b",
|
101 |
+
"ES2002c",
|
102 |
+
"ES2002d",
|
103 |
+
"ES2003a",
|
104 |
+
"ES2003b",
|
105 |
+
"ES2003c",
|
106 |
+
"ES2003d",
|
107 |
+
"ES2005a",
|
108 |
+
"ES2005b",
|
109 |
+
"ES2005c",
|
110 |
+
"ES2005d",
|
111 |
+
"ES2006a",
|
112 |
+
"ES2006b",
|
113 |
+
"ES2006c",
|
114 |
+
"ES2006d",
|
115 |
+
"ES2007a",
|
116 |
+
"ES2007b",
|
117 |
+
"ES2007c",
|
118 |
+
"ES2007d",
|
119 |
+
"ES2008a",
|
120 |
+
"ES2008b",
|
121 |
+
"ES2008c",
|
122 |
+
"ES2008d",
|
123 |
+
"ES2009a",
|
124 |
+
"ES2009b",
|
125 |
+
"ES2009c",
|
126 |
+
"ES2009d",
|
127 |
+
"ES2010a",
|
128 |
+
"ES2010b",
|
129 |
+
"ES2010c",
|
130 |
+
"ES2010d",
|
131 |
+
"ES2012a",
|
132 |
+
"ES2012b",
|
133 |
+
"ES2012c",
|
134 |
+
"ES2012d",
|
135 |
+
"ES2013a",
|
136 |
+
"ES2013b",
|
137 |
+
"ES2013c",
|
138 |
+
"ES2013d",
|
139 |
+
"ES2014a",
|
140 |
+
"ES2014b",
|
141 |
+
"ES2014c",
|
142 |
+
"ES2014d",
|
143 |
+
"ES2015a",
|
144 |
+
"ES2015b",
|
145 |
+
"ES2015c",
|
146 |
+
"ES2015d",
|
147 |
+
"ES2016a",
|
148 |
+
"ES2016b",
|
149 |
+
"ES2016c",
|
150 |
+
"ES2016d",
|
151 |
+
"IB4005",
|
152 |
+
"IN1001",
|
153 |
+
"IN1002",
|
154 |
+
"IN1005",
|
155 |
+
"IN1007",
|
156 |
+
"IN1008",
|
157 |
+
"IN1009",
|
158 |
+
"IN1012",
|
159 |
+
"IN1013",
|
160 |
+
"IN1014",
|
161 |
+
"IN1016",
|
162 |
+
"IS1000a",
|
163 |
+
"IS1000b",
|
164 |
+
"IS1000c",
|
165 |
+
"IS1000d",
|
166 |
+
"IS1001a",
|
167 |
+
"IS1001b",
|
168 |
+
"IS1001c",
|
169 |
+
"IS1001d",
|
170 |
+
"IS1002b",
|
171 |
+
"IS1002c",
|
172 |
+
"IS1002d",
|
173 |
+
"IS1003a",
|
174 |
+
"IS1003b",
|
175 |
+
"IS1003c",
|
176 |
+
"IS1003d",
|
177 |
+
"IS1004a",
|
178 |
+
"IS1004b",
|
179 |
+
"IS1004c",
|
180 |
+
"IS1004d",
|
181 |
+
"IS1005a",
|
182 |
+
"IS1005b",
|
183 |
+
"IS1005c",
|
184 |
+
"IS1006a",
|
185 |
+
"IS1006b",
|
186 |
+
"IS1006c",
|
187 |
+
"IS1006d",
|
188 |
+
"IS1007a",
|
189 |
+
"IS1007b",
|
190 |
+
"IS1007c",
|
191 |
+
"IS1007d",
|
192 |
+
"TS3005a",
|
193 |
+
"TS3005b",
|
194 |
+
"TS3005c",
|
195 |
+
"TS3005d",
|
196 |
+
"TS3006a",
|
197 |
+
"TS3006b",
|
198 |
+
"TS3006c",
|
199 |
+
"TS3006d",
|
200 |
+
"TS3007a",
|
201 |
+
"TS3007b",
|
202 |
+
"TS3007c",
|
203 |
+
"TS3007d",
|
204 |
+
"TS3008a",
|
205 |
+
"TS3008b",
|
206 |
+
"TS3008c",
|
207 |
+
"TS3008d",
|
208 |
+
"TS3009a",
|
209 |
+
"TS3009b",
|
210 |
+
"TS3009c",
|
211 |
+
"TS3009d",
|
212 |
+
"TS3010a",
|
213 |
+
"TS3010b",
|
214 |
+
"TS3010c",
|
215 |
+
"TS3010d",
|
216 |
+
"TS3011a",
|
217 |
+
"TS3011b",
|
218 |
+
"TS3011c",
|
219 |
+
"TS3011d",
|
220 |
+
"TS3012a",
|
221 |
+
"TS3012b",
|
222 |
+
"TS3012c",
|
223 |
+
"TS3012d",
|
224 |
+
]
|
225 |
+
|
226 |
+
_VALIDATION_SAMPLE_IDS = [
|
227 |
+
"ES2011a",
|
228 |
+
"ES2011c",
|
229 |
+
"IB4001",
|
230 |
+
"IB4003",
|
231 |
+
"IB4010",
|
232 |
+
"IS1008a",
|
233 |
+
"IS1008c",
|
234 |
+
"TS3004a",
|
235 |
+
"TS3004c",
|
236 |
+
"ES2011b",
|
237 |
+
"ES2011d",
|
238 |
+
"IB4002",
|
239 |
+
"IB4004",
|
240 |
+
"IB4011",
|
241 |
+
"IS1008b",
|
242 |
+
"IS1008d",
|
243 |
+
"TS3004b",
|
244 |
+
"TS3004d",
|
245 |
+
]
|
246 |
+
|
247 |
+
_EVAL_SAMPLE_IDS = [
|
248 |
+
"EN2002a",
|
249 |
+
"EN2002b",
|
250 |
+
"EN2002c",
|
251 |
+
"EN2002d",
|
252 |
+
"ES2004a",
|
253 |
+
"ES2004b",
|
254 |
+
"ES2004c",
|
255 |
+
"ES2004d",
|
256 |
+
"IS1009a",
|
257 |
+
"IS1009b",
|
258 |
+
"IS1009c",
|
259 |
+
"IS1009d",
|
260 |
+
"TS3003a",
|
261 |
+
"TS3003b",
|
262 |
+
"TS3003c",
|
263 |
+
"TS3003d",
|
264 |
+
]
|
265 |
+
|
266 |
+
_SUBSETS = ("ihm",)
|
267 |
+
|
268 |
+
_BASE_DATA_URL = "https://huggingface.co/datasets/patrickvonplaten/ami-ihm-kaldi-chunked/resolve/main/"
|
269 |
+
|
270 |
+
_AUDIO_ARCHIVE_URL = _BASE_DATA_URL + "audio/{subset}/{split}/{_id}.tar.gz"
|
271 |
+
|
272 |
+
_ANNOTATIONS_ARCHIVE_URL = _BASE_DATA_URL + "annotations/{split}/text"
|
273 |
+
|
274 |
+
logger = datasets.utils.logging.get_logger(__name__)
|
275 |
+
|
276 |
+
|
277 |
+
class AMIConfig(datasets.BuilderConfig):
|
278 |
+
"""BuilderConfig for AMI."""
|
279 |
+
|
280 |
+
def __init__(self, name, *args, **kwargs):
|
281 |
+
"""BuilderConfig for AMI"""
|
282 |
+
super().__init__(name=name, *args, **kwargs)
|
283 |
+
|
284 |
+
|
285 |
+
class AMI(datasets.GeneratorBasedBuilder):
|
286 |
+
"""
|
287 |
+
GigaSpeech is an evolving, multi-domain English speech recognition corpus with 10,000 hours of high quality
|
288 |
+
labeled audio suitable for supervised training, and 40,000 hours of total audio suitable for semi-supervised
|
289 |
+
and unsupervised training (this implementation contains only labelled data for now).
|
290 |
+
Around 40,000 hours of transcribed audio is first collected from audiobooks, podcasts
|
291 |
+
and YouTube, covering both read and spontaneous speaking styles, and a variety of topics, such as arts, science,
|
292 |
+
sports, etc. A new forced alignment and segmentation pipeline is proposed to create sentence segments suitable
|
293 |
+
for speech recognition training, and to filter out segments with low-quality transcription. For system training,
|
294 |
+
GigaSpeech provides five subsets of different sizes, 10h, 250h, 1000h, 2500h, and 10000h.
|
295 |
+
For our 10,000-hour XL training subset, we cap the word error rate at 4% during the filtering/validation stage,
|
296 |
+
and for all our other smaller training subsets, we cap it at 0%. The DEV and TEST evaluation sets, on the other hand,
|
297 |
+
are re-processed by professional human transcribers to ensure high transcription quality.
|
298 |
+
"""
|
299 |
+
|
300 |
+
VERSION = datasets.Version("1.0.0")
|
301 |
+
|
302 |
+
BUILDER_CONFIGS = [
|
303 |
+
AMIConfig(name=subset) for subset in _SUBSETS
|
304 |
+
]
|
305 |
+
|
306 |
+
DEFAULT_WRITER_BATCH_SIZE = 128
|
307 |
+
|
308 |
+
def _info(self):
|
309 |
+
features = datasets.Features(
|
310 |
+
{
|
311 |
+
"segment_id": datasets.Value("string"),
|
312 |
+
"audio_id": datasets.Value("string"),
|
313 |
+
"text": datasets.Value("string"),
|
314 |
+
"audio": datasets.Audio(sampling_rate=16_000),
|
315 |
+
"begin_time": datasets.Value("float32"),
|
316 |
+
"end_time": datasets.Value("float32"),
|
317 |
+
"microphone_id": datasets.Value("string"),
|
318 |
+
"speaker_id": datasets.Value("string"),
|
319 |
+
}
|
320 |
+
)
|
321 |
+
return datasets.DatasetInfo(
|
322 |
+
description=_DESCRIPTION,
|
323 |
+
features=features,
|
324 |
+
homepage=_HOMEPAGE,
|
325 |
+
license=_LICENSE,
|
326 |
+
citation=_CITATION,
|
327 |
+
)
|
328 |
+
|
329 |
+
def _split_generators(self, dl_manager):
|
330 |
+
train_audio_files = {m: _AUDIO_ARCHIVE_URL.format(subset=self.config.name, split="train", _id=m) for m in _TRAIN_SAMPLE_IDS}
|
331 |
+
dev_audio_files = {m: _AUDIO_ARCHIVE_URL.format(subset=self.config.name, split="dev", _id=m) for m in _VALIDATION_SAMPLE_IDS}
|
332 |
+
eval_audio_files = {m: _AUDIO_ARCHIVE_URL.format(subset=self.config.name, split="eval", _id=m) for m in _EVAL_SAMPLE_IDS}
|
333 |
+
|
334 |
+
train_audio_archives = dl_manager.download_and_extract(train_audio_files)
|
335 |
+
dev_audio_archives = dl_manager.download_and_extract(dev_audio_files)
|
336 |
+
eval_audio_archives = dl_manager.download_and_extract(eval_audio_files)
|
337 |
+
|
338 |
+
train_annotation = dl_manager.download_and_extract(_ANNOTATIONS_ARCHIVE_URL.format(split="train"))
|
339 |
+
dev_annotation = dl_manager.download_and_extract(_ANNOTATIONS_ARCHIVE_URL.format(split="dev"))
|
340 |
+
eval_annotation = dl_manager.download_and_extract(_ANNOTATIONS_ARCHIVE_URL.format(split="eval"))
|
341 |
+
|
342 |
+
return [
|
343 |
+
datasets.SplitGenerator(
|
344 |
+
name=datasets.Split.TRAIN,
|
345 |
+
gen_kwargs={"audio": train_audio_archives, "annotation": train_annotation, "split": "train"},
|
346 |
+
),
|
347 |
+
datasets.SplitGenerator(
|
348 |
+
name=datasets.Split.VALIDATION,
|
349 |
+
gen_kwargs={"audio": dev_audio_archives, "annotation": dev_annotation, "split": "dev"},
|
350 |
+
),
|
351 |
+
datasets.SplitGenerator(
|
352 |
+
name=datasets.Split.TEST,
|
353 |
+
gen_kwargs={"audio": eval_audio_archives, "annotation": eval_annotation, "split": "eval"},
|
354 |
+
),
|
355 |
+
]
|
356 |
+
|
357 |
+
def _generate_examples(self, audio, annotation, split):
|
358 |
+
# open annotation file
|
359 |
+
with open(annotation, "r", encoding="utf-8") as f:
|
360 |
+
transcriptions = {}
|
361 |
+
for line in f.readlines():
|
362 |
+
line_items = line.strip().split()
|
363 |
+
_id = line_items[0]
|
364 |
+
text = " ".join(line_items[1:])
|
365 |
+
_, segment_id, microphone_id, speaker_id, begin_time, end_time = _id.split("_")
|
366 |
+
|
367 |
+
transcriptions[_id] = {
|
368 |
+
"audio_id": _id,
|
369 |
+
"segment_id": segment_id,
|
370 |
+
"text": text,
|
371 |
+
"begin_time": int(begin_time) / 100,
|
372 |
+
"end_time": int(end_time) / 100,
|
373 |
+
"microphone_id": microphone_id,
|
374 |
+
"speaker_id": speaker_id,
|
375 |
+
}
|
376 |
+
|
377 |
+
for _audio_id, (transcription_id, result) in enumerate(transcriptions.items()):
|
378 |
+
folder_id = result["segment_id"]
|
379 |
+
file_name = "_".join([split, transcription_id.lower()]) + ".wav"
|
380 |
+
audio_file = os.path.join(audio[folder_id], folder_id, file_name)
|
381 |
+
result["audio"] = audio_file
|
382 |
+
yield _audio_id, result
|
383 |
+
|